alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (formssel.cpp)

This example Java source code file (formssel.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

component, def_of_memory, form, form\:\:datatype, form\:\:none, formdict, instructform, matchnode, maybe_cisc_spillable, must, not_cisc_spillable, null, operandform, set

The formssel.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// FORMS.CPP - Definitions for ADL Parser Forms Classes
#include "adlc.hpp"

//==============================Instructions===================================
//------------------------------InstructForm-----------------------------------
InstructForm::InstructForm(const char *id, bool ideal_only)
  : _ident(id), _ideal_only(ideal_only),
    _localNames(cmpstr, hashstr, Form::arena),
    _effects(cmpstr, hashstr, Form::arena),
    _is_mach_constant(false),
    _has_call(false)
{
      _ftype = Form::INS;

      _matrule   = NULL;
      _insencode = NULL;
      _constant  = NULL;
      _opcode    = NULL;
      _size      = NULL;
      _attribs   = NULL;
      _predicate = NULL;
      _exprule   = NULL;
      _rewrule   = NULL;
      _format    = NULL;
      _peephole  = NULL;
      _ins_pipe  = NULL;
      _uniq_idx  = NULL;
      _num_uniq  = 0;
      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
      _cisc_spill_alternate = NULL;            // possible cisc replacement
      _cisc_reg_mask_name = NULL;
      _is_cisc_alternate = false;
      _is_short_branch = false;
      _short_branch_form = NULL;
      _alignment = 1;
}

InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  : _ident(id), _ideal_only(false),
    _localNames(instr->_localNames),
    _effects(instr->_effects),
    _is_mach_constant(false),
    _has_call(false)
{
      _ftype = Form::INS;

      _matrule   = rule;
      _insencode = instr->_insencode;
      _constant  = instr->_constant;
      _opcode    = instr->_opcode;
      _size      = instr->_size;
      _attribs   = instr->_attribs;
      _predicate = instr->_predicate;
      _exprule   = instr->_exprule;
      _rewrule   = instr->_rewrule;
      _format    = instr->_format;
      _peephole  = instr->_peephole;
      _ins_pipe  = instr->_ins_pipe;
      _uniq_idx  = instr->_uniq_idx;
      _num_uniq  = instr->_num_uniq;
      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
      _cisc_spill_alternate = NULL;            // possible cisc replacement
      _cisc_reg_mask_name = NULL;
      _is_cisc_alternate = false;
      _is_short_branch = false;
      _short_branch_form = NULL;
      _alignment = 1;
     // Copy parameters
     const char *name;
     instr->_parameters.reset();
     for (; (name = instr->_parameters.iter()) != NULL;)
       _parameters.addName(name);
}

InstructForm::~InstructForm() {
}

InstructForm *InstructForm::is_instruction() const {
  return (InstructForm*)this;
}

bool InstructForm::ideal_only() const {
  return _ideal_only;
}

bool InstructForm::sets_result() const {
  return (_matrule != NULL && _matrule->sets_result());
}

bool InstructForm::needs_projections() {
  _components.reset();
  for( Component *comp; (comp = _components.iter()) != NULL; ) {
    if (comp->isa(Component::KILL)) {
      return true;
    }
  }
  return false;
}


bool InstructForm::has_temps() {
  if (_matrule) {
    // Examine each component to see if it is a TEMP
    _components.reset();
    // Skip the first component, if already handled as (SET dst (...))
    Component *comp = NULL;
    if (sets_result())  comp = _components.iter();
    while ((comp = _components.iter()) != NULL) {
      if (comp->isa(Component::TEMP)) {
        return true;
      }
    }
  }

  return false;
}

uint InstructForm::num_defs_or_kills() {
  uint   defs_or_kills = 0;

  _components.reset();
  for( Component *comp; (comp = _components.iter()) != NULL; ) {
    if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
      ++defs_or_kills;
    }
  }

  return  defs_or_kills;
}

// This instruction has an expand rule?
bool InstructForm::expands() const {
  return ( _exprule != NULL );
}

// This instruction has a peephole rule?
Peephole *InstructForm::peepholes() const {
  return _peephole;
}

// This instruction has a peephole rule?
void InstructForm::append_peephole(Peephole *peephole) {
  if( _peephole == NULL ) {
    _peephole = peephole;
  } else {
    _peephole->append_peephole(peephole);
  }
}


// ideal opcode enumeration
const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
  if( !_matrule ) return "Node"; // Something weird
  // Chain rules do not really have ideal Opcodes; use their source
  // operand ideal Opcode instead.
  if( is_simple_chain_rule(globalNames) ) {
    const char *src = _matrule->_rChild->_opType;
    OperandForm *src_op = globalNames[src]->is_operand();
    assert( src_op, "Not operand class of chain rule" );
    if( !src_op->_matrule ) return "Node";
    return src_op->_matrule->_opType;
  }
  // Operand chain rules do not really have ideal Opcodes
  if( _matrule->is_chain_rule(globalNames) )
    return "Node";
  return strcmp(_matrule->_opType,"Set")
    ? _matrule->_opType
    : _matrule->_rChild->_opType;
}

// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_pinned(FormDict &globals) {
  if ( ! _matrule)  return false;

  int  index   = 0;
  if (_matrule->find_type("Goto",          index)) return true;
  if (_matrule->find_type("If",            index)) return true;
  if (_matrule->find_type("CountedLoopEnd",index)) return true;
  if (_matrule->find_type("Return",        index)) return true;
  if (_matrule->find_type("Rethrow",       index)) return true;
  if (_matrule->find_type("TailCall",      index)) return true;
  if (_matrule->find_type("TailJump",      index)) return true;
  if (_matrule->find_type("Halt",          index)) return true;
  if (_matrule->find_type("Jump",          index)) return true;

  return is_parm(globals);
}

// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_projection(FormDict &globals) {
  if ( ! _matrule)  return false;

  int  index   = 0;
  if (_matrule->find_type("Goto",    index)) return true;
  if (_matrule->find_type("Return",  index)) return true;
  if (_matrule->find_type("Rethrow", index)) return true;
  if (_matrule->find_type("TailCall",index)) return true;
  if (_matrule->find_type("TailJump",index)) return true;
  if (_matrule->find_type("Halt",    index)) return true;

  return false;
}

// Recursive check on all operands' match rules in my match rule
bool InstructForm::is_parm(FormDict &globals) {
  if ( ! _matrule)  return false;

  int  index   = 0;
  if (_matrule->find_type("Parm",index)) return true;

  return false;
}

bool InstructForm::is_ideal_negD() const {
  return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
}

// Return 'true' if this instruction matches an ideal 'Copy*' node
int InstructForm::is_ideal_copy() const {
  return _matrule ? _matrule->is_ideal_copy() : 0;
}

// Return 'true' if this instruction is too complex to rematerialize.
int InstructForm::is_expensive() const {
  // We can prove it is cheap if it has an empty encoding.
  // This helps with platform-specific nops like ThreadLocal and RoundFloat.
  if (is_empty_encoding())
    return 0;

  if (is_tls_instruction())
    return 1;

  if (_matrule == NULL)  return 0;

  return _matrule->is_expensive();
}

// Has an empty encoding if _size is a constant zero or there
// are no ins_encode tokens.
int InstructForm::is_empty_encoding() const {
  if (_insencode != NULL) {
    _insencode->reset();
    if (_insencode->encode_class_iter() == NULL) {
      return 1;
    }
  }
  if (_size != NULL && strcmp(_size, "0") == 0) {
    return 1;
  }
  return 0;
}

int InstructForm::is_tls_instruction() const {
  if (_ident != NULL &&
      ( ! strcmp( _ident,"tlsLoadP") ||
        ! strncmp(_ident,"tlsLoadP_",9)) ) {
    return 1;
  }

  if (_matrule != NULL && _insencode != NULL) {
    const char* opType = _matrule->_opType;
    if (strcmp(opType, "Set")==0)
      opType = _matrule->_rChild->_opType;
    if (strcmp(opType,"ThreadLocal")==0) {
      fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
              (_ident == NULL ? "NULL" : _ident));
      return 1;
    }
  }

  return 0;
}


// Return 'true' if this instruction matches an ideal 'If' node
bool InstructForm::is_ideal_if() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_if();
}

