alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (archDesc.cpp)

This example Java source code file (archDesc.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

alloc_in_rc, archdesc::addform, constraint, dump, effect, form\:\:arena, matchlist, matchrule, nodeclassnames, null, operandform, predicate, regmask\:\:empty, sourceform

The archDesc.cpp Java example source code

//
// Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//


// archDesc.cpp - Internal format for architecture definition
#include "adlc.hpp"

static FILE *errfile = stderr;

//--------------------------- utility functions -----------------------------
inline char toUpper(char lower) {
  return (('a' <= lower && lower <= 'z') ? ((char) (lower + ('A'-'a'))) : lower);
}
char *toUpper(const char *str) {
  char *upper  = new char[strlen(str)+1];
  char *result = upper;
  const char *end    = str + strlen(str);
  for (; str < end; ++str, ++upper) {
    *upper = toUpper(*str);
  }
  *upper = '\0';
  return result;
}

// Utilities to characterize effect statements
static bool is_def(int usedef) {
  switch(usedef) {
  case Component::DEF:
  case Component::USE_DEF: return true; break;
  }
  return false;
}

static bool is_use(int usedef) {
  switch(usedef) {
  case Component::USE:
  case Component::USE_DEF:
  case Component::USE_KILL: return true; break;
  }
  return false;
}

static bool is_kill(int usedef) {
  switch(usedef) {
  case Component::KILL:
  case Component::USE_KILL: return true; break;
  }
  return false;
}

//---------------------------ChainList Methods-------------------------------
ChainList::ChainList() {
}

void ChainList::insert(const char *name, const char *cost, const char *rule) {
  _name.addName(name);
  _cost.addName(cost);
  _rule.addName(rule);
}

bool ChainList::search(const char *name) {
  return _name.search(name);
}

void ChainList::reset() {
  _name.reset();
  _cost.reset();
  _rule.reset();
}

bool ChainList::iter(const char * &name, const char * &cost, const char * &rule) {
  bool        notDone = false;
  const char *n       = _name.iter();
  const char *c       = _cost.iter();
  const char *r       = _rule.iter();

  if (n && c && r) {
    notDone = true;
    name = n;
    cost = c;
    rule = r;
  }

  return notDone;
}

void ChainList::dump() {
  output(stderr);
}

void ChainList::output(FILE *fp) {
  fprintf(fp, "\nChain Rules: output resets iterator\n");
  const char   *cost  = NULL;
  const char   *name  = NULL;
  const char   *rule  = NULL;
  bool   chains_exist = false;
  for(reset(); (iter(name,cost,rule)) == true; ) {
    fprintf(fp, "Chain to <%s> at cost #%s using %s_rule\n",name, cost ? cost : "0", rule);
    //  // Check for transitive chain rules
    //  Form *form = (Form *)_globalNames[rule];
    //  if (form->is_instruction()) {
    //    // chain_rule(fp, indent, name, cost, rule);
    //    chain_rule(fp, indent, name, cost, rule);
    //  }
  }
  reset();
  if( ! chains_exist ) {
    fprintf(fp, "No entries in this ChainList\n");
  }
}


//---------------------------MatchList Methods-------------------------------
bool MatchList::search(const char *opc, const char *res, const char *lch,
                       const char *rch, Predicate *pr) {
  bool tmp = false;
  if ((res == _resultStr) || (res && _resultStr && !strcmp(res, _resultStr))) {
    if ((lch == _lchild) || (lch && _lchild && !strcmp(lch, _lchild))) {
      if ((rch == _rchild) || (rch && _rchild && !strcmp(rch, _rchild))) {
        char * predStr = get_pred();
        char * prStr = pr?pr->_pred:NULL;
        if (ADLParser::equivalent_expressions(prStr, predStr)) {
          return true;
        }
      }
    }
  }
  if (_next) {
    tmp = _next->search(opc, res, lch, rch, pr);
  }
  return tmp;
}


void MatchList::dump() {
  output(stderr);
}

void MatchList::output(FILE *fp) {
  fprintf(fp, "\nMatchList output is Unimplemented();\n");
}


//---------------------------ArchDesc Constructor and Destructor-------------

ArchDesc::ArchDesc()
  : _globalNames(cmpstr,hashstr, Form::arena),
    _globalDefs(cmpstr,hashstr, Form::arena),
    _preproc_table(cmpstr,hashstr, Form::arena),
    _idealIndex(cmpstr,hashstr, Form::arena),
    _internalOps(cmpstr,hashstr, Form::arena),
    _internalMatch(cmpstr,hashstr, Form::arena),
    _chainRules(cmpstr,hashstr, Form::arena),
    _cisc_spill_operand(NULL) {

      // Initialize the opcode to MatchList table with NULLs
      for( int i=0; i<_last_opcode; ++i ) {
        _mlistab[i] = NULL;
      }

      // Set-up the global tables
      initKeywords(_globalNames);    // Initialize the Name Table with keywords

      // Prime user-defined types with predefined types: Set, RegI, RegF, ...
      initBaseOpTypes();

