alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (perfMemory_windows.cpp)

This example Java source code file (perfMemory_windows.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

closehandle, could, dword, free_c_heap_array, getlasterror, handle, invalid_handle_value, lpsecurity_attributes, new_c_heap_array, null, os_err, printmiscellaneous, throw_msg, verbose

The perfMemory_windows.cpp Java example source code

/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "os_windows.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/perfMemory.hpp"
#include "services/memTracker.hpp"
#include "utilities/exceptions.hpp"

#include <windows.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <lmcons.h>

typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
   IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);

// Standard Memory Implementation Details

// create the PerfData memory region in standard memory.
//
static char* create_standard_memory(size_t size) {

  // allocate an aligned chuck of memory
  char* mapAddress = os::reserve_memory(size);

  if (mapAddress == NULL) {
    return NULL;
  }

  // commit memory
  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    if (PrintMiscellaneous && Verbose) {
      warning("Could not commit PerfData memory\n");
    }
    os::release_memory(mapAddress, size);
    return NULL;
  }

  return mapAddress;
}

// delete the PerfData memory region
//
static void delete_standard_memory(char* addr, size_t size) {

  // there are no persistent external resources to cleanup for standard
  // memory. since DestroyJavaVM does not support unloading of the JVM,
  // cleanup of the memory resource is not performed. The memory will be
  // reclaimed by the OS upon termination of the process.
  //
  return;

}

// save the specified memory region to the given file
//
static void save_memory_to_file(char* addr, size_t size) {

  const char* destfile = PerfMemory::get_perfdata_file_path();
  assert(destfile[0] != '\0', "invalid Perfdata file path");

  int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
                   _S_IREAD|_S_IWRITE);

  if (fd == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("Could not create Perfdata save file: %s: %s\n",
              destfile, strerror(errno));
    }
  } else {
    for (size_t remaining = size; remaining > 0;) {

      int nbytes = ::_write(fd, addr, (unsigned int)remaining);
      if (nbytes == OS_ERR) {
        if (PrintMiscellaneous && Verbose) {
          warning("Could not write Perfdata save file: %s: %s\n",
                  destfile, strerror(errno));
        }
        break;
      }

      remaining -= (size_t)nbytes;
      addr += nbytes;
    }

    int result = ::_close(fd);
    if (PrintMiscellaneous && Verbose) {
      if (result == OS_ERR) {
        warning("Could not close %s: %s\n", destfile, strerror(errno));
      }
    }
  }

  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
}

// Shared Memory Implementation Details

// Note: the win32 shared memory implementation uses two objects to represent
// the shared memory: a windows kernel based file mapping object and a backing
// store file. On windows, the name space for shared memory is a kernel
// based name space that is disjoint from other win32 name spaces. Since Java
// is unaware of this name space, a parallel file system based name space is
// maintained, which provides a common file system based shared memory name
// space across the supported platforms and one that Java apps can deal with
// through simple file apis.
//
// For performance and resource cleanup reasons, it is recommended that the
// user specific directory and the backing store file be stored in either a
// RAM based file system or a local disk based file system. Network based
// file systems are not recommended for performance reasons. In addition,
// use of SMB network based file systems may result in unsuccesful cleanup
// of the disk based resource on exit of the VM. The Windows TMP and TEMP
// environement variables, as used by the GetTempPath() Win32 API (see
// os::get_temp_directory() in os_win32.cpp), control the location of the
// user specific directory and the shared memory backing store file.

static HANDLE sharedmem_fileMapHandle = NULL;
static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
static char*  sharedmem_fileName = NULL;

// return the user specific temporary directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_tmp_dir(const char* user) {

  const char* tmpdir = os::get_temp_directory();
  const char* perfdir = PERFDATA_NAME;
  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);

  // construct the path name to user specific tmp directory
  _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);

  return dirname;
}

// convert the given file name into a process id. if the file
// does not meet the file naming constraints, return 0.
//
static int filename_to_pid(const char* filename) {

  // a filename that doesn't begin with a digit is not a
  // candidate for conversion.
  //
  if (!isdigit(*filename)) {
    return 0;
  }

  // check if file name can be converted to an integer without
  // any leftover characters.
  //
  char* remainder = NULL;
  errno = 0;
  int pid = (int)strtol(filename, &remainder, 10);

  if (errno != 0) {
    return 0;
  }

  // check for left over characters. If any, then the filename is
  // not a candidate for conversion.
  //
  if (remainder != NULL && *remainder != '\0') {
    return 0;
  }

  // successful conversion, return the pid
  return pid;
}

// check if the given path is considered a secure directory for
// the backing store files. Returns true if the directory exists
// and is considered a secure location. Returns false if the path
// is a symbolic link or if an error occurred.
//
static bool is_directory_secure(const char* path) {

  DWORD fa;

  fa = GetFileAttributes(path);
  if (fa == 0xFFFFFFFF) {
    DWORD lasterror = GetLastError();
    if (lasterror == ERROR_FILE_NOT_FOUND) {
      return false;
    }
    else {
      // unexpected error, declare the path insecure
      if (PrintMiscellaneous && Verbose) {
        warning("could not get attributes for file %s: ",
                " lasterror = %d\n", path, lasterror);
      }
      return false;
    }
  }

  if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
    // we don't accept any redirection for the user specific directory
    // so declare the path insecure. This may be too conservative,
    // as some types of reparse points might be acceptable, but it
    // is probably more secure to avoid these conditions.
    //
    if (PrintMiscellaneous && Verbose) {
      warning("%s is a reparse point\n", path);
    }
    return false;
  }

  if (fa & FILE_ATTRIBUTE_DIRECTORY) {
    // this is the expected case. Since windows supports symbolic
    // links to directories only, not to files, there is no need
    // to check for open write permissions on the directory. If the
    // directory has open write permissions, any files deposited that
    // are not expected will be removed by the cleanup code.
    //
    return true;
  }
  else {
    // this is either a regular file or some other type of file,
    // any of which are unexpected and therefore insecure.
    //
    if (PrintMiscellaneous && Verbose) {
      warning("%s is not a directory, file attributes = "
              INTPTR_FORMAT "\n", path, fa);
    }
    return false;
  }
}