// Return 'true' if this instruction matches an ideal 'FastLock' node
bool InstructForm::is_ideal_fastlock() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_fastlock();
}

// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
bool InstructForm::is_ideal_membar() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_membar();
}

// Return 'true' if this instruction matches an ideal 'LoadPC' node
bool InstructForm::is_ideal_loadPC() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_loadPC();
}

// Return 'true' if this instruction matches an ideal 'Box' node
bool InstructForm::is_ideal_box() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_box();
}

// Return 'true' if this instruction matches an ideal 'Goto' node
bool InstructForm::is_ideal_goto() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_goto();
}

// Return 'true' if this instruction matches an ideal 'Jump' node
bool InstructForm::is_ideal_jump() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_jump();
}

// Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
bool InstructForm::is_ideal_branch() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
}


// Return 'true' if this instruction matches an ideal 'Return' node
bool InstructForm::is_ideal_return() const {
  if( _matrule == NULL ) return false;

  // Check MatchRule to see if the first entry is the ideal "Return" node
  int  index   = 0;
  if (_matrule->find_type("Return",index)) return true;
  if (_matrule->find_type("Rethrow",index)) return true;
  if (_matrule->find_type("TailCall",index)) return true;
  if (_matrule->find_type("TailJump",index)) return true;

  return false;
}

// Return 'true' if this instruction matches an ideal 'Halt' node
bool InstructForm::is_ideal_halt() const {
  int  index   = 0;
  return _matrule && _matrule->find_type("Halt",index);
}

// Return 'true' if this instruction matches an ideal 'SafePoint' node
bool InstructForm::is_ideal_safepoint() const {
  int  index   = 0;
  return _matrule && _matrule->find_type("SafePoint",index);
}

// Return 'true' if this instruction matches an ideal 'Nop' node
bool InstructForm::is_ideal_nop() const {
  return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
}

bool InstructForm::is_ideal_control() const {
  if ( ! _matrule)  return false;

  return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
}

// Return 'true' if this instruction matches an ideal 'Call' node
Form::CallType InstructForm::is_ideal_call() const {
  if( _matrule == NULL ) return Form::invalid_type;

  // Check MatchRule to see if the first entry is the ideal "Call" node
  int  idx   = 0;
  if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
  idx = 0;
  if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
  idx = 0;
  if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
  idx = 0;
  if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
  idx = 0;
  if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
  idx = 0;
  if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
  idx = 0;
  if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
  idx = 0;

  return Form::invalid_type;
}

// Return 'true' if this instruction matches an ideal 'Load?' node
Form::DataType InstructForm::is_ideal_load() const {
  if( _matrule == NULL ) return Form::none;

  return  _matrule->is_ideal_load();
}

// Return 'true' if this instruction matches an ideal 'LoadKlass' node
bool InstructForm::skip_antidep_check() const {
  if( _matrule == NULL ) return false;

  return  _matrule->skip_antidep_check();
}

// Return 'true' if this instruction matches an ideal 'Load?' node
Form::DataType InstructForm::is_ideal_store() const {
  if( _matrule == NULL ) return Form::none;

  return  _matrule->is_ideal_store();
}

// Return 'true' if this instruction matches an ideal vector node
bool InstructForm::is_vector() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_vector();
}


// Return the input register that must match the output register
// If this is not required, return 0
uint InstructForm::two_address(FormDict &globals) {
  uint  matching_input = 0;
  if(_components.count() == 0) return 0;

  _components.reset();
  Component *comp = _components.iter();
  // Check if there is a DEF
  if( comp->isa(Component::DEF) ) {
    // Check that this is a register
    const char  *def_type = comp->_type;
    const Form  *form     = globals[def_type];
    OperandForm *op       = form->is_operand();
    if( op ) {
      if( op->constrained_reg_class() != NULL &&
          op->interface_type(globals) == Form::register_interface ) {
        // Remember the local name for equality test later
        const char *def_name = comp->_name;
        // Check if a component has the same name and is a USE
        do {
          if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
            return operand_position_format(def_name);
          }
        } while( (comp = _components.iter()) != NULL);
      }
    }
  }

  return 0;
}


// when chaining a constant to an instruction, returns 'true' and sets opType
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
  const char *dummy  = NULL;
  const char *dummy2 = NULL;
  return is_chain_of_constant(globals, dummy, dummy2);
}
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
                const char * &opTypeParam) {
  const char *result = NULL;

  return is_chain_of_constant(globals, opTypeParam, result);
}

Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
                const char * &opTypeParam, const char * &resultParam) {
  Form::DataType  data_type = Form::none;
  if ( ! _matrule)  return data_type;

  // !!!!!
  // The source of the chain rule is 'position = 1'
  uint         position = 1;
  const char  *result   = NULL;
  const char  *name     = NULL;
  const char  *opType   = NULL;
  // Here base_operand is looking for an ideal type to be returned (opType).
  if ( _matrule->is_chain_rule(globals)
       && _matrule->base_operand(position, globals, result, name, opType) ) {
    data_type = ideal_to_const_type(opType);

    // if it isn't an ideal constant type, just return
    if ( data_type == Form::none ) return data_type;

    // Ideal constant types also adjust the opType parameter.
    resultParam = result;
    opTypeParam = opType;
    return data_type;
  }

  return data_type;
}

// Check if a simple chain rule
bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
  if( _matrule && _matrule->sets_result()
      && _matrule->_rChild->_lChild == NULL
      && globals[_matrule->_rChild->_opType]
      && globals[_matrule->_rChild->_opType]->is_opclass() ) {
    return true;
  }
  return false;
}

// check for structural rematerialization
bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
  bool   rematerialize = false;

  Form::DataType data_type = is_chain_of_constant(globals);
  if( data_type != Form::none )
    rematerialize = true;

  // Constants
  if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
    rematerialize = true;

  // Pseudo-constants (values easily available to the runtime)
  if (is_empty_encoding() && is_tls_instruction())
    rematerialize = true;

  // 1-input, 1-output, such as copies or increments.
  if( _components.count() == 2 &&
      _components[0]->is(Component::DEF) &&
      _components[1]->isa(Component::USE) )
    rematerialize = true;

  // Check for an ideal 'Load?' and eliminate rematerialize option
  if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
       is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
       is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
    rematerialize = false;
  }

  // Always rematerialize the flags.  They are more expensive to save &
  // restore than to recompute (and possibly spill the compare's inputs).
  if( _components.count() >= 1 ) {
    Component *c = _components[0];
    const Form *form = globals[c->_type];
    OperandForm *opform = form->is_operand();
    if( opform ) {
      // Avoid the special stack_slots register classes
      const char *rc_name = opform->constrained_reg_class();
      if( rc_name ) {
        if( strcmp(rc_name,"stack_slots") ) {
          // Check for ideal_type of RegFlags
          const char *type = opform->ideal_type( globals, registers );
          if( (type != NULL) && !strcmp(type, "RegFlags") )
            rematerialize = true;
        } else
          rematerialize = false; // Do not rematerialize things target stk
      }
    }
  }

  return rematerialize;
}

// loads from memory, so must check for anti-dependence
bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
  if ( skip_antidep_check() ) return false;

  // Machine independent loads must be checked for anti-dependences
  if( is_ideal_load() != Form::none )  return true;