      // Initialize flags & counters
      _TotalLines        = 0;
      _no_output         = 0;
      _quiet_mode        = 0;
      _disable_warnings  = 0;
      _dfa_debug         = 0;
      _dfa_small         = 0;
      _adl_debug         = 0;
      _adlocation_debug  = 0;
      _internalOpCounter = 0;
      _cisc_spill_debug  = false;
      _short_branch_debug = false;

      // Initialize match rule flags
      for (int i = 0; i < _last_opcode; i++) {
        _has_match_rule[i] = false;
      }

      // Error/Warning Counts
      _syntax_errs       = 0;
      _semantic_errs     = 0;
      _warnings          = 0;
      _internal_errs     = 0;

      // Initialize I/O Files
      _ADL_file._name = NULL; _ADL_file._fp = NULL;
      // Machine dependent output files
      _DFA_file._name    = NULL;  _DFA_file._fp = NULL;
      _HPP_file._name    = NULL;  _HPP_file._fp = NULL;
      _CPP_file._name    = NULL;  _CPP_file._fp = NULL;
      _bug_file._name    = "bugs.out";      _bug_file._fp = NULL;

      // Initialize Register & Pipeline Form Pointers
      _register = NULL;
      _encode = NULL;
      _pipeline = NULL;
      _frame = NULL;
}

ArchDesc::~ArchDesc() {
  // Clean-up and quit

}

//---------------------------ArchDesc methods: Public ----------------------
// Store forms according to type
void ArchDesc::addForm(PreHeaderForm *ptr) { _pre_header.addForm(ptr); };
void ArchDesc::addForm(HeaderForm    *ptr) { _header.addForm(ptr); };
void ArchDesc::addForm(SourceForm    *ptr) { _source.addForm(ptr); };
void ArchDesc::addForm(EncodeForm    *ptr) { _encode = ptr; };
void ArchDesc::addForm(InstructForm  *ptr) { _instructions.addForm(ptr); };
void ArchDesc::addForm(MachNodeForm  *ptr) { _machnodes.addForm(ptr); };
void ArchDesc::addForm(OperandForm   *ptr) { _operands.addForm(ptr); };
void ArchDesc::addForm(OpClassForm   *ptr) { _opclass.addForm(ptr); };
void ArchDesc::addForm(AttributeForm *ptr) { _attributes.addForm(ptr); };
void ArchDesc::addForm(RegisterForm  *ptr) { _register = ptr; };
void ArchDesc::addForm(FrameForm     *ptr) { _frame = ptr; };
void ArchDesc::addForm(PipelineForm  *ptr) { _pipeline = ptr; };

// Build MatchList array and construct MatchLists
void ArchDesc::generateMatchLists() {
  // Call inspection routines to populate array
  inspectOperands();
  inspectInstructions();
}

// Build MatchList structures for operands
void ArchDesc::inspectOperands() {

  // Iterate through all operands
  _operands.reset();
  OperandForm *op;
  for( ; (op = (OperandForm*)_operands.iter()) != NULL;) {
    // Construct list of top-level operands (components)
    op->build_components();

    // Ensure that match field is defined.
    if ( op->_matrule == NULL )  continue;

    // Type check match rules
    check_optype(op->_matrule);

    // Construct chain rules
    build_chain_rule(op);

    MatchRule &mrule = *op->_matrule;
    Predicate *pred  =  op->_predicate;

    // Grab the machine type of the operand
    const char  *rootOp    = op->_ident;
    mrule._machType  = rootOp;

    // Check for special cases
    if (strcmp(rootOp,"Universe")==0) continue;
    if (strcmp(rootOp,"label")==0) continue;
    // !!!!! !!!!!
    assert( strcmp(rootOp,"sReg") != 0, "Disable untyped 'sReg'");
    if (strcmp(rootOp,"sRegI")==0) continue;
    if (strcmp(rootOp,"sRegP")==0) continue;
    if (strcmp(rootOp,"sRegF")==0) continue;
    if (strcmp(rootOp,"sRegD")==0) continue;
    if (strcmp(rootOp,"sRegL")==0) continue;

    // Cost for this match
    const char *costStr     = op->cost();
    const char *defaultCost =
      ((AttributeForm*)_globalNames[AttributeForm::_op_cost])->_attrdef;
    const char *cost        =  costStr? costStr : defaultCost;

    // Find result type for match.
    const char *result      = op->reduce_result();
    bool        has_root    = false;

    // Construct a MatchList for this entry
    buildMatchList(op->_matrule, result, rootOp, pred, cost);
  }
}

// Build MatchList structures for instructions
void ArchDesc::inspectInstructions() {

  // Iterate through all instructions
  _instructions.reset();
  InstructForm *instr;
  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Construct list of top-level operands (components)
    instr->build_components();

    // Ensure that match field is defined.
    if ( instr->_matrule == NULL )  continue;

    MatchRule &mrule = *instr->_matrule;
    Predicate *pred  =  instr->build_predicate();

    // Grab the machine type of the operand
    const char  *rootOp    = instr->_ident;
    mrule._machType  = rootOp;

    // Cost for this match
    const char *costStr = instr->cost();
    const char *defaultCost =
      ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
    const char *cost    =  costStr? costStr : defaultCost;