// return the user name for the owner of this process
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name() {

  /* get the user name. This code is adapted from code found in
   * the jdk in src/windows/native/java/lang/java_props_md.c
   * java_props_md.c  1.29 02/02/06. According to the original
   * source, the call to GetUserName is avoided because of a resulting
   * increase in footprint of 100K.
   */
  char* user = getenv("USERNAME");
  char buf[UNLEN+1];
  DWORD buflen = sizeof(buf);
  if (user == NULL || strlen(user) == 0) {
    if (GetUserName(buf, &buflen)) {
      user = buf;
    }
    else {
      return NULL;
    }
  }

  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
  strcpy(user_name, user);

  return user_name;
}

// return the name of the user that owns the process identified by vmid.
//
// This method uses a slow directory search algorithm to find the backing
// store file for the specified vmid and returns the user name, as determined
// by the user name suffix of the hsperfdata_<username> directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name_slow(int vmid) {

  // directory search
  char* latest_user = NULL;
  time_t latest_ctime = 0;

  const char* tmpdirname = os::get_temp_directory();

  DIR* tmpdirp = os::opendir(tmpdirname);

  if (tmpdirp == NULL) {
    return NULL;
  }

  // for each entry in the directory that matches the pattern hsperfdata_*,
  // open the directory and check if the file for the given vmid exists.
  // The file with the expected name and the latest creation date is used
  // to determine the user name for the process id.
  //
  struct dirent* dentry;
  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
  errno = 0;
  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {

    // check if the directory entry is a hsperfdata file
    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
      continue;
    }

    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
        strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
    strcpy(usrdir_name, tmpdirname);
    strcat(usrdir_name, "\\");
    strcat(usrdir_name, dentry->d_name);

    DIR* subdirp = os::opendir(usrdir_name);

    if (subdirp == NULL) {
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
      continue;
    }

    // Since we don't create the backing store files in directories
    // pointed to by symbolic links, we also don't follow them when
    // looking for the files. We check for a symbolic link after the
    // call to opendir in order to eliminate a small window where the
    // symlink can be exploited.
    //
    if (!is_directory_secure(usrdir_name)) {
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
      os::closedir(subdirp);
      continue;
    }

    struct dirent* udentry;
    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
    errno = 0;
    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {

      if (filename_to_pid(udentry->d_name) == vmid) {
        struct stat statbuf;

        char* filename = NEW_C_HEAP_ARRAY(char,
           strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);

        strcpy(filename, usrdir_name);
        strcat(filename, "\\");
        strcat(filename, udentry->d_name);

        if (::stat(filename, &statbuf) == OS_ERR) {
           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
           continue;
        }

        // skip over files that are not regular files.
        if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
          continue;
        }

        // If we found a matching file with a newer creation time, then
        // save the user name. The newer creation time indicates that
        // we found a newer incarnation of the process associated with
        // vmid. Due to the way that Windows recycles pids and the fact
        // that we can't delete the file from the file system namespace
        // until last close, it is possible for there to be more than
        // one hsperfdata file with a name matching vmid (diff users).
        //
        // We no longer ignore hsperfdata files where (st_size == 0).
        // In this function, all we're trying to do is determine the
        // name of the user that owns the process associated with vmid
        // so the size doesn't matter. Very rarely, we have observed
        // hsperfdata files where (st_size == 0) and the st_size field
        // later becomes the expected value.
        //
        if (statbuf.st_ctime > latest_ctime) {
          char* user = strchr(dentry->d_name, '_') + 1;

          if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
          latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);

          strcpy(latest_user, user);
          latest_ctime = statbuf.st_ctime;
        }

        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
      }
    }
    os::closedir(subdirp);
    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
  }
  os::closedir(tmpdirp);
  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);

  return(latest_user);
}

// return the name of the user that owns the process identified by vmid.
//
// note: this method should only be used via the Perf native methods.
// There are various costs to this method and limiting its use to the
// Perf native methods limits the impact to monitoring applications only.
//
static char* get_user_name(int vmid) {

  // A fast implementation is not provided at this time. It's possible
  // to provide a fast process id to user name mapping function using
  // the win32 apis, but the default ACL for the process object only
  // allows processes with the same owner SID to acquire the process
  // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
  // to have the JVM change the ACL for the process object to allow arbitrary
  // users to access the process handle and the process security token.
  // The security ramifications need to be studied before providing this
  // mechanism.
  //
  return get_user_name_slow(vmid);
}

// return the name of the shared memory file mapping object for the
// named shared memory region for the given user name and vmid.
//
// The file mapping object's name is not the file name. It is a name
// in a separate name space.
//
// the caller is expected to free the allocated memory.
//
static char *get_sharedmem_objectname(const char* user, int vmid) {

  // construct file mapping object's name, add 3 for two '_' and a
  // null terminator.
  int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;

  // the id is converted to an unsigned value here because win32 allows
  // negative process ids. However, OpenFileMapping API complains
  // about a name containing a '-' characters.
  //
  nbytes += UINT_CHARS;
  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
  _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);

  return name;
}

// return the file name of the backing store file for the named
// shared memory region for the given user name and vmid.
//
// the caller is expected to free the allocated memory.
//
static char* get_sharedmem_filename(const char* dirname, int vmid) {

  // add 2 for the file separator and a null terminator.
  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;

  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
  _snprintf(name, nbytes, "%s\\%d", dirname, vmid);

  return name;
}

// remove file
//
// this method removes the file with the given file name.
//
// Note: if the indicated file is on an SMB network file system, this
// method may be unsuccessful in removing the file.
//
static void remove_file(const char* dirname, const char* filename) {