  // !!!!! !!!!! !!!!!
  // TEMPORARY
  // if( is_simple_chain_rule(globals) )  return false;

  // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
  // but writes none
  if( _matrule && _matrule->_rChild &&
      ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
        strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
        strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
        strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
    return true;

  // Check if instruction has a USE of a memory operand class, but no defs
  bool USE_of_memory  = false;
  bool DEF_of_memory  = false;
  Component     *comp = NULL;
  ComponentList &components = (ComponentList &)_components;

  components.reset();
  while( (comp = components.iter()) != NULL ) {
    const Form  *form = globals[comp->_type];
    if( !form ) continue;
    OpClassForm *op   = form->is_opclass();
    if( !op ) continue;
    if( form->interface_type(globals) == Form::memory_interface ) {
      if( comp->isa(Component::USE) ) USE_of_memory = true;
      if( comp->isa(Component::DEF) ) {
        OperandForm *oper = form->is_operand();
        if( oper && oper->is_user_name_for_sReg() ) {
          // Stack slots are unaliased memory handled by allocator
          oper = oper;  // debug stopping point !!!!!
        } else {
          DEF_of_memory = true;
        }
      }
    }
  }
  return (USE_of_memory && !DEF_of_memory);
}


bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
  if( _matrule == NULL ) return false;
  if( !_matrule->_opType ) return false;

  if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
  if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
  if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
  if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
  if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;

  return false;
}

int InstructForm::memory_operand(FormDict &globals) const {
  // Machine independent loads must be checked for anti-dependences
  // Check if instruction has a USE of a memory operand class, or a def.
  int USE_of_memory  = 0;
  int DEF_of_memory  = 0;
  const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
  Component     *unique          = NULL;
  Component     *comp            = NULL;
  ComponentList &components      = (ComponentList &)_components;

  components.reset();
  while( (comp = components.iter()) != NULL ) {
    const Form  *form = globals[comp->_type];
    if( !form ) continue;
    OpClassForm *op   = form->is_opclass();
    if( !op ) continue;
    if( op->stack_slots_only(globals) )  continue;
    if( form->interface_type(globals) == Form::memory_interface ) {
      if( comp->isa(Component::DEF) ) {
        last_memory_DEF = comp->_name;
        DEF_of_memory++;
        unique = comp;
      } else if( comp->isa(Component::USE) ) {
        if( last_memory_DEF != NULL ) {
          assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
          last_memory_DEF = NULL;
        }
        USE_of_memory++;
        if (DEF_of_memory == 0)  // defs take precedence
          unique = comp;
      } else {
        assert(last_memory_DEF == NULL, "unpaired memory DEF");
      }
    }
  }
  assert(last_memory_DEF == NULL, "unpaired memory DEF");
  assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
  USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
  if( (USE_of_memory + DEF_of_memory) > 0 ) {
    if( is_simple_chain_rule(globals) ) {
      //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
      //((InstructForm*)this)->dump();
      // Preceding code prints nothing on sparc and these insns on intel:
      // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
      // leaPIdxOff leaPIdxScale leaPIdxScaleOff
      return NO_MEMORY_OPERAND;
    }

    if( DEF_of_memory == 1 ) {
      assert(unique != NULL, "");
      if( USE_of_memory == 0 ) {
        // unique def, no uses
      } else {
        // // unique def, some uses
        // // must return bottom unless all uses match def
        // unique = NULL;
      }
    } else if( DEF_of_memory > 0 ) {
      // multiple defs, don't care about uses
      unique = NULL;
    } else if( USE_of_memory == 1) {
      // unique use, no defs
      assert(unique != NULL, "");
    } else if( USE_of_memory > 0 ) {
      // multiple uses, no defs
      unique = NULL;
    } else {
      assert(false, "bad case analysis");
    }
    // process the unique DEF or USE, if there is one
    if( unique == NULL ) {
      return MANY_MEMORY_OPERANDS;
    } else {
      int pos = components.operand_position(unique->_name);
      if( unique->isa(Component::DEF) ) {
        pos += 1;                // get corresponding USE from DEF
      }
      assert(pos >= 1, "I was just looking at it!");
      return pos;
    }
  }

  // missed the memory op??
  if( true ) {  // %%% should not be necessary
    if( is_ideal_store() != Form::none ) {
      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
      ((InstructForm*)this)->dump();
      // pretend it has multiple defs and uses
      return MANY_MEMORY_OPERANDS;
    }
    if( is_ideal_load()  != Form::none ) {
      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
      ((InstructForm*)this)->dump();
      // pretend it has multiple uses and no defs
      return MANY_MEMORY_OPERANDS;
    }
  }

  return NO_MEMORY_OPERAND;
}


// This instruction captures the machine-independent bottom_type
// Expected use is for pointer vs oop determination for LoadP
bool InstructForm::captures_bottom_type(FormDict &globals) const {
  if( _matrule && _matrule->_rChild &&
       (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
        !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
        !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
        !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
        !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
        !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
        !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
        !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
        !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
        !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
        !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
  else if ( is_ideal_load() == Form::idealP )                return true;
  else if ( is_ideal_store() != Form::none  )                return true;

  if (needs_base_oop_edge(globals)) return true;

  if (is_vector()) return true;
  if (is_mach_constant()) return true;

  return  false;
}


// Access instr_cost attribute or return NULL.
const char* InstructForm::cost() {
  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
    if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
      return cur->_val;
    }
  }
  return NULL;
}

// Return count of top-level operands.
uint InstructForm::num_opnds() {
  int  num_opnds = _components.num_operands();

  // Need special handling for matching some ideal nodes
  // i.e. Matching a return node
  /*
  if( _matrule ) {
    if( strcmp(_matrule->_opType,"Return"   )==0 ||
        strcmp(_matrule->_opType,"Halt"     )==0 )
      return 3;
  }
    */
  return num_opnds;
}

const char* InstructForm::opnd_ident(int idx) {
  return _components.at(idx)->_name;
}

const char* InstructForm::unique_opnd_ident(uint idx) {
  uint i;
  for (i = 1; i < num_opnds(); ++i) {
    if (unique_opnds_idx(i) == idx) {
      break;
    }
  }
  return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
}

// Return count of unmatched operands.
uint InstructForm::num_post_match_opnds() {
  uint  num_post_match_opnds = _components.count();
  uint  num_match_opnds = _components.match_count();
  num_post_match_opnds = num_post_match_opnds - num_match_opnds;

  return num_post_match_opnds;
}

// Return the number of leaves below this complex operand
uint InstructForm::num_consts(FormDict &globals) const {
  if ( ! _matrule) return 0;

  // This is a recursive invocation on all operands in the matchrule
  return _matrule->num_consts(globals);
}

// Constants in match rule with specified type
uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
  if ( ! _matrule) return 0;

  // This is a recursive invocation on all operands in the matchrule
  return _matrule->num_consts(globals, type);
}


// Return the register class associated with 'leaf'.
const char *InstructForm::out_reg_class(FormDict &globals) {
  assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");

  return NULL;
}



// Lookup the starting position of inputs we are interested in wrt. ideal nodes
uint InstructForm::oper_input_base(FormDict &globals) {
  if( !_matrule ) return 1;     // Skip control for most nodes

  // Need special handling for matching some ideal nodes
  // i.e. Matching a return node
  if( strcmp(_matrule->_opType,"Return"    )==0 ||
      strcmp(_matrule->_opType,"Rethrow"   )==0 ||
      strcmp(_matrule->_opType,"TailCall"  )==0 ||
      strcmp(_matrule->_opType,"TailJump"  )==0 ||
      strcmp(_matrule->_opType,"SafePoint" )==0 ||
      strcmp(_matrule->_opType,"Halt"      )==0 )
    return AdlcVMDeps::Parms;   // Skip the machine-state edges

  if( _matrule->_rChild &&
      ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
        strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
        strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
        strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
        strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
        // String.(compareTo/equals/indexOf) and Arrays.equals
        // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
        // take 1 control and 1 memory edges.
    return 2;
  }