    // Find result type for match
    const char *result  = instr->reduce_result();

    if ( instr->is_ideal_branch() && instr->label_position() == -1 ||
        !instr->is_ideal_branch() && instr->label_position() != -1) {
      syntax_err(instr->_linenum, "%s: Only branches to a label are supported\n", rootOp);
    }

    Attribute *attr = instr->_attribs;
    while (attr != NULL) {
      if (strcmp(attr->_ident,"ins_short_branch") == 0 &&
          attr->int_val(*this) != 0) {
        if (!instr->is_ideal_branch() || instr->label_position() == -1) {
          syntax_err(instr->_linenum, "%s: Only short branch to a label is supported\n", rootOp);
        }
        instr->set_short_branch(true);
      } else if (strcmp(attr->_ident,"ins_alignment") == 0 &&
          attr->int_val(*this) != 0) {
        instr->set_alignment(attr->int_val(*this));
      }
      attr = (Attribute *)attr->_next;
    }

    if (!instr->is_short_branch()) {
      buildMatchList(instr->_matrule, result, mrule._machType, pred, cost);
    }
  }
}

static int setsResult(MatchRule &mrule) {
  if (strcmp(mrule._name,"Set") == 0) return 1;
  return 0;
}

const char *ArchDesc::getMatchListIndex(MatchRule &mrule) {
  if (setsResult(mrule)) {
    // right child
    return mrule._rChild->_opType;
  } else {
    // first entry
    return mrule._opType;
  }
}


//------------------------------result of reduction----------------------------


//------------------------------left reduction---------------------------------
// Return the left reduction associated with an internal name
const char *ArchDesc::reduceLeft(char         *internalName) {
  const char *left  = NULL;
  MatchNode *mnode = (MatchNode*)_internalMatch[internalName];
  if (mnode->_lChild) {
    mnode = mnode->_lChild;
    left = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  return left;
}


//------------------------------right reduction--------------------------------
const char *ArchDesc::reduceRight(char  *internalName) {
  const char *right  = NULL;
  MatchNode *mnode = (MatchNode*)_internalMatch[internalName];
  if (mnode->_rChild) {
    mnode = mnode->_rChild;
    right = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  return right;
}


//------------------------------check_optype-----------------------------------
void ArchDesc::check_optype(MatchRule *mrule) {
  MatchRule *rule = mrule;

  //   !!!!!
  //   // Cycle through the list of match rules
  //   while(mrule) {
  //     // Check for a filled in type field
  //     if (mrule->_opType == NULL) {
  //     const Form  *form    = operands[_result];
  //     OpClassForm *opcForm = form ? form->is_opclass() : NULL;
  //     assert(opcForm != NULL, "Match Rule contains invalid operand name.");
  //     }
  //     char *opType = opcForm->_ident;
  //   }
}

//------------------------------add_chain_rule_entry--------------------------
void ArchDesc::add_chain_rule_entry(const char *src, const char *cost,
                                    const char *result) {
  // Look-up the operation in chain rule table
  ChainList *lst = (ChainList *)_chainRules[src];
  if (lst == NULL) {
    lst = new ChainList();
    _chainRules.Insert(src, lst);
  }
  if (!lst->search(result)) {
    if (cost == NULL) {
      cost = ((AttributeForm*)_globalNames[AttributeForm::_op_cost])->_attrdef;
    }
    lst->insert(result, cost, result);
  }
}

//------------------------------build_chain_rule-------------------------------
void ArchDesc::build_chain_rule(OperandForm *oper) {
  MatchRule     *rule;

  // Check for chain rules here
  // If this is only a chain rule
  if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
      (oper->_matrule->_rChild == NULL)) {

    {
      const Form *form = _globalNames[oper->_matrule->_opType];
      if ((form) && form->is_operand() &&
          (form->ideal_only() == false)) {
        add_chain_rule_entry(oper->_matrule->_opType, oper->cost(), oper->_ident);
      }
    }
    // Check for additional chain rules
    if (oper->_matrule->_next) {
      rule = oper->_matrule;
      do {
        rule = rule->_next;
        // Any extra match rules after the first must be chain rules
        const Form *form = _globalNames[rule->_opType];
        if ((form) && form->is_operand() &&
            (form->ideal_only() == false)) {
          add_chain_rule_entry(rule->_opType, oper->cost(), oper->_ident);
        }
      } while(rule->_next != NULL);
    }
  }
  else if ((oper->_matrule) && (oper->_matrule->_next)) {
    // Regardles of whether the first matchrule is a chain rule, check the list
    rule = oper->_matrule;
    do {
      rule = rule->_next;
      // Any extra match rules after the first must be chain rules
      const Form *form = _globalNames[rule->_opType];
      if ((form) && form->is_operand() &&
          (form->ideal_only() == false)) {
        assert( oper->cost(), "This case expects NULL cost, not default cost");
        add_chain_rule_entry(rule->_opType, oper->cost(), oper->_ident);
      }
    } while(rule->_next != NULL);
  }