  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);

  strcpy(path, dirname);
  strcat(path, "\\");
  strcat(path, filename);

  if (::unlink(path) == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      if (errno != ENOENT) {
        warning("Could not unlink shared memory backing"
                " store file %s : %s\n", path, strerror(errno));
      }
    }
  }

  FREE_C_HEAP_ARRAY(char, path, mtInternal);
}

// returns true if the process represented by pid is alive, otherwise
// returns false. the validity of the result is only accurate if the
// target process is owned by the same principal that owns this process.
// this method should not be used if to test the status of an otherwise
// arbitrary process unless it is know that this process has the appropriate
// privileges to guarantee a result valid.
//
static bool is_alive(int pid) {

  HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
  if (ph == NULL) {
    // the process does not exist.
    if (PrintMiscellaneous && Verbose) {
      DWORD lastError = GetLastError();
      if (lastError != ERROR_INVALID_PARAMETER) {
        warning("OpenProcess failed: %d\n", GetLastError());
      }
    }
    return false;
  }

  DWORD exit_status;
  if (!GetExitCodeProcess(ph, &exit_status)) {
    if (PrintMiscellaneous && Verbose) {
      warning("GetExitCodeProcess failed: %d\n", GetLastError());
    }
    CloseHandle(ph);
    return false;
  }

  CloseHandle(ph);
  return (exit_status == STILL_ACTIVE) ? true : false;
}

// check if the file system is considered secure for the backing store files
//
static bool is_filesystem_secure(const char* path) {

  char root_path[MAX_PATH];
  char fs_type[MAX_PATH];

  if (PerfBypassFileSystemCheck) {
    if (PrintMiscellaneous && Verbose) {
      warning("bypassing file system criteria checks for %s\n", path);
    }
    return true;
  }

  char* first_colon = strchr((char *)path, ':');
  if (first_colon == NULL) {
    if (PrintMiscellaneous && Verbose) {
      warning("expected device specifier in path: %s\n", path);
    }
    return false;
  }

  size_t len = (size_t)(first_colon - path);
  assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
  strncpy(root_path, path, len + 1);
  root_path[len + 1] = '\\';
  root_path[len + 2] = '\0';

  // check that we have something like "C:\" or "AA:\"
  assert(strlen(root_path) >= 3, "device specifier too short");
  assert(strchr(root_path, ':') != NULL, "bad device specifier format");
  assert(strchr(root_path, '\\') != NULL, "bad device specifier format");

  DWORD maxpath;
  DWORD flags;

  if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
                            &flags, fs_type, MAX_PATH)) {
    // we can't get information about the volume, so assume unsafe.
    if (PrintMiscellaneous && Verbose) {
      warning("could not get device information for %s: "
              " path = %s: lasterror = %d\n",
              root_path, path, GetLastError());
    }
    return false;
  }

  if ((flags & FS_PERSISTENT_ACLS) == 0) {
    // file system doesn't support ACLs, declare file system unsafe
    if (PrintMiscellaneous && Verbose) {
      warning("file system type %s on device %s does not support"
              " ACLs\n", fs_type, root_path);
    }
    return false;
  }

  if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
    // file system is compressed, declare file system unsafe
    if (PrintMiscellaneous && Verbose) {
      warning("file system type %s on device %s is compressed\n",
              fs_type, root_path);
    }
    return false;
  }

  return true;
}

// cleanup stale shared memory resources
//
// This method attempts to remove all stale shared memory files in
// the named user temporary directory. It scans the named directory
// for files matching the pattern ^$[0-9]*$. For each file found, the
// process id is extracted from the file name and a test is run to
// determine if the process is alive. If the process is not alive,
// any stale file resources are removed.
//
static void cleanup_sharedmem_resources(const char* dirname) {

  // open the user temp directory
  DIR* dirp = os::opendir(dirname);

  if (dirp == NULL) {
    // directory doesn't exist, so there is nothing to cleanup
    return;
  }

  if (!is_directory_secure(dirname)) {
    // the directory is not secure, don't attempt any cleanup
    return;
  }

  // for each entry in the directory that matches the expected file
  // name pattern, determine if the file resources are stale and if
  // so, remove the file resources. Note, instrumented HotSpot processes
  // for this user may start and/or terminate during this search and
  // remove or create new files in this directory. The behavior of this
  // loop under these conditions is dependent upon the implementation of
  // opendir/readdir.
  //
  struct dirent* entry;
  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
  errno = 0;
  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {

    int pid = filename_to_pid(entry->d_name);

    if (pid == 0) {

      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {

        // attempt to remove all unexpected files, except "." and ".."
        remove_file(dirname, entry->d_name);
      }

      errno = 0;
      continue;
    }

    // we now have a file name that converts to a valid integer
    // that could represent a process id . if this process id
    // matches the current process id or the process is not running,
    // then remove the stale file resources.
    //
    // process liveness is detected by checking the exit status
    // of the process. if the process id is valid and the exit status
    // indicates that it is still running, the file file resources
    // are not removed. If the process id is invalid, or if we don't
    // have permissions to check the process status, or if the process
    // id is valid and the process has terminated, the the file resources
    // are assumed to be stale and are removed.
    //
    if (pid == os::current_process_id() || !is_alive(pid)) {

      // we can only remove the file resources. Any mapped views
      // of the file can only be unmapped by the processes that
      // opened those views and the file mapping object will not
      // get removed until all views are unmapped.
      //
      remove_file(dirname, entry->d_name);
    }
    errno = 0;
  }
  os::closedir(dirp);
  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
}

// create a file mapping object with the requested name, and size
// from the file represented by the given Handle object
//
static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {

  DWORD lowSize = (DWORD)size;
  DWORD highSize = 0;
  HANDLE fmh = NULL;

  // Create a file mapping object with the given name. This function
  // will grow the file to the specified size.
  //
  fmh = CreateFileMapping(
               fh,                 /* HANDLE file handle for backing store */
               fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
               PAGE_READWRITE,     /* DWORD protections */
               highSize,           /* DWORD High word of max size */
               lowSize,            /* DWORD Low word of max size */
               name);              /* LPCTSTR name for object */

  if (fmh == NULL) {
    if (PrintMiscellaneous && Verbose) {
      warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
    }
    return NULL;
  }

  if (GetLastError() == ERROR_ALREADY_EXISTS) {

    // a stale file mapping object was encountered. This object may be
    // owned by this or some other user and cannot be removed until
    // the other processes either exit or close their mapping objects
    // and/or mapped views of this mapping object.
    //
    if (PrintMiscellaneous && Verbose) {
      warning("file mapping already exists, lasterror = %d\n", GetLastError());
    }

    CloseHandle(fmh);
    return NULL;
  }

  return fmh;
}


// method to free the given security descriptor and the contained
// access control list.
//
static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {

  BOOL success, exists, isdefault;
  PACL pACL;

  if (pSD != NULL) {

    // get the access control list from the security descriptor
    success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);

    // if an ACL existed and it was not a default acl, then it must
    // be an ACL we enlisted. free the resources.
    //
    if (success && exists && pACL != NULL && !isdefault) {
      FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
    }

    // free the security descriptor
    FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
  }
}

// method to free up a security attributes structure and any
// contained security descriptors and ACL
//
static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {

  if (lpSA != NULL) {
    // free the contained security descriptor and the ACL
    free_security_desc(lpSA->lpSecurityDescriptor);
    lpSA->lpSecurityDescriptor = NULL;

    // free the security attributes structure
    FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
  }
}

// get the user SID for the process indicated by the process handle
//
static PSID get_user_sid(HANDLE hProcess) {

  HANDLE hAccessToken;
  PTOKEN_USER token_buf = NULL;
  DWORD rsize = 0;

  if (hProcess == NULL) {
    return NULL;
  }

  // get the process token
  if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
    if (PrintMiscellaneous && Verbose) {
      warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
    }
    return NULL;
  }

  // determine the size of the token structured needed to retrieve
  // the user token information from the access token.
  //
  if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
    DWORD lasterror = GetLastError();
    if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
      if (PrintMiscellaneous && Verbose) {
        warning("GetTokenInformation failure: lasterror = %d,"
                " rsize = %d\n", lasterror, rsize);
      }
      CloseHandle(hAccessToken);
      return NULL;
    }
  }

  token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);

  // get the user token information
  if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
    if (PrintMiscellaneous && Verbose) {
      warning("GetTokenInformation failure: lasterror = %d,"
              " rsize = %d\n", GetLastError(), rsize);
    }
    FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
    CloseHandle(hAccessToken);
    return NULL;
  }

  DWORD nbytes = GetLengthSid(token_buf->User.Sid);
  PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);

  if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
    if (PrintMiscellaneous && Verbose) {
      warning("GetTokenInformation failure: lasterror = %d,"
              " rsize = %d\n", GetLastError(), rsize);
    }
    FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
    FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
    CloseHandle(hAccessToken);
    return NULL;
  }

  // close the access token.
  CloseHandle(hAccessToken);
  FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);

  return pSID;
}

// structure used to consolidate access control entry information
//
typedef struct ace_data {
  PSID pSid;      // SID of the ACE
  DWORD mask;     // mask for the ACE
} ace_data_t;


// method to add an allow access control entry with the access rights
// indicated in mask for the principal indicated in SID to the given
// security descriptor. Much of the DACL handling was adapted from
// the example provided here:
//      http://support.microsoft.com/kb/102102/EN-US/
//

static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
                           ace_data_t aces[], int ace_count) {
  PACL newACL = NULL;
  PACL oldACL = NULL;

  if (pSD == NULL) {
    return false;
  }

  BOOL exists, isdefault;

  // retrieve any existing access control list.
  if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
    if (PrintMiscellaneous && Verbose) {
      warning("GetSecurityDescriptor failure: lasterror = %d \n",
              GetLastError());
    }
    return false;
  }

  // get the size of the DACL
  ACL_SIZE_INFORMATION aclinfo;

  // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
  // while oldACL is NULL for some case.
  if (oldACL == NULL) {
    exists = FALSE;
  }

  if (exists) {
    if (!GetAclInformation(oldACL, &aclinfo,
                           sizeof(ACL_SIZE_INFORMATION),
                           AclSizeInformation)) {
      if (PrintMiscellaneous && Verbose) {
        warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
        return false;
      }
    }
  } else {
    aclinfo.AceCount = 0; // assume NULL DACL
    aclinfo.AclBytesFree = 0;
    aclinfo.AclBytesInUse = sizeof(ACL);
  }

  // compute the size needed for the new ACL
  // initial size of ACL is sum of the following:
  //   * size of ACL structure.
  //   * size of each ACE structure that ACL is to contain minus the sid
  //     sidStart member (DWORD) of the ACE.
  //   * length of the SID that each ACE is to contain.
  DWORD newACLsize = aclinfo.AclBytesInUse +
                        (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
  for (int i = 0; i < ace_count; i++) {
     assert(aces[i].pSid != 0, "pSid should not be 0");
     newACLsize += GetLengthSid(aces[i].pSid);
  }