  // Check for handling of 'Memory' input/edge in the ideal world.
  // The AD file writer is shielded from knowledge of these edges.
  int base = 1;                 // Skip control
  base += _matrule->needs_ideal_memory_edge(globals);

  // Also skip the base-oop value for uses of derived oops.
  // The AD file writer is shielded from knowledge of these edges.
  base += needs_base_oop_edge(globals);

  return base;
}

// This function determines the order of the MachOper in _opnds[]
// by writing the operand names into the _components list.
//
// Implementation does not modify state of internal structures
void InstructForm::build_components() {
  // Add top-level operands to the components
  if (_matrule)  _matrule->append_components(_localNames, _components);

  // Add parameters that "do not appear in match rule".
  bool has_temp = false;
  const char *name;
  const char *kill_name = NULL;
  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
    OperandForm *opForm = (OperandForm*)_localNames[name];

    Effect* e = NULL;
    {
      const Form* form = _effects[name];
      e = form ? form->is_effect() : NULL;
    }

    if (e != NULL) {
      has_temp |= e->is(Component::TEMP);

      // KILLs must be declared after any TEMPs because TEMPs are real
      // uses so their operand numbering must directly follow the real
      // inputs from the match rule.  Fixing the numbering seems
      // complex so simply enforce the restriction during parse.
      if (kill_name != NULL &&
          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
        OperandForm* kill = (OperandForm*)_localNames[kill_name];
        globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
                             _ident, kill->_ident, kill_name);
      } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
        kill_name = name;
      }
    }

    const Component *component  = _components.search(name);
    if ( component  == NULL ) {
      if (e) {
        _components.insert(name, opForm->_ident, e->_use_def, false);
        component = _components.search(name);
        if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
          const Form *form = globalAD->globalNames()[component->_type];
          assert( form, "component type must be a defined form");
          OperandForm *op   = form->is_operand();
          if (op->_interface && op->_interface->is_RegInterface()) {
            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
                                 _ident, opForm->_ident, name);
          }
        }
      } else {
        // This would be a nice warning but it triggers in a few places in a benign way
        // if (_matrule != NULL && !expands()) {
        //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
        //                        _ident, opForm->_ident, name);
        // }
        _components.insert(name, opForm->_ident, Component::INVALID, false);
      }
    }
    else if (e) {
      // Component was found in the list
      // Check if there is a new effect that requires an extra component.
      // This happens when adding 'USE' to a component that is not yet one.
      if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
        if (component->isa(Component::USE) && _matrule) {
          const Form *form = globalAD->globalNames()[component->_type];
          assert( form, "component type must be a defined form");
          OperandForm *op   = form->is_operand();
          if (op->_interface && op->_interface->is_RegInterface()) {
            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
                                 _ident, opForm->_ident, name);
          }
        }
        _components.insert(name, opForm->_ident, e->_use_def, false);
      } else {
        Component  *comp = (Component*)component;
        comp->promote_use_def_info(e->_use_def);
      }
      // Component positions are zero based.
      int  pos  = _components.operand_position(name);
      assert( ! (component->isa(Component::DEF) && (pos >= 1)),
              "Component::DEF can only occur in the first position");
    }
  }

  // Resolving the interactions between expand rules and TEMPs would
  // be complex so simply disallow it.
  if (_matrule == NULL && has_temp) {
    globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
  }

  return;
}

// Return zero-based position in component list;  -1 if not in list.
int   InstructForm::operand_position(const char *name, int usedef) {
  return unique_opnds_idx(_components.operand_position(name, usedef, this));
}

int   InstructForm::operand_position_format(const char *name) {
  return unique_opnds_idx(_components.operand_position_format(name, this));
}

// Return zero-based position in component list; -1 if not in list.
int   InstructForm::label_position() {
  return unique_opnds_idx(_components.label_position());
}

int   InstructForm::method_position() {
  return unique_opnds_idx(_components.method_position());
}

// Return number of relocation entries needed for this instruction.
uint  InstructForm::reloc(FormDict &globals) {
  uint reloc_entries  = 0;
  // Check for "Call" nodes
  if ( is_ideal_call() )      ++reloc_entries;
  if ( is_ideal_return() )    ++reloc_entries;
  if ( is_ideal_safepoint() ) ++reloc_entries;


  // Check if operands MAYBE oop pointers, by checking for ConP elements
  // Proceed through the leaves of the match-tree and check for ConPs
  if ( _matrule != NULL ) {
    uint         position = 0;
    const char  *result   = NULL;
    const char  *name     = NULL;
    const char  *opType   = NULL;
    while (_matrule->base_operand(position, globals, result, name, opType)) {
      if ( strcmp(opType,"ConP") == 0 ) {
#ifdef SPARC
        reloc_entries += 2; // 1 for sethi + 1 for setlo
#else
        ++reloc_entries;
#endif
      }
      ++position;
    }
  }

  // Above is only a conservative estimate
  // because it did not check contents of operand classes.
  // !!!!! !!!!!
  // Add 1 to reloc info for each operand class in the component list.
  Component  *comp;
  _components.reset();
  while ( (comp = _components.iter()) != NULL ) {
    const Form        *form = globals[comp->_type];
    assert( form, "Did not find component's type in global names");
    const OpClassForm *opc  = form->is_opclass();
    const OperandForm *oper = form->is_operand();
    if ( opc && (oper == NULL) ) {
      ++reloc_entries;
    } else if ( oper ) {
      // floats and doubles loaded out of method's constant pool require reloc info
      Form::DataType type = oper->is_base_constant(globals);
      if ( (type == Form::idealF) || (type == Form::idealD) ) {
        ++reloc_entries;
      }
    }
  }

  // Float and Double constants may come from the CodeBuffer table
  // and require relocatable addresses for access
  // !!!!!
  // Check for any component being an immediate float or double.
  Form::DataType data_type = is_chain_of_constant(globals);
  if( data_type==idealD || data_type==idealF ) {
#ifdef SPARC
    // sparc required more relocation entries for floating constants
    // (expires 9/98)
    reloc_entries += 6;
#else
    reloc_entries++;
#endif
  }

  return reloc_entries;
}

// Utility function defined in archDesc.cpp
extern bool is_def(int usedef);

// Return the result of reducing an instruction
const char *InstructForm::reduce_result() {
  const char* result = "Universe";  // default
  _components.reset();
  Component *comp = _components.iter();
  if (comp != NULL && comp->isa(Component::DEF)) {
    result = comp->_type;
    // Override this if the rule is a store operation:
    if (_matrule && _matrule->_rChild &&
        is_store_to_memory(_matrule->_rChild->_opType))
      result = "Universe";
  }
  return result;
}

// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *InstructForm::reduce_right(FormDict &globals)  const {
  if( _matrule == NULL ) return NULL;
  return  _matrule->reduce_right(globals);
}

// Similar for left
const char *InstructForm::reduce_left(FormDict &globals)   const {
  if( _matrule == NULL ) return NULL;
  return  _matrule->reduce_left(globals);
}