}

//------------------------------buildMatchList---------------------------------
// operands and instructions provide the result
void ArchDesc::buildMatchList(MatchRule *mrule, const char *resultStr,
                              const char *rootOp, Predicate *pred,
                              const char *cost) {
  const char *leftstr, *rightstr;
  MatchNode  *mnode;

  leftstr = rightstr = NULL;
  // Check for chain rule, and do not generate a match list for it
  if ( mrule->is_chain_rule(_globalNames) ) {
    return;
  }

  // Identify index position among ideal operands
  intptr_t    index     = _last_opcode;
  const char  *indexStr  = getMatchListIndex(*mrule);
  index  = (intptr_t)_idealIndex[indexStr];
  if (index == 0) {
    fprintf(stderr, "Ideal node missing: %s\n", indexStr);
    assert(index != 0, "Failed lookup of ideal node\n");
  }

  // Check that this will be placed appropriately in the DFA
  if (index >= _last_opcode) {
    fprintf(stderr, "Invalid match rule %s <-- ( %s )\n",
            resultStr ? resultStr : " ",
            rootOp    ? rootOp    : " ");
    assert(index < _last_opcode, "Matching item not in ideal graph\n");
    return;
  }


  // Walk the MatchRule, generating MatchList entries for each level
  // of the rule (each nesting of parentheses)
  // Check for "Set"
  if (!strcmp(mrule->_opType, "Set")) {
    mnode = mrule->_rChild;
    buildMList(mnode, rootOp, resultStr, pred, cost);
    return;
  }
  // Build MatchLists for children
  // Check each child for an internal operand name, and use that name
  // for the parent's matchlist entry if it exists
  mnode = mrule->_lChild;
  if (mnode) {
    buildMList(mnode, NULL, NULL, NULL, NULL);
    leftstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  mnode = mrule->_rChild;
  if (mnode) {
    buildMList(mnode, NULL, NULL, NULL, NULL);
    rightstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  // Search for an identical matchlist entry already on the list
  if ((_mlistab[index] == NULL) ||
      (_mlistab[index] &&
       !_mlistab[index]->search(rootOp, resultStr, leftstr, rightstr, pred))) {
    // Place this match rule at front of list
    MatchList *mList =
      new MatchList(_mlistab[index], pred, cost,
                    rootOp, resultStr, leftstr, rightstr);
    _mlistab[index] = mList;
  }
}

// Recursive call for construction of match lists
void ArchDesc::buildMList(MatchNode *node, const char *rootOp,
                          const char *resultOp, Predicate *pred,
                          const char *cost) {
  const char *leftstr, *rightstr;
  const char *resultop;
  const char *opcode;
  MatchNode  *mnode;
  Form       *form;

  leftstr = rightstr = NULL;
  // Do not process leaves of the Match Tree if they are not ideal
  if ((node) && (node->_lChild == NULL) && (node->_rChild == NULL) &&
      ((form = (Form *)_globalNames[node->_opType]) != NULL) &&
      (!form->ideal_only())) {
    return;
  }

  // Identify index position among ideal operands
  intptr_t    index     = _last_opcode;
  const char *indexStr  = node ? node->_opType : (char *) " ";
  index            = (intptr_t)_idealIndex[indexStr];
  if (index == 0) {
    fprintf(stderr, "error: operand \"%s\" not found\n", indexStr);
    assert(0, "fatal error");
  }

  // Build MatchLists for children
  // Check each child for an internal operand name, and use that name
  // for the parent's matchlist entry if it exists
  mnode = node->_lChild;
  if (mnode) {
    buildMList(mnode, NULL, NULL, NULL, NULL);
    leftstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  mnode = node->_rChild;
  if (mnode) {
    buildMList(mnode, NULL, NULL, NULL, NULL);
    rightstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
  }
  // Grab the string for the opcode of this list entry
  if (rootOp == NULL) {
    opcode = (node->_internalop) ? node->_internalop : node->_opType;
  } else {
    opcode = rootOp;
  }
  // Grab the string for the result of this list entry
  if (resultOp == NULL) {
    resultop = (node->_internalop) ? node->_internalop : node->_opType;
  }
  else resultop = resultOp;
  // Search for an identical matchlist entry already on the list
  if ((_mlistab[index] == NULL) || (_mlistab[index] &&
                                    !_mlistab[index]->search(opcode, resultop, leftstr, rightstr, pred))) {
    // Place this match rule at front of list
    MatchList *mList =
      new MatchList(_mlistab[index],pred,cost,
                    opcode, resultop, leftstr, rightstr);
    _mlistab[index] = mList;
  }
}

// Count number of OperandForms defined
int  ArchDesc::operandFormCount() {
  // Only interested in ones with non-NULL match rule
  int  count = 0; _operands.reset();
  OperandForm *cur;
  for( ; (cur = (OperandForm*)_operands.iter()) != NULL; ) {
    if (cur->_matrule != NULL) ++count;
  };
  return count;
}

// Count number of OpClassForms defined
int  ArchDesc::opclassFormCount() {
  // Only interested in ones with non-NULL match rule
  int  count = 0; _operands.reset();
  OpClassForm *cur;
  for( ; (cur = (OpClassForm*)_opclass.iter()) != NULL; ) {
    ++count;
  };
  return count;
}