  // create the new ACL
  newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);

  if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
    if (PrintMiscellaneous && Verbose) {
      warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
    }
    FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
    return false;
  }

  unsigned int ace_index = 0;
  // copy any existing ACEs from the old ACL (if any) to the new ACL.
  if (aclinfo.AceCount != 0) {
    while (ace_index < aclinfo.AceCount) {
      LPVOID ace;
      if (!GetAce(oldACL, ace_index, &ace)) {
        if (PrintMiscellaneous && Verbose) {
          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
        }
        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
        return false;
      }
      if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
        // this is an inherited, allowed ACE; break from loop so we can
        // add the new access allowed, non-inherited ACE in the correct
        // position, immediately following all non-inherited ACEs.
        break;
      }

      // determine if the SID of this ACE matches any of the SIDs
      // for which we plan to set ACEs.
      int matches = 0;
      for (int i = 0; i < ace_count; i++) {
        if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
          matches++;
          break;
        }
      }

      // if there are no SID matches, then add this existing ACE to the new ACL
      if (matches == 0) {
        if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
                    ((PACE_HEADER)ace)->AceSize)) {
          if (PrintMiscellaneous && Verbose) {
            warning("AddAce failure: lasterror = %d \n", GetLastError());
          }
          FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
          return false;
        }
      }
      ace_index++;
    }
  }

  // add the passed-in access control entries to the new ACL
  for (int i = 0; i < ace_count; i++) {
    if (!AddAccessAllowedAce(newACL, ACL_REVISION,
                             aces[i].mask, aces[i].pSid)) {
      if (PrintMiscellaneous && Verbose) {
        warning("AddAccessAllowedAce failure: lasterror = %d \n",
                GetLastError());
      }
      FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
      return false;
    }
  }

  // now copy the rest of the inherited ACEs from the old ACL
  if (aclinfo.AceCount != 0) {
    // picking up at ace_index, where we left off in the
    // previous ace_index loop
    while (ace_index < aclinfo.AceCount) {
      LPVOID ace;
      if (!GetAce(oldACL, ace_index, &ace)) {
        if (PrintMiscellaneous && Verbose) {
          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
        }
        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
        return false;
      }
      if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
                  ((PACE_HEADER)ace)->AceSize)) {
        if (PrintMiscellaneous && Verbose) {
          warning("AddAce failure: lasterror = %d \n", GetLastError());
        }
        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
        return false;
      }
      ace_index++;
    }
  }

  // add the new ACL to the security descriptor.
  if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
    if (PrintMiscellaneous && Verbose) {
      warning("SetSecurityDescriptorDacl failure:"
              " lasterror = %d \n", GetLastError());
    }
    FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
    return false;
  }

  // if running on windows 2000 or later, set the automatic inheritance
  // control flags.
  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
  _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
       GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
                      "SetSecurityDescriptorControl");

  if (_SetSecurityDescriptorControl != NULL) {
    // We do not want to further propagate inherited DACLs, so making them
    // protected prevents that.
    if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
                                            SE_DACL_PROTECTED)) {
      if (PrintMiscellaneous && Verbose) {
        warning("SetSecurityDescriptorControl failure:"
                " lasterror = %d \n", GetLastError());
      }
      FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
      return false;
    }
  }
   // Note, the security descriptor maintains a reference to the newACL, not
   // a copy of it. Therefore, the newACL is not freed here. It is freed when
   // the security descriptor containing its reference is freed.
   //
   return true;
}

// method to create a security attributes structure, which contains a
// security descriptor and an access control list comprised of 0 or more
// access control entries. The method take an array of ace_data structures
// that indicate the ACE to be added to the security descriptor.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {

  // allocate space for a security descriptor
  PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
     NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);

  // initialize the security descriptor
  if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
    if (PrintMiscellaneous && Verbose) {
      warning("InitializeSecurityDescriptor failure: "
              "lasterror = %d \n", GetLastError());
    }
    free_security_desc(pSD);
    return NULL;
  }

  // add the access control entries
  if (!add_allow_aces(pSD, aces, count)) {
    free_security_desc(pSD);
    return NULL;
  }

  // allocate and initialize the security attributes structure and
  // return it to the caller.
  //
  LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
    NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
  lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
  lpSA->lpSecurityDescriptor = pSD;
  lpSA->bInheritHandle = FALSE;

  return(lpSA);
}

// method to create a security attributes structure with a restrictive
// access control list that creates a set access rights for the user/owner
// of the securable object and a separate set access rights for everyone else.
// also provides for full access rights for the administrator group.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//

static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
                                DWORD umask, DWORD emask, DWORD amask) {

  ace_data_t aces[3];

  // initialize the user ace data
  aces[0].pSid = get_user_sid(GetCurrentProcess());
  aces[0].mask = umask;

  if (aces[0].pSid == 0)
    return NULL;

  // get the well known SID for BUILTIN\Administrators
  PSID administratorsSid = NULL;
  SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;

  if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
           SECURITY_BUILTIN_DOMAIN_RID,
           DOMAIN_ALIAS_RID_ADMINS,
           0, 0, 0, 0, 0, 0, &administratorsSid)) {

    if (PrintMiscellaneous && Verbose) {
      warning("AllocateAndInitializeSid failure: "
              "lasterror = %d \n", GetLastError());
    }
    return NULL;
  }

  // initialize the ace data for administrator group
  aces[1].pSid = administratorsSid;
  aces[1].mask = amask;

  // get the well known SID for the universal Everybody
  PSID everybodySid = NULL;
  SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;

  if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
           0, 0, 0, 0, 0, 0, 0, &everybodySid)) {

    if (PrintMiscellaneous && Verbose) {
      warning("AllocateAndInitializeSid failure: "
              "lasterror = %d \n", GetLastError());
    }
    return NULL;
  }

  // initialize the ace data for everybody else.
  aces[2].pSid = everybodySid;
  aces[2].mask = emask;

  // create a security attributes structure with access control
  // entries as initialized above.
  LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
  FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
  FreeSid(everybodySid);
  FreeSid(administratorsSid);
  return(lpSA);
}


// method to create the security attributes structure for restricting
// access to the user temporary directory.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {

  // create full access rights for the user/owner of the directory
  // and read-only access rights for everybody else. This is
  // effectively equivalent to UNIX 755 permissions on a directory.
  //
  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
  DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;

  return make_user_everybody_admin_security_attr(umask, emask, amask);
}

// method to create the security attributes structure for restricting
// access to the shared memory backing store file.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_file_security_attr() {

  // create extensive access rights for the user/owner of the file
  // and attribute read-only access rights for everybody else. This
  // is effectively equivalent to UNIX 600 permissions on a file.
  //
  DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
                 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;

  return make_user_everybody_admin_security_attr(umask, emask, amask);
}

// method to create the security attributes structure for restricting
// access to the name shared memory file mapping object.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_smo_security_attr() {

  // create extensive access rights for the user/owner of the shared
  // memory object and attribute read-only access rights for everybody
  // else. This is effectively equivalent to UNIX 600 permissions on
  // on the shared memory object.
  //
  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
  DWORD emask = STANDARD_RIGHTS_READ; // attributes only
  DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;

  return make_user_everybody_admin_security_attr(umask, emask, amask);
}

// make the user specific temporary directory
//
static bool make_user_tmp_dir(const char* dirname) {


  LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
  if (pDirSA == NULL) {
    return false;
  }


  // create the directory with the given security attributes
  if (!CreateDirectory(dirname, pDirSA)) {
    DWORD lasterror = GetLastError();
    if (lasterror == ERROR_ALREADY_EXISTS) {
      // The directory already exists and was probably created by another
      // JVM instance. However, this could also be the result of a
      // deliberate symlink. Verify that the existing directory is safe.
      //
      if (!is_directory_secure(dirname)) {
        // directory is not secure
        if (PrintMiscellaneous && Verbose) {
          warning("%s directory is insecure\n", dirname);
        }
        return false;
      }
      // The administrator should be able to delete this directory.
      // But the directory created by previous version of JVM may not
      // have permission for administrators to delete this directory.
      // So add full permission to the administrator. Also setting new
      // DACLs might fix the corrupted the DACLs.
      SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
      if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
        if (PrintMiscellaneous && Verbose) {
          lasterror = GetLastError();
          warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
                                                        dirname, lasterror);
        }
      }
    }
    else {
      if (PrintMiscellaneous && Verbose) {
        warning("CreateDirectory failed: %d\n", GetLastError());
      }
      return false;
    }
  }

  // free the security attributes structure
  free_security_attr(pDirSA);

  return true;
}

// create the shared memory resources
//
// This function creates the shared memory resources. This includes
// the backing store file and the file mapping shared memory object.
//
static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {

  HANDLE fh = INVALID_HANDLE_VALUE;
  HANDLE fmh = NULL;


  // create the security attributes for the backing store file
  LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
  if (lpFileSA == NULL) {
    return NULL;
  }

  // create the security attributes for the shared memory object
  LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
  if (lpSmoSA == NULL) {
    free_security_attr(lpFileSA);
    return NULL;
  }

  // create the user temporary directory
  if (!make_user_tmp_dir(dirname)) {
    // could not make/find the directory or the found directory
    // was not secure
    return NULL;
  }

  // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
  // file to be deleted by the last process that closes its handle to
  // the file. This is important as the apis do not allow a terminating
  // JVM being monitored by another process to remove the file name.
  //
  // the FILE_SHARE_DELETE share mode is valid only in winnt
  //
  fh = CreateFile(
             filename,                   /* LPCTSTR file name */

             GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */

             (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
             FILE_SHARE_READ,            /* DWORD share mode, future READONLY
                                          * open operations allowed
                                          */
             lpFileSA,                   /* LPSECURITY security attributes */
             CREATE_ALWAYS,              /* DWORD creation disposition
                                          * create file, if it already
                                          * exists, overwrite it.
                                          */
             FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */

             NULL);                      /* HANDLE template file access */

  free_security_attr(lpFileSA);

  if (fh == INVALID_HANDLE_VALUE) {
    DWORD lasterror = GetLastError();
    if (PrintMiscellaneous && Verbose) {
      warning("could not create file %s: %d\n", filename, lasterror);
    }
    return NULL;
  }

  // try to create the file mapping
  fmh = create_file_mapping(objectname, fh, lpSmoSA, size);

  free_security_attr(lpSmoSA);

  if (fmh == NULL) {
    // closing the file handle here will decrement the reference count
    // on the file. When all processes accessing the file close their
    // handle to it, the reference count will decrement to 0 and the
    // OS will delete the file. These semantics are requested by the
    // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
    CloseHandle(fh);
    fh = NULL;
    return NULL;
  } else {
    // We created the file mapping, but rarely the size of the
    // backing store file is reported as zero (0) which can cause
    // failures when trying to use the hsperfdata file.
    struct stat statbuf;
    int ret_code = ::stat(filename, &statbuf);
    if (ret_code == OS_ERR) {
      if (PrintMiscellaneous && Verbose) {
        warning("Could not get status information from file %s: %s\n",
            filename, strerror(errno));
      }
      CloseHandle(fmh);
      CloseHandle(fh);
      fh = NULL;
      fmh = NULL;
      return NULL;
    }

    // We could always call FlushFileBuffers() but the Microsoft
    // docs indicate that it is considered expensive so we only
    // call it when we observe the size as zero (0).
    if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
      DWORD lasterror = GetLastError();
      if (PrintMiscellaneous && Verbose) {
        warning("could not flush file %s: %d\n", filename, lasterror);
      }
      CloseHandle(fmh);
      CloseHandle(fh);
      fh = NULL;
      fmh = NULL;
      return NULL;
    }
  }

  // the file has been successfully created and the file mapping
  // object has been created.
  sharedmem_fileHandle = fh;
  sharedmem_fileName = strdup(filename);

  return fmh;
}

// open the shared memory object for the given vmid.
//
static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {

  HANDLE fmh;

  // open the file mapping with the requested mode
  fmh = OpenFileMapping(
               ofm_access,       /* DWORD access mode */
               FALSE,            /* BOOL inherit flag - Do not allow inherit */
               objectname);      /* name for object */

  if (fmh == NULL) {
    if (PrintMiscellaneous && Verbose) {
      warning("OpenFileMapping failed for shared memory object %s:"
              " lasterror = %d\n", objectname, GetLastError());
    }
    THROW_MSG_(vmSymbols::java_lang_Exception(),
               "Could not open PerfMemory", INVALID_HANDLE_VALUE);
  }

  return fmh;;
}

// create a named shared memory region
//
// On Win32, a named shared memory object has a name space that
// is independent of the file system name space. Shared memory object,
// or more precisely, file mapping objects, provide no mechanism to
// inquire the size of the memory region. There is also no api to
// enumerate the memory regions for various processes.
//
// This implementation utilizes the shared memory name space in parallel
// with the file system name space. This allows us to determine the
// size of the shared memory region from the size of the file and it
// allows us to provide a common, file system based name space for
// shared memory across platforms.
//
static char* mapping_create_shared(size_t size) {

  void *mapAddress;
  int vmid = os::current_process_id();

  // get the name of the user associated with this process
  char* user = get_user_name();

  if (user == NULL) {
    return NULL;
  }

  // construct the name of the user specific temporary directory
  char* dirname = get_user_tmp_dir(user);

  // check that the file system is secure - i.e. it supports ACLs.
  if (!is_filesystem_secure(dirname)) {
    return NULL;
  }

  // create the names of the backing store files and for the
  // share memory object.
  //
  char* filename = get_sharedmem_filename(dirname, vmid);
  char* objectname = get_sharedmem_objectname(user, vmid);

  // cleanup any stale shared memory resources
  cleanup_sharedmem_resources(dirname);

  assert(((size != 0) && (size % os::vm_page_size() == 0)),
         "unexpected PerfMemry region size");

  FREE_C_HEAP_ARRAY(char, user, mtInternal);

  // create the shared memory resources
  sharedmem_fileMapHandle =
               create_sharedmem_resources(dirname, filename, objectname, size);

  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);

  if (sharedmem_fileMapHandle == NULL) {
    return NULL;
  }

  // map the file into the address space
  mapAddress = MapViewOfFile(
                   sharedmem_fileMapHandle, /* HANDLE = file mapping object */
                   FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
                   0,                       /* DWORD High word of offset */
                   0,                       /* DWORD Low word of offset */
                   (DWORD)size);            /* DWORD Number of bytes to map */

  if (mapAddress == NULL) {
    if (PrintMiscellaneous && Verbose) {
      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
    }
    CloseHandle(sharedmem_fileMapHandle);
    sharedmem_fileMapHandle = NULL;
    return NULL;
  }

  // clear the shared memory region
  (void)memset(mapAddress, '\0', size);

  // it does not go through os api, the operation has to record from here
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);

  return (char*) mapAddress;
}

// this method deletes the file mapping object.
//
static void delete_file_mapping(char* addr, size_t size) {

  // cleanup the persistent shared memory resources. since DestroyJavaVM does
  // not support unloading of the JVM, unmapping of the memory resource is not
  // performed. The memory will be reclaimed by the OS upon termination of all
  // processes mapping the resource. The file mapping handle and the file
  // handle are closed here to expedite the remove of the file by the OS. The
  // file is not removed directly because it was created with
  // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
  // be unsuccessful.

  // close the fileMapHandle. the file mapping will still be retained
  // by the OS as long as any other JVM processes has an open file mapping
  // handle or a mapped view of the file.
  //
  if (sharedmem_fileMapHandle != NULL) {
    CloseHandle(sharedmem_fileMapHandle);
    sharedmem_fileMapHandle = NULL;
  }

  // close the file handle. This will decrement the reference count on the
  // backing store file. When the reference count decrements to 0, the OS
  // will delete the file. These semantics apply because the file was
  // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
  //
  if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
    CloseHandle(sharedmem_fileHandle);
    sharedmem_fileHandle = INVALID_HANDLE_VALUE;
  }
}

// this method determines the size of the shared memory file
//
static size_t sharedmem_filesize(const char* filename, TRAPS) {

  struct stat statbuf;

  // get the file size
  //
  // on win95/98/me, _stat returns a file size of 0 bytes, but on
  // winnt/2k the appropriate file size is returned. support for
  // the sharable aspects of performance counters was abandonded
  // on the non-nt win32 platforms due to this and other api
  // inconsistencies
  //
  if (::stat(filename, &statbuf) == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("stat %s failed: %s\n", filename, strerror(errno));
    }
    THROW_MSG_0(vmSymbols::java_io_IOException(),
                "Could not determine PerfMemory size");
  }

  if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
    if (PrintMiscellaneous && Verbose) {
      warning("unexpected file size: size = " SIZE_FORMAT "\n",
              statbuf.st_size);
    }
    THROW_MSG_0(vmSymbols::java_lang_Exception(),
                "Invalid PerfMemory size");
  }

  return statbuf.st_size;
}

// this method opens a file mapping object and maps the object
// into the address space of the process
//
static void open_file_mapping(const char* user, int vmid,
                              PerfMemory::PerfMemoryMode mode,
                              char** addrp, size_t* sizep, TRAPS) {

  ResourceMark rm;

  void *mapAddress = 0;
  size_t size = 0;
  HANDLE fmh;
  DWORD ofm_access;
  DWORD mv_access;
  const char* luser = NULL;

  if (mode == PerfMemory::PERF_MODE_RO) {
    ofm_access = FILE_MAP_READ;
    mv_access = FILE_MAP_READ;
  }
  else if (mode == PerfMemory::PERF_MODE_RW) {
#ifdef LATER
    ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
    mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
#else
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Unsupported access mode");
#endif
  }
  else {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Illegal access mode");
  }