// Base class for this instruction, MachNode except for calls
const char *InstructForm::mach_base_class(FormDict &globals)  const {
  if( is_ideal_call() == Form::JAVA_STATIC ) {
    return "MachCallStaticJavaNode";
  }
  else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
    return "MachCallDynamicJavaNode";
  }
  else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
    return "MachCallRuntimeNode";
  }
  else if( is_ideal_call() == Form::JAVA_LEAF ) {
    return "MachCallLeafNode";
  }
  else if (is_ideal_return()) {
    return "MachReturnNode";
  }
  else if (is_ideal_halt()) {
    return "MachHaltNode";
  }
  else if (is_ideal_safepoint()) {
    return "MachSafePointNode";
  }
  else if (is_ideal_if()) {
    return "MachIfNode";
  }
  else if (is_ideal_goto()) {
    return "MachGotoNode";
  }
  else if (is_ideal_fastlock()) {
    return "MachFastLockNode";
  }
  else if (is_ideal_nop()) {
    return "MachNopNode";
  }
  else if (is_mach_constant()) {
    return "MachConstantNode";
  }
  else if (captures_bottom_type(globals)) {
    return "MachTypeNode";
  } else {
    return "MachNode";
  }
  assert( false, "ShouldNotReachHere()");
  return NULL;
}

// Compare the instruction predicates for textual equality
bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  const Predicate *pred1  = instr1->_predicate;
  const Predicate *pred2  = instr2->_predicate;
  if( pred1 == NULL && pred2 == NULL ) {
    // no predicates means they are identical
    return true;
  }
  if( pred1 != NULL && pred2 != NULL ) {
    // compare the predicates
    if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
      return true;
    }
  }

  return false;
}

// Check if this instruction can cisc-spill to 'alternate'
bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  // Do not replace if a cisc-version has been found.
  if( cisc_spill_operand() != Not_cisc_spillable ) return false;

  int         cisc_spill_operand = Maybe_cisc_spillable;
  char       *result             = NULL;
  char       *result2            = NULL;
  const char *op_name            = NULL;
  const char *reg_type           = NULL;
  FormDict   &globals            = AD.globalNames();
  cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
    cisc_spill_operand = operand_position(op_name, Component::USE);
    int def_oper  = operand_position(op_name, Component::DEF);
    if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
      // Do not support cisc-spilling for destination operands and
      // make sure they have the same number of operands.
      _cisc_spill_alternate = instr;
      instr->set_cisc_alternate(true);
      if( AD._cisc_spill_debug ) {
        fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
        fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
      }
      // Record that a stack-version of the reg_mask is needed
      // !!!!!
      OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
      assert( oper != NULL, "cisc-spilling non operand");
      const char *reg_class_name = oper->constrained_reg_class();
      AD.set_stack_or_reg(reg_class_name);
      const char *reg_mask_name  = AD.reg_mask(*oper);
      set_cisc_reg_mask_name(reg_mask_name);
      const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
    } else {
      cisc_spill_operand = Not_cisc_spillable;
    }
  } else {
    cisc_spill_operand = Not_cisc_spillable;
  }

  set_cisc_spill_operand(cisc_spill_operand);
  return (cisc_spill_operand != Not_cisc_spillable);
}

// Check to see if this instruction can be replaced with the short branch
// instruction `short-branch'
bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  if (_matrule != NULL &&
      this != short_branch &&   // Don't match myself
      !is_short_branch() &&     // Don't match another short branch variant
      reduce_result() != NULL &&
      strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
      _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
    // The instructions are equivalent.

    // Now verify that both instructions have the same parameters and
    // the same effects. Both branch forms should have the same inputs
    // and resulting projections to correctly replace a long branch node
    // with corresponding short branch node during code generation.

    bool different = false;
    if (short_branch->_components.count() != _components.count()) {
       different = true;
    } else if (_components.count() > 0) {
      short_branch->_components.reset();
      _components.reset();
      Component *comp;
      while ((comp = _components.iter()) != NULL) {
        Component *short_comp = short_branch->_components.iter();
        if (short_comp == NULL ||
            short_comp->_type != comp->_type ||
            short_comp->_usedef != comp->_usedef) {
          different = true;
          break;
        }
      }
      if (short_branch->_components.iter() != NULL)
        different = true;
    }
    if (different) {
      globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
    }
    if (AD._adl_debug > 1 || AD._short_branch_debug) {
      fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
    }
    _short_branch_form = short_branch;
    return true;
  }
  return false;
}


// --------------------------- FILE *output_routines
//
// Generate the format call for the replacement variable
void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  // Handle special constant table variables.
  if (strcmp(rep_var, "constanttablebase") == 0) {
    fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
    fprintf(fp, "    st->print(\"%%s\", reg);\n");
    return;
  }
  if (strcmp(rep_var, "constantoffset") == 0) {
    fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
    return;
  }
  if (strcmp(rep_var, "constantaddress") == 0) {
    fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
    return;
  }

  // Find replacement variable's type
  const Form *form   = _localNames[rep_var];
  if (form == NULL) {
    globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
                         rep_var, _ident);
    return;
  }
  OpClassForm *opc   = form->is_opclass();
  assert( opc, "replacement variable was not found in local names");
  // Lookup the index position of the replacement variable
  int idx  = operand_position_format(rep_var);
  if ( idx == -1 ) {
    globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
                         rep_var, _ident);
    assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
    return;
  }

  if (is_noninput_operand(idx)) {
    // This component isn't in the input array.  Print out the static
    // name of the register.
    OperandForm* oper = form->is_operand();
    if (oper != NULL && oper->is_bound_register()) {
      const RegDef* first = oper->get_RegClass()->find_first_elem();
      fprintf(fp, "    st->print(\"%s\");\n", first->_regname);
    } else {
      globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
    }
  } else {
    // Output the format call for this operand
    fprintf(fp,"opnd_array(%d)->",idx);
    if (idx == 0)
      fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
    else
      fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  }
}

// Seach through operands to determine parameters unique positions.
void InstructForm::set_unique_opnds() {
  uint* uniq_idx = NULL;
  uint  nopnds = num_opnds();
  uint  num_uniq = nopnds;
  uint i;
  _uniq_idx_length = 0;
  if (nopnds > 0) {
    // Allocate index array.  Worst case we're mapping from each
    // component back to an index and any DEF always goes at 0 so the
    // length of the array has to be the number of components + 1.
    _uniq_idx_length = _components.count() + 1;
    uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
    for (i = 0; i < _uniq_idx_length; i++) {
      uniq_idx[i] = i;
    }
  }
  // Do it only if there is a match rule and no expand rule.  With an
  // expand rule it is done by creating new mach node in Expand()
  // method.
  if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
    const char *name;
    uint count;
    bool has_dupl_use = false;

    _parameters.reset();
    while ((name = _parameters.iter()) != NULL) {
      count = 0;
      uint position = 0;
      uint uniq_position = 0;
      _components.reset();
      Component *comp = NULL;
      if (sets_result()) {
        comp = _components.iter();
        position++;
      }
      // The next code is copied from the method operand_position().
      for (; (comp = _components.iter()) != NULL; ++position) {
        // When the first component is not a DEF,
        // leave space for the result operand!
        if (position==0 && (!comp->isa(Component::DEF))) {
          ++position;
        }
        if (strcmp(name, comp->_name) == 0) {
          if (++count > 1) {
            assert(position < _uniq_idx_length, "out of bounds");
            uniq_idx[position] = uniq_position;
            has_dupl_use = true;
          } else {
            uniq_position = position;
          }
        }
        if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
          ++position;
          if (position != 1)
            --position;   // only use two slots for the 1st USE_DEF
        }
      }
    }
    if (has_dupl_use) {
      for (i = 1; i < nopnds; i++) {
        if (i != uniq_idx[i]) {
          break;
        }
      }
      uint j = i;
      for (; i < nopnds; i++) {
        if (i == uniq_idx[i]) {
          uniq_idx[i] = j++;
        }
      }
      num_uniq = j;
    }
  }
  _uniq_idx = uniq_idx;
  _num_uniq = num_uniq;
}