// Count number of InstructForms defined
int  ArchDesc::instructFormCount() {
  // Only interested in ones with non-NULL match rule
  int  count = 0; _instructions.reset();
  InstructForm *cur;
  for( ; (cur = (InstructForm*)_instructions.iter()) != NULL; ) {
    if (cur->_matrule != NULL) ++count;
  };
  return count;
}


//------------------------------get_preproc_def--------------------------------
// Return the textual binding for a given CPP flag name.
// Return NULL if there is no binding, or it has been #undef-ed.
char* ArchDesc::get_preproc_def(const char* flag) {
  // In case of syntax errors, flag may take the value NULL.
  SourceForm* deff = NULL;
  if (flag != NULL)
    deff = (SourceForm*) _preproc_table[flag];
  return (deff == NULL) ? NULL : deff->_code;
}


//------------------------------set_preproc_def--------------------------------
// Change or create a textual binding for a given CPP flag name.
// Giving NULL means the flag name is to be #undef-ed.
// In any case, _preproc_list collects all names either #defined or #undef-ed.
void ArchDesc::set_preproc_def(const char* flag, const char* def) {
  SourceForm* deff = (SourceForm*) _preproc_table[flag];
  if (deff == NULL) {
    deff = new SourceForm(NULL);
    _preproc_table.Insert(flag, deff);
    _preproc_list.addName(flag);   // this supports iteration
  }
  deff->_code = (char*) def;
}


bool ArchDesc::verify() {

  if (_register)
    assert( _register->verify(), "Register declarations failed verification");
  if (!_quiet_mode)
    fprintf(stderr,"\n");
  // fprintf(stderr,"---------------------------- Verify Operands ---------------\n");
  // _operands.verify();
  // fprintf(stderr,"\n");
  // fprintf(stderr,"---------------------------- Verify Operand Classes --------\n");
  // _opclass.verify();
  // fprintf(stderr,"\n");
  // fprintf(stderr,"---------------------------- Verify Attributes  ------------\n");
  // _attributes.verify();
  // fprintf(stderr,"\n");
  if (!_quiet_mode)
    fprintf(stderr,"---------------------------- Verify Instructions ----------------------------\n");
  _instructions.verify();
  if (!_quiet_mode)
    fprintf(stderr,"\n");
  // if ( _encode ) {
  //   fprintf(stderr,"---------------------------- Verify Encodings --------------\n");
  //   _encode->verify();
  // }

  //if (_pipeline) _pipeline->verify();

  return true;
}


void ArchDesc::dump() {
  _pre_header.dump();
  _header.dump();
  _source.dump();
  if (_register) _register->dump();
  fprintf(stderr,"\n");
  fprintf(stderr,"------------------ Dump Operands ---------------------\n");
  _operands.dump();
  fprintf(stderr,"\n");
  fprintf(stderr,"------------------ Dump Operand Classes --------------\n");
  _opclass.dump();
  fprintf(stderr,"\n");
  fprintf(stderr,"------------------ Dump Attributes  ------------------\n");
  _attributes.dump();
  fprintf(stderr,"\n");
  fprintf(stderr,"------------------ Dump Instructions -----------------\n");
  _instructions.dump();
  if ( _encode ) {
    fprintf(stderr,"------------------ Dump Encodings --------------------\n");
    _encode->dump();
  }
  if (_pipeline) _pipeline->dump();
}


//------------------------------init_keywords----------------------------------
// Load the kewords into the global name table
void ArchDesc::initKeywords(FormDict& names) {
  // Insert keyword strings into Global Name Table.  Keywords have a NULL value
  // field for quick easy identification when checking identifiers.
  names.Insert("instruct", NULL);
  names.Insert("operand", NULL);
  names.Insert("attribute", NULL);
  names.Insert("source", NULL);
  names.Insert("register", NULL);
  names.Insert("pipeline", NULL);
  names.Insert("constraint", NULL);
  names.Insert("predicate", NULL);
  names.Insert("encode", NULL);
  names.Insert("enc_class", NULL);
  names.Insert("interface", NULL);
  names.Insert("opcode", NULL);
  names.Insert("ins_encode", NULL);
  names.Insert("match", NULL);
  names.Insert("effect", NULL);
  names.Insert("expand", NULL);
  names.Insert("rewrite", NULL);
  names.Insert("reg_def", NULL);
  names.Insert("reg_class", NULL);
  names.Insert("alloc_class", NULL);
  names.Insert("resource", NULL);
  names.Insert("pipe_class", NULL);
  names.Insert("pipe_desc", NULL);
}


//------------------------------internal_err----------------------------------
// Issue a parser error message, and skip to the end of the current line
void ArchDesc::internal_err(const char *fmt, ...) {
  va_list args;

  va_start(args, fmt);
  _internal_errs += emit_msg(0, INTERNAL_ERR, 0, fmt, args);
  va_end(args);

  _no_output = 1;
}

//------------------------------syntax_err----------------------------------
// Issue a parser error message, and skip to the end of the current line
void ArchDesc::syntax_err(int lineno, const char *fmt, ...) {
  va_list args;

  va_start(args, fmt);
  _internal_errs += emit_msg(0, SYNERR, lineno, fmt, args);
  va_end(args);