  // if a user name wasn't specified, then find the user name for
  // the owner of the target vm.
  if (user == NULL || strlen(user) == 0) {
    luser = get_user_name(vmid);
  }
  else {
    luser = user;
  }

  if (luser == NULL) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Could not map vmid to user name");
  }

  // get the names for the resources for the target vm
  char* dirname = get_user_tmp_dir(luser);

  // since we don't follow symbolic links when creating the backing
  // store file, we also don't following them when attaching
  //
  if (!is_directory_secure(dirname)) {
    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Process not found");
  }

  char* filename = get_sharedmem_filename(dirname, vmid);
  char* objectname = get_sharedmem_objectname(luser, vmid);

  // copy heap memory to resource memory. the objectname and
  // filename are passed to methods that may throw exceptions.
  // using resource arrays for these names prevents the leaks
  // that would otherwise occur.
  //
  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
  strcpy(rfilename, filename);
  strcpy(robjectname, objectname);

  // free the c heap resources that are no longer needed
  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  FREE_C_HEAP_ARRAY(char, objectname, mtInternal);

  if (*sizep == 0) {
    size = sharedmem_filesize(rfilename, CHECK);
  } else {
    size = *sizep;
  }

  assert(size > 0, "unexpected size <= 0");

  // Open the file mapping object with the given name
  fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);

  assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");

  // map the entire file into the address space
  mapAddress = MapViewOfFile(
                 fmh,             /* HANDLE Handle of file mapping object */
                 mv_access,       /* DWORD access flags */
                 0,               /* DWORD High word of offset */
                 0,               /* DWORD Low word of offset */
                 size);           /* DWORD Number of bytes to map */

  if (mapAddress == NULL) {
    if (PrintMiscellaneous && Verbose) {
      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
    }
    CloseHandle(fmh);
    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
              "Could not map PerfMemory");
  }

  // it does not go through os api, the operation has to record from here
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);


  *addrp = (char*)mapAddress;
  *sizep = size;

  // File mapping object can be closed at this time without
  // invalidating the mapped view of the file
  CloseHandle(fmh);

  if (PerfTraceMemOps) {
    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
               INTPTR_FORMAT "\n", size, vmid, mapAddress);
  }
}

// this method unmaps the the mapped view of the the
// file mapping object.
//
static void remove_file_mapping(char* addr) {

  // the file mapping object was closed in open_file_mapping()
  // after the file map view was created. We only need to
  // unmap the file view here.
  UnmapViewOfFile(addr);
}

// create the PerfData memory region in shared memory.
static char* create_shared_memory(size_t size) {

  return mapping_create_shared(size);
}

// release a named, shared memory region
//
void delete_shared_memory(char* addr, size_t size) {

  delete_file_mapping(addr, size);
}




// create the PerfData memory region
//
// This method creates the memory region used to store performance
// data for the JVM. The memory may be created in standard or
// shared memory.
//
void PerfMemory::create_memory_region(size_t size) {

  if (PerfDisableSharedMem || !os::win32::is_nt()) {
    // do not share the memory for the performance data.
    PerfDisableSharedMem = true;
    _start = create_standard_memory(size);
  }
  else {
    _start = create_shared_memory(size);
    if (_start == NULL) {

      // creation of the shared memory region failed, attempt
      // to create a contiguous, non-shared memory region instead.
      //
      if (PrintMiscellaneous && Verbose) {
        warning("Reverting to non-shared PerfMemory region.\n");
      }
      PerfDisableSharedMem = true;
      _start = create_standard_memory(size);
    }
  }

  if (_start != NULL) _capacity = size;

}

// delete the PerfData memory region
//
// This method deletes the memory region used to store performance
// data for the JVM. The memory region indicated by the <address, size>
// tuple will be inaccessible after a call to this method.
//
void PerfMemory::delete_memory_region() {

  assert((start() != NULL && capacity() > 0), "verify proper state");

  // If user specifies PerfDataSaveFile, it will save the performance data
  // to the specified file name no matter whether PerfDataSaveToFile is specified
  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  // -XX:+PerfDataSaveToFile.
  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
    save_memory_to_file(start(), capacity());
  }

  if (PerfDisableSharedMem) {
    delete_standard_memory(start(), capacity());
  }
  else {
    delete_shared_memory(start(), capacity());
  }
}

// attach to the PerfData memory region for another JVM
//
// This method returns an <address, size> tuple that points to
// a memory buffer that is kept reasonably synchronized with
// the PerfData memory region for the indicated JVM. This
// buffer may be kept in synchronization via shared memory
// or some other mechanism that keeps the buffer updated.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to map
// the indicated process's PerfData memory region into this JVMs
// address space.
//
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
                        char** addrp, size_t* sizep, TRAPS) {

  if (vmid == 0 || vmid == os::current_process_id()) {
     *addrp = start();
     *sizep = capacity();
     return;
  }

  open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
}

// detach from the PerfData memory region of another JVM
//
// This method detaches the PerfData memory region of another
// JVM, specified as an <address, size> tuple of a buffer
// in this process's address space. This method may perform
// arbitrary actions to accomplish the detachment. The memory
// region specified by <address, size> will be inaccessible after
// a call to this method.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to detach
// the indicated process's PerfData memory region from this
// process's address space.
//
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {

  assert(addr != 0, "address sanity check");
  assert(bytes > 0, "capacity sanity check");

  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
    // prevent accidental detachment of this process's PerfMemory region
    return;
  }

  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  remove_file_mapping(addr);
  // it does not go through os api, the operation has to record from here
  tkr.record((address)addr, bytes);
}

char* PerfMemory::backing_store_filename() {
  return sharedmem_fileName;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java perfMemory_windows.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.