// Generate index values needed for determining the operand position
void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  uint  idx = 0;                  // position of operand in match rule
  int   cur_num_opnds = num_opnds();

  // Compute the index into vector of operand pointers:
  // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  // idx1 starts at oper_input_base()
  if ( cur_num_opnds >= 1 ) {
    fprintf(fp,"  // Start at oper_input_base() and count operands\n");
    fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
    fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
    fprintf(fp," \t// %s\n", unique_opnd_ident(1));

    // Generate starting points for other unique operands if they exist
    for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
      if( *receiver == 0 ) {
        fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
                prefix, idx, prefix, idx-1, idx-1 );
      } else {
        fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
                prefix, idx, prefix, idx-1, receiver, idx-1 );
      }
      fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
    }
  }
  if( *receiver != 0 ) {
    // This value is used by generate_peepreplace when copying a node.
    // Don't emit it in other cases since it can hide bugs with the
    // use invalid idx's.
    fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  }

}

// ---------------------------
bool InstructForm::verify() {
  // !!!!! !!!!!
  // Check that a "label" operand occurs last in the operand list, if present
  return true;
}

void InstructForm::dump() {
  output(stderr);
}

void InstructForm::output(FILE *fp) {
  fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  if (_matrule)   _matrule->output(fp);
  if (_insencode) _insencode->output(fp);
  if (_constant)  _constant->output(fp);
  if (_opcode)    _opcode->output(fp);
  if (_attribs)   _attribs->output(fp);
  if (_predicate) _predicate->output(fp);
  if (_effects.Size()) {
    fprintf(fp,"Effects\n");
    _effects.dump();
  }
  if (_exprule)   _exprule->output(fp);
  if (_rewrule)   _rewrule->output(fp);
  if (_format)    _format->output(fp);
  if (_peephole)  _peephole->output(fp);
}

void MachNodeForm::dump() {
  output(stderr);
}

void MachNodeForm::output(FILE *fp) {
  fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
}

//------------------------------build_predicate--------------------------------
// Build instruction predicates.  If the user uses the same operand name
// twice, we need to check that the operands are pointer-eequivalent in
// the DFA during the labeling process.
Predicate *InstructForm::build_predicate() {
  char buf[1024], *s=buf;
  Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts

  MatchNode *mnode =
    strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  mnode->count_instr_names(names);

  uint first = 1;
  // Start with the predicate supplied in the .ad file.
  if( _predicate ) {
    if( first ) first=0;
    strcpy(s,"("); s += strlen(s);
    strcpy(s,_predicate->_pred);
    s += strlen(s);
    strcpy(s,")"); s += strlen(s);
  }
  for( DictI i(&names); i.test(); ++i ) {
    uintptr_t cnt = (uintptr_t)i._value;
    if( cnt > 1 ) {             // Need a predicate at all?
      assert( cnt == 2, "Unimplemented" );
      // Handle many pairs
      if( first ) first=0;
      else {                    // All tests must pass, so use '&&'
        strcpy(s," && ");
        s += strlen(s);
      }
      // Add predicate to working buffer
      sprintf(s,"/*%s*/(",(char*)i._key);
      s += strlen(s);
      mnode->build_instr_pred(s,(char*)i._key,0);
      s += strlen(s);
      strcpy(s," == "); s += strlen(s);
      mnode->build_instr_pred(s,(char*)i._key,1);
      s += strlen(s);
      strcpy(s,")"); s += strlen(s);
    }
  }
  if( s == buf ) s = NULL;
  else {
    assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
    s = strdup(buf);
  }
  return new Predicate(s);
}

//------------------------------EncodeForm-------------------------------------
// Constructor
EncodeForm::EncodeForm()
  : _encClass(cmpstr,hashstr, Form::arena) {
}
EncodeForm::~EncodeForm() {
}

// record a new register class
EncClass *EncodeForm::add_EncClass(const char *className) {
  EncClass *encClass = new EncClass(className);
  _eclasses.addName(className);
  _encClass.Insert(className,encClass);
  return encClass;
}

// Lookup the function body for an encoding class
EncClass  *EncodeForm::encClass(const char *className) {
  assert( className != NULL, "Must provide a defined encoding name");

  EncClass *encClass = (EncClass*)_encClass[className];
  return encClass;
}

// Lookup the function body for an encoding class
const char *EncodeForm::encClassBody(const char *className) {
  if( className == NULL ) return NULL;

  EncClass *encClass = (EncClass*)_encClass[className];
  assert( encClass != NULL, "Encode Class is missing.");
  encClass->_code.reset();
  const char *code = (const char*)encClass->_code.iter();
  assert( code != NULL, "Found an empty encode class body.");

  return code;
}

// Lookup the function body for an encoding class
const char *EncodeForm::encClassPrototype(const char *className) {
  assert( className != NULL, "Encode class name must be non NULL.");

  return className;
}

void EncodeForm::dump() {                  // Debug printer
  output(stderr);
}

void EncodeForm::output(FILE *fp) {          // Write info to output files
  const char *name;
  fprintf(fp,"\n");
  fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
    ((EncClass*)_encClass[name])->output(fp);
  }
  fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
}
//------------------------------EncClass---------------------------------------
EncClass::EncClass(const char *name)
  : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
}
EncClass::~EncClass() {
}

// Add a parameter <type,name> pair
void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  _parameter_type.addName( parameter_type );
  _parameter_name.addName( parameter_name );
}

// Verify operand types in parameter list
bool EncClass::check_parameter_types(FormDict &globals) {
  // !!!!!
  return false;
}

// Add the decomposed "code" sections of an encoding's code-block
void EncClass::add_code(const char *code) {
  _code.addName(code);
}

// Add the decomposed "replacement variables" of an encoding's code-block
void EncClass::add_rep_var(char *replacement_var) {
  _code.addName(NameList::_signal);
  _rep_vars.addName(replacement_var);
}

// Lookup the function body for an encoding class
int EncClass::rep_var_index(const char *rep_var) {
  uint        position = 0;
  const char *name     = NULL;

  _parameter_name.reset();
  while ( (name = _parameter_name.iter()) != NULL ) {
    if ( strcmp(rep_var,name) == 0 ) return position;
    ++position;
  }

  return -1;
}

// Check after parsing
bool EncClass::verify() {
  // 1!!!!
  // Check that each replacement variable, '$name' in architecture description
  // is actually a local variable for this encode class, or a reserved name
  // "primary, secondary, tertiary"
  return true;
}

void EncClass::dump() {
  output(stderr);
}

// Write info to output files
void EncClass::output(FILE *fp) {
  fprintf(fp,"EncClass: %s", (_name ? _name : ""));

  // Output the parameter list
  _parameter_type.reset();
  _parameter_name.reset();
  const char *type = _parameter_type.iter();
  const char *name = _parameter_name.iter();
  fprintf(fp, " ( ");
  for ( ; (type != NULL) && (name != NULL);
        (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
    fprintf(fp, " %s %s,", type, name);
  }
  fprintf(fp, " ) ");

  // Output the code block
  _code.reset();
  _rep_vars.reset();
  const char *code;
  while ( (code = _code.iter()) != NULL ) {
    if ( _code.is_signal(code) ) {
      // A replacement variable
      const char *rep_var = _rep_vars.iter();
      fprintf(fp,"($%s)", rep_var);
    } else {
      // A section of code
      fprintf(fp,"%s", code);
    }
  }

}

//------------------------------Opcode-----------------------------------------
Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
}

Opcode::~Opcode() {
}

Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  if( strcmp(param,"primary") == 0 ) {
    return Opcode::PRIMARY;
  }
  else if( strcmp(param,"secondary") == 0 ) {
    return Opcode::SECONDARY;
  }
  else if( strcmp(param,"tertiary") == 0 ) {
    return Opcode::TERTIARY;
  }
  return Opcode::NOT_AN_OPCODE;
}

bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  // Default values previously provided by MachNode::primary()...
  const char *description = NULL;
  const char *value       = NULL;
  // Check if user provided any opcode definitions
  if( this != NULL ) {
    // Update 'value' if user provided a definition in the instruction
    switch (desired_opcode) {
    case PRIMARY:
      description = "primary()";
      if( _primary   != NULL)  { value = _primary;     }
      break;
    case SECONDARY:
      description = "secondary()";
      if( _secondary != NULL ) { value = _secondary;   }
      break;
    case TERTIARY:
      description = "tertiary()";
      if( _tertiary  != NULL ) { value = _tertiary;    }
      break;
    default:
      assert( false, "ShouldNotReachHere();");
      break;
    }
  }
  if (value != NULL) {
    fprintf(fp, "(%s /*%s*/)", value, description);
  }
  return value != NULL;
}

void Opcode::dump() {
  output(stderr);
}

// Write info to output files
void Opcode::output(FILE *fp) {
  if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
}

//------------------------------InsEncode--------------------------------------
InsEncode::InsEncode() {
}
InsEncode::~InsEncode() {
}

// Add "encode class name" and its parameters
NameAndList *InsEncode::add_encode(char *encoding) {
  assert( encoding != NULL, "Must provide name for encoding");

  // add_parameter(NameList::_signal);
  NameAndList *encode = new NameAndList(encoding);
  _encoding.addName((char*)encode);

  return encode;
}

// Access the list of encodings
void InsEncode::reset() {
  _encoding.reset();
  // _parameter.reset();
}
const char* InsEncode::encode_class_iter() {
  NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  return  ( encode_class != NULL ? encode_class->name() : NULL );
}
// Obtain parameter name from zero based index
const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  NameAndList *params = (NameAndList*)_encoding.current();
  assert( params != NULL, "Internal Error");
  const char *param = (*params)[param_no];

  // Remove '$' if parser placed it there.
  return ( param != NULL && *param == '$') ? (param+1) : param;
}

void InsEncode::dump() {
  output(stderr);
}

// Write info to output files
void InsEncode::output(FILE *fp) {
  NameAndList *encoding  = NULL;
  const char  *parameter = NULL;

  fprintf(fp,"InsEncode: ");
  _encoding.reset();

  while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
    // Output the encoding being used
    fprintf(fp,"%s(", encoding->name() );

    // Output its parameter list, if any
    bool first_param = true;
    encoding->reset();
    while (  (parameter = encoding->iter()) != 0 ) {
      // Output the ',' between parameters
      if ( ! first_param )  fprintf(fp,", ");
      first_param = false;
      // Output the parameter
      fprintf(fp,"%s", parameter);
    } // done with parameters
    fprintf(fp,")  ");
  } // done with encodings

  fprintf(fp,"\n");
}

//------------------------------Effect-----------------------------------------
static int effect_lookup(const char *name) {
  if(!strcmp(name, "USE")) return Component::USE;
  if(!strcmp(name, "DEF")) return Component::DEF;
  if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  if(!strcmp(name, "KILL")) return Component::KILL;
  if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  if(!strcmp(name, "TEMP")) return Component::TEMP;
  if(!strcmp(name, "INVALID")) return Component::INVALID;
  if(!strcmp(name, "CALL")) return Component::CALL;
  assert( false,"Invalid effect name specified\n");
  return Component::INVALID;
}

const char *Component::getUsedefName() {
  switch (_usedef) {
    case Component::INVALID:  return "INVALID";  break;
    case Component::USE:      return "USE";      break;
    case Component::USE_DEF:  return "USE_DEF";  break;
    case Component::USE_KILL: return "USE_KILL"; break;
    case Component::KILL:     return "KILL";     break;
    case Component::TEMP:     return "TEMP";     break;
    case Component::DEF:      return "DEF";      break;
    case Component::CALL:     return "CALL";     break;
    default: assert(false, "unknown effect");
  }
  return "Undefined Use/Def info";
}

Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  _ftype = Form::EFF;
}

Effect::~Effect() {
}

// Dynamic type check
Effect *Effect::is_effect() const {
  return (Effect*)this;
}


// True if this component is equal to the parameter.
bool Effect::is(int use_def_kill_enum) const {
  return (_use_def == use_def_kill_enum ? true : false);
}
// True if this component is used/def'd/kill'd as the parameter suggests.
bool Effect::isa(int use_def_kill_enum) const {
  return (_use_def & use_def_kill_enum) == use_def_kill_enum;
}

void Effect::dump() {
  output(stderr);
}

void Effect::output(FILE *fp) {          // Write info to output files
  fprintf(fp,"Effect: %s\n", (_name?_name:""));
}

//------------------------------ExpandRule-------------------------------------
ExpandRule::ExpandRule() : _expand_instrs(),
                           _newopconst(cmpstr, hashstr, Form::arena) {
  _ftype = Form::EXP;
}

ExpandRule::~ExpandRule() {                  // Destructor
}

void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  _expand_instrs.addName((char*)instruction_name_and_operand_list);
}

void ExpandRule::reset_instructions() {
  _expand_instrs.reset();
}

NameAndList* ExpandRule::iter_instructions() {
  return (NameAndList*)_expand_instrs.iter();
}


void ExpandRule::dump() {
  output(stderr);
}

void ExpandRule::output(FILE *fp) {         // Write info to output files
  NameAndList *expand_instr = NULL;
  const char *opid = NULL;

  fprintf(fp,"\nExpand Rule:\n");

  // Iterate over the instructions 'node' expands into
  for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
    fprintf(fp,"%s(", expand_instr->name());

    // iterate over the operand list
    for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
      fprintf(fp,"%s ", opid);
    }
    fprintf(fp,");\n");
  }
}

//------------------------------RewriteRule------------------------------------
RewriteRule::RewriteRule(char* params, char* block)
  : _tempParams(params), _tempBlock(block) { };  // Constructor
RewriteRule::~RewriteRule() {                 // Destructor
}

void RewriteRule::dump() {
  output(stderr);
}

void RewriteRule::output(FILE *fp) {         // Write info to output files
  fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
          (_tempParams?_tempParams:""),
          (_tempBlock?_tempBlock:""));
}


//==============================MachNodes======================================
//------------------------------MachNodeForm-----------------------------------
MachNodeForm::MachNodeForm(char *id)
  : _ident(id) {
}

MachNodeForm::~MachNodeForm() {
}

MachNodeForm *MachNodeForm::is_machnode() const {
  return (MachNodeForm*)this;
}

//==============================Operand Classes================================
//------------------------------OpClassForm------------------------------------
OpClassForm::OpClassForm(const char* id) : _ident(id) {
  _ftype = Form::OPCLASS;
}

OpClassForm::~OpClassForm() {
}

bool OpClassForm::ideal_only() const { return 0; }

OpClassForm *OpClassForm::is_opclass() const {
  return (OpClassForm*)this;
}

Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  if( _oplst.count() == 0 ) return Form::no_interface;

  // Check that my operands have the same interface type
  Form::InterfaceType  interface;
  bool  first = true;
  NameList &op_list = (NameList &)_oplst;
  op_list.reset();
  const char *op_name;
  while( (op_name = op_list.iter()) != NULL ) {
    const Form  *form    = globals[op_name];
    OperandForm *operand = form->is_operand();
    assert( operand, "Entry in operand class that is not an operand");
    if( first ) {
      first     = false;
      interface = operand->interface_type(globals);
    } else {
      interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
    }
  }
  return interface;
}

bool OpClassForm::stack_slots_only(FormDict &globals) const {
  if( _oplst.count() == 0 ) return false;  // how?

  NameList &op_list = (NameList &)_oplst;
  op_list.reset();
  const char *op_name;
  while( (op_name = op_list.iter()) != NULL ) {
    const Form  *form    = globals[op_name];
    OperandForm *operand = form->is_operand();
    assert( operand, "Entry in operand class that is not an operand");
    if( !operand->stack_slots_only(globals) )  return false;
  }
  return true;
}


void OpClassForm::dump() {
  output(stderr);
}

void OpClassForm::output(FILE *fp) {
  const char *name;
  fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  fprintf(fp,"\nCount = %d\n", _oplst.count());
  for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
    fprintf(fp,"%s, ",name);
  }
  fprintf(fp,"\n");
}


//==============================Operands=======================================
//------------------------------OperandForm------------------------------------
OperandForm::OperandForm(const char* id)
  : OpClassForm(id), _ideal_only(false),
    _localNames(cmpstr, hashstr, Form::arena) {
      _ftype = Form::OPER;

      _matrule   = NULL;
      _interface = NULL;
      _attribs   = NULL;
      _predicate = NULL;
      _constraint= NULL;
      _construct = NULL;
      _format    = NULL;
}
OperandForm::OperandForm(const char* id, bool ideal_only)
  : OpClassForm(id), _ideal_only(ideal_only),
    _localNames(cmpstr, hashstr, Form::arena) {
      _ftype = Form::OPER;

      _matrule   = NULL;
      _interface = NULL;
      _attribs   = NULL;
      _predicate = NULL;
      _constraint= NULL;
      _construct = NULL;
      _format    = NULL;
}
OperandForm::~OperandForm() {
}


OperandForm *OperandForm::is_operand() const {
  return (OperandForm*)this;
}

bool OperandForm::ideal_only() const {
  return _ideal_only;
}

Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  if( _interface == NULL )  return Form::no_interface;

  return _interface->interface_type(globals);
}


bool OperandForm::stack_slots_only(FormDict &globals) const {
  if( _constraint == NULL )  return false;
  return _constraint->stack_slots_only();
}


// Access op_cost attribute or return NULL.
const char* OperandForm::cost() {
  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
    if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
      return cur->_val;
    }
  }
  return NULL;
}

// Return the number of leaves below this complex operand
uint OperandForm::num_leaves() const {
  if ( ! _matrule) return 0;

  int num_leaves = _matrule->_numleaves;
  return num_leaves;
}

// Return the number of constants contained within this complex operand
uint OperandForm::num_consts(FormDict &globals) const {
  if ( ! _matrule) return 0;

  // This is a recursive invocation on all operands in the matchrule
  return _matrule->num_consts(globals);
}

// Return the number of constants in match rule with specified type
uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  if ( ! _matrule) return 0;

  // This is a recursive invocation on all operands in the matchrule
  return _matrule->num_consts(globals, type);
}

// Return the number of pointer constants contained within this complex operand
uint OperandForm::num_const_ptrs(FormDict &globals) const {
  if ( ! _matrule) return 0;

  // This is a recursive invocation on all operands in the matchrule
  return _matrule->num_const_ptrs(globals);
}

uint OperandForm::num_edges(FormDict &globals) const {
  uint edges  = 0;
  uint leaves = num_leaves();
  uint consts = num_consts(globals);

  // If we are matching a constant directly, there are no leaves.
  edges = ( leaves > consts ) ? leaves - consts : 0;

  // !!!!!
  // Special case operands that do not have a corresponding ideal node.
  if( (edges == 0) && (consts == 0) ) {
    if( constrained_reg_class() != NULL ) {
      edges = 1;
    } else {
      if( _matrule
          && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
        const Form *form = globals[_matrule->_opType];
        OperandForm *oper = form ? form->is_operand() : NULL;
        if( oper ) {
          return oper->num_edges(globals);
        }
      }
    }
  }

  return edges;
}


// Check if this operand is usable for cisc-spilling
bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  const char *ideal = ideal_type(globals);
  bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  return is_cisc_reg;
}

bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  Form::InterfaceType my_interface = interface_type(globals);
  return (my_interface == memory_interface);
}


// node matches ideal 'Bool'
bool OperandForm::is_ideal_bool() const {
  if( _matrule == NULL ) return false;

  return _matrule->is_ideal_bool();
}

// Require user's name for an sRegX to be stackSlotX
Form::DataType OperandForm::is_user_name_for_sReg() const {
  DataType data_type = none;
  if( _ident != NULL ) {
    if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
    else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
    else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
    else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
    else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  }
  assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");

  return data_type;
}


// Return ideal type, if there is a single ideal type for this operand
const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  const char *type = NULL;
  if (ideal_only()) type = _ident;
  else if( _matrule == NULL ) {
    // Check for condition code register
    const char *rc_name = constrained_reg_class();
    // !!!!!
    if (rc_name == NULL) return NULL;
    // !!!!! !!!!!
    // Check constraints on result's register class
    if( registers ) {
      RegClass *reg_class  = registers->getRegClass(rc_name);
      assert( reg_class != NULL, "Register class is not defined");

      // Check for ideal type of entries in register class, all are the same type
      reg_class->reset();
      RegDef *reg_def = reg_class->RegDef_iter();
      assert( reg_def != NULL, "No entries in register class");
      assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
      // Return substring that names the register's ideal type
      type = reg_def->_idealtype + 3;
      assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
      assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
      assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
    }
  }
  else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
    // This operand matches a single type, at the top level.
    // Check for ideal type
    type = _matrule->_opType;
    if( strcmp(type,"Bool") == 0 )
      return "Bool";
    // transitive lookup
    const Form *frm = globals[type];
    OperandForm *op = frm->is_operand();
    type = op->ideal_type(globals, registers);
  }
  return type;
}


// If there is a single ideal type for this interface field, return it.
const char *OperandForm::interface_ideal_type(FormDict &globals,
                                              const char *field) const {
  const char  *ideal_type = NULL;
  const char  *value      = NULL;

  // Check if "field" is valid for this operand's interface
  if ( ! is_interface_field(field, value) )   return ideal_type;

  // !!!!! !!!!! !!!!!
  // If a valid field has a constant value, identify "ConI" or "ConP" or ...

  // Else, lookup type of field's replacement variable

  return ideal_type;
}


RegClass* OperandForm::get_RegClass() const {
  if (_interface && !_interface->is_RegInterface()) return NULL;
  return globalAD->get_registers()->getRegClass(constrained_reg_class());
}


bool OperandForm::is_bound_register() const {
  RegClass* reg_class = get_RegClass();
  if (reg_class == NULL) {
    return false;
  }

  const char* name = ideal_type(globalAD->globalNames());
  if (name == NULL) {
    return false;
  }

  uint size = 0;
  if (strcmp(name, "RegFlags") == 0) size = 1;
  if (strcmp(name, "RegI") == 0) size = 1;
  if (strcmp(name, "RegF") == 0) size = 1;
  if (strcmp(name, "RegD") == 0) size = 2;
  if (strcmp(name, "RegL") == 0) size = 2;
  if (strcmp(name, "RegN") == 0) size = 1;
  if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
  if (size == 0) {
    return false;
  }
  return size == reg_class->size();
}


// Check if this is a valid field for this operand,
// Return 'true' if valid, and set the value to the string the user provided.
bool  OperandForm::is_interface_field(const char *field,
                                      const char * &value) const {
  return false;
}


// Return register class name if a constraint specifies the register class.
const char *OperandForm::constrained_reg_class() const {
  const char *reg_class  = NULL;
  if ( _constraint ) {
    // !!!!!
    Constraint *constraint = _constraint;
    if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
      reg_class = _constraint->_arg;
    }
  }

  return reg_class;
}


// Return the register class associated with 'leaf