  _no_output = 1;
}

//------------------------------emit_msg---------------------------------------
// Emit a user message, typically a warning or error
int ArchDesc::emit_msg(int quiet, int flag, int line, const char *fmt,
    va_list args) {
  static int  last_lineno = -1;
  int         i;
  const char *pref;

  switch(flag) {
  case 0: pref = "Warning: "; break;
  case 1: pref = "Syntax Error: "; break;
  case 2: pref = "Semantic Error: "; break;
  case 3: pref = "Internal Error: "; break;
  default: assert(0, ""); break;
  }

  if (line == last_lineno) return 0;
  last_lineno = line;

  if (!quiet) {                        /* no output if in quiet mode         */
    i = fprintf(errfile, "%s(%d) ", _ADL_file._name, line);
    while (i++ <= 15)  fputc(' ', errfile);
    fprintf(errfile, "%-8s:", pref);
    vfprintf(errfile, fmt, args);
    fprintf(errfile, "\n");
    fflush(errfile);
  }
  return 1;
}


// ---------------------------------------------------------------------------
//--------Utilities to build mappings for machine registers ------------------
// ---------------------------------------------------------------------------

// Construct the name of the register mask.
static const char *getRegMask(const char *reg_class_name) {
  if( reg_class_name == NULL ) return "RegMask::Empty";

  if (strcmp(reg_class_name,"Universe")==0) {
    return "RegMask::Empty";
  } else if (strcmp(reg_class_name,"stack_slots")==0) {
    return "(Compile::current()->FIRST_STACK_mask())";
  } else {
    char       *rc_name = toUpper(reg_class_name);
    const char *mask    = "_mask";
    int         length  = (int)strlen(rc_name) + (int)strlen(mask) + 5;
    char       *regMask = new char[length];
    sprintf(regMask,"%s%s()", rc_name, mask);
    delete[] rc_name;
    return regMask;
  }
}

// Convert a register class name to its register mask.
const char *ArchDesc::reg_class_to_reg_mask(const char *rc_name) {
  const char *reg_mask = "RegMask::Empty";

  if( _register ) {
    RegClass *reg_class  = _register->getRegClass(rc_name);
    if (reg_class == NULL) {
      syntax_err(0, "Use of an undefined register class %s", rc_name);
      return reg_mask;
    }

    // Construct the name of the register mask.
    reg_mask = getRegMask(rc_name);
  }

  return reg_mask;
}


// Obtain the name of the RegMask for an OperandForm
const char *ArchDesc::reg_mask(OperandForm  &opForm) {
  const char *regMask      = "RegMask::Empty";

  // Check constraints on result's register class
  const char *result_class = opForm.constrained_reg_class();
  if (result_class == NULL) {
    opForm.dump();
    syntax_err(opForm._linenum,
               "Use of an undefined result class for operand: %s",
               opForm._ident);
    abort();
  }

  regMask = reg_class_to_reg_mask( result_class );

  return regMask;
}

// Obtain the name of the RegMask for an InstructForm
const char *ArchDesc::reg_mask(InstructForm &inForm) {
  const char *result = inForm.reduce_result();

  if (result == NULL) {
    syntax_err(inForm._linenum,
               "Did not find result operand or RegMask"
               " for this instruction: %s",
               inForm._ident);
    abort();
  }

  // Instructions producing 'Universe' use RegMask::Empty
  if( strcmp(result,"Universe")==0 ) {
    return "RegMask::Empty";
  }

  // Lookup this result operand and get its register class
  Form *form = (Form*)_globalNames[result];
  if (form == NULL) {
    syntax_err(inForm._linenum,
               "Did not find result operand for result: %s", result);
    abort();
  }
  OperandForm *oper = form->is_operand();
  if (oper == NULL) {
    syntax_err(inForm._linenum, "Form is not an OperandForm:");
    form->dump();
    abort();
  }
  return reg_mask( *oper );
}


// Obtain the STACK_OR_reg_mask name for an OperandForm
char *ArchDesc::stack_or_reg_mask(OperandForm  &opForm) {
  // name of cisc_spillable version
  const char *reg_mask_name = reg_mask(opForm);

  if (reg_mask_name == NULL) {
     syntax_err(opForm._linenum,
                "Did not find reg_mask for opForm: %s",
                opForm._ident);
     abort();
  }

  const char *stack_or = "STACK_OR_";
  int   length         = (int)strlen(stack_or) + (int)strlen(reg_mask_name) + 1;
  char *result         = new char[length];
  sprintf(result,"%s%s", stack_or, reg_mask_name);

  return result;
}

// Record that the register class must generate a stack_or_reg_mask
void ArchDesc::set_stack_or_reg(const char *reg_class_name) {
  if( _register ) {
    RegClass *reg_class  = _register->getRegClass(reg_class_name);
    reg_class->_stack_or_reg = true;
  }
}


// Return the type signature for the ideal operation
const char *ArchDesc::getIdealType(const char *idealOp) {
  // Find last character in idealOp, it specifies the type
  char  last_char = 0;
  const char *ptr = idealOp;
  for (; *ptr != '\0'; ++ptr) {
    last_char = *ptr;
  }

  // Match Vector types.
  if (strncmp(idealOp, "Vec",3)==0) {
    switch(last_char) {
    case 'S':  return "TypeVect::VECTS";
    case 'D':  return "TypeVect::VECTD";
    case 'X':  return "TypeVect::VECTX";
    case 'Y':  return "TypeVect::VECTY";
    default:
      internal_err("Vector type %s with unrecognized type\n",idealOp);
    }
  }

  // !!!!!
  switch(last_char) {
  case 'I':    return "TypeInt::INT";
  case 'P':    return "TypePtr::BOTTOM";
  case 'N':    return "TypeNarrowOop::BOTTOM";
  case 'F':    return "Type::FLOAT";
  case 'D':    return "Type::DOUBLE";
  case 'L':    return "TypeLong::LONG";
  case 's':    return "TypeInt::CC /*flags*/";
  default:
    return NULL;
    // !!!!!
    // internal_err("Ideal type %s with unrecognized type\n",idealOp);
    break;
  }

  return NULL;
}



OperandForm *ArchDesc::constructOperand(const char *ident,
                                        bool  ideal_only) {
  OperandForm *opForm = new OperandForm(ident, ideal_only);
  _globalNames.Insert(ident, opForm);
  addForm(opForm);

  return opForm;
}


// Import predefined base types: Set = 1, RegI, RegP, ...
void ArchDesc::initBaseOpTypes() {
  // Create OperandForm and assign type for each opcode.
  for (int i = 1; i < _last_machine_leaf; ++i) {
    char        *ident   = (char *)NodeClassNames[i];
    constructOperand(ident, true);
  }
  // Create InstructForm and assign type for each ideal instruction.
  for ( int j = _last_machine_leaf+1; j < _last_opcode; ++j) {
    char         *ident    = (char *)NodeClassNames[j];
    if(!strcmp(ident, "ConI") || !strcmp(ident, "ConP") ||
       !strcmp(ident, "ConN") || !strcmp(ident, "ConNKlass") ||
       !strcmp(ident, "ConF") || !strcmp(ident, "ConD") ||
       !strcmp(ident, "ConL") || !strcmp(ident, "Con" ) ||
       !strcmp(ident, "Bool") ) {
      constructOperand(ident, true);
    }
    else {
      InstructForm *insForm  = new InstructForm(ident, true);
      // insForm->_opcode       = nextUserOpType(ident);
      _globalNames.Insert(ident,insForm);
      addForm(insForm);
    }
  }

  { OperandForm *opForm;
  // Create operand type "Universe" for return instructions.
  const char *ident = "Universe";
  opForm = constructOperand(ident, false);

  // Create operand type "label" for branch targets
  ident = "label";
  opForm = constructOperand(ident, false);

  // !!!!! Update - when adding a new sReg/stackSlot type
  // Create operand types "sReg[IPFDL]" for stack slot registers
  opForm = constructOperand("sRegI", false);
  opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
  opForm = constructOperand("sRegP", false);
  opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
  opForm = constructOperand("sRegF", false);
  opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
  opForm = constructOperand("sRegD", false);
  opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
  opForm = constructOperand("sRegL", false);
  opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");

  // Create operand type "method" for call targets
  ident = "method";
  opForm = constructOperand(ident, false);
  }

  // Create Effect Forms for each of the legal effects
  // USE, DEF, USE_DEF, KILL, USE_KILL
  {
    const char *ident = "USE";
    Effect     *eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "DEF";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "USE_DEF";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "KILL";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "USE_KILL";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "TEMP";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
    ident = "CALL";
    eForm = new Effect(ident);
    _globalNames.Insert(ident, eForm);
  }

  //
  // Build mapping from ideal names to ideal indices
  int idealIndex = 0;
  for (idealIndex = 1; idealIndex < _last_machine_leaf; ++idealIndex) {
    const char *idealName = NodeClassNames[idealIndex];
    _idealIndex.Insert((void*) idealName, (void*) (intptr_t) idealIndex);
  }
  for ( idealIndex = _last_machine_leaf+1;
        idealIndex < _last_opcode; ++idealIndex) {
    const char *idealName = NodeClassNames[idealIndex];
    _idealIndex.Insert((void*) idealName, (void*) (intptr_t) idealIndex);
  }

}


//---------------------------addSUNcopyright-------------------------------
// output SUN copyright info
void ArchDesc::addSunCopyright(char* legal, int size, FILE *fp) {
  size_t count = fwrite(legal, 1, size, fp);
  assert(count == (size_t) size, "copyright info truncated");
  fprintf(fp,"\n");
  fprintf(fp,"// Machine Generated File.  Do Not Edit!\n");
  fprintf(fp,"\n");
}


//---------------------------addIncludeGuardStart--------------------------
// output the start of an include guard.
void ArchDesc::addIncludeGuardStart(ADLFILE &adlfile, const char* guardString) {
  // Build #include lines
  fprintf(adlfile._fp, "\n");
  fprintf(adlfile._fp, "#ifndef %s\n", guardString);
  fprintf(adlfile._fp, "#define %s\n", guardString);
  fprintf(adlfile._fp, "\n");

}

//---------------------------addIncludeGuardEnd--------------------------
// output the end of an include guard.
void ArchDesc::addIncludeGuardEnd(ADLFILE &adlfile, const char* guardString) {
  // Build #include lines
  fprintf(adlfile._fp, "\n");
  fprintf(adlfile._fp, "#endif // %s\n", guardString);

}

//---------------------------addInclude--------------------------
// output the #include line for this file.
void ArchDesc::addInclude(ADLFILE &adlfile, const char* fileName) {
  fprintf(adlfile._fp, "#include \"%s\"\n", fileName);

}

void ArchDesc::addInclude(ADLFILE &adlfile, const char* includeDir, const char* fileName) {
  fprintf(adlfile._fp, "#include \"%s/%s\"\n", includeDir, fileName);

}

//---------------------------addPreprocessorChecks-----------------------------
// Output C preprocessor code to verify the backend compilation environment.
// The idea is to force code produced by "adlc -DHS64" to be compiled by a
// command of the form "CC ... -DHS64 ...", so that any #ifdefs in the source
// blocks select C code that is consistent with adlc's selections of AD code.
void ArchDesc::addPreprocessorChecks(FILE *fp) {
  const char* flag;
  _preproc_list.reset();
  if (_preproc_list.count() > 0 && !_preproc_list.current_is_signal()) {
    fprintf(fp, "// Check consistency of C++ compilation with ADLC options:\n");
  }
  for (_preproc_list.reset(); (flag = _preproc_list.iter()) != NULL; ) {
    if (_preproc_list.current_is_signal())  break;
    char* def = get_preproc_def(flag);
    fprintf(fp, "// Check adlc ");
    if (def)
          fprintf(fp, "-D%s=%s\n", flag, def);
    else  fprintf(fp, "-U%s\n", flag);
    fprintf(fp, "#%s %s\n",
            def ? "ifndef" : "ifdef", flag);
    fprintf(fp, "#  error \"%s %s be defined\"\n",
            flag, def ? "must" : "must not");
    fprintf(fp, "#endif // %s\n", flag);
  }
}


// Convert operand name into enum name
const char *ArchDesc::machOperEnum(const char *opName) {
  return ArchDesc::getMachOperEnum(opName);
}

// Convert operand name into enum name
const char *ArchDesc::getMachOperEnum(const char *opName) {
  return (opName ? toUpper(opName) : opName);
}

//---------------------------buildMustCloneMap-----------------------------
// Flag cases when machine needs cloned values or instructions
void ArchDesc::buildMustCloneMap(FILE *fp_hpp, FILE *fp_cpp) {
  // Build external declarations for mappings
  fprintf(fp_hpp, "// Mapping from machine-independent opcode to boolean\n");
  fprintf(fp_hpp, "// Flag cases where machine needs cloned values or instructions\n");
  fprintf(fp_hpp, "extern const char must_clone[];\n");
  fprintf(fp_hpp, "\n");

  // Build mapping from ideal names to ideal indices
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "// Mapping from machine-independent opcode to boolean\n");
  fprintf(fp_cpp, "const        char must_clone[] = {\n");
  for (int idealIndex = 0; idealIndex < _last_opcode; ++idealIndex) {
    int         must_clone = 0;
    const char *idealName = NodeClassNames[idealIndex];
    // Previously selected constants for cloning
    // !!!!!
    // These are the current machine-dependent clones
    if ( strcmp(idealName,"CmpI") == 0
         || strcmp(idealName,"CmpU") == 0
         || strcmp(idealName,"CmpP") == 0
         || strcmp(idealName,"CmpN") == 0
         || strcmp(idealName,"CmpL") == 0
         || strcmp(idealName,"CmpD") == 0
         || strcmp(idealName,"CmpF") == 0
         || strcmp(idealName,"FastLock") == 0
         || strcmp(idealName,"FastUnlock") == 0
         || strcmp(idealName,"AddExactI") == 0
         || strcmp(idealName,"AddExactL") == 0
         || strcmp(idealName,"SubExactI") == 0
         || strcmp(idealName,"SubExactL") == 0
         || strcmp(idealName,"MulExactI") == 0
         || strcmp(idealName,"MulExactL") == 0
         || strcmp(idealName,"NegExactI") == 0
         || strcmp(idealName,"NegExactL") == 0
         || strcmp(idealName,"FlagsProj") == 0
         || strcmp(idealName,"Bool") == 0
         || strcmp(idealName,"Binary") == 0 ) {
      // Removed ConI from the must_clone list.  CPUs that cannot use
      // large constants as immediates manifest the constant as an
      // instruction.  The must_clone flag prevents the constant from
      // floating up out of loops.
      must_clone = 1;
    }
    fprintf(fp_cpp, "  %d%s // %s: %d\n", must_clone,
      (idealIndex != (_last_opcode - 1)) ? "," : " // no trailing comma",
      idealName, idealIndex);
  }
  // Finish defining table
  fprintf(fp_cpp, "};\n");
}

Other Java examples (source code examples)

Here is a short list of links related to this Java archDesc.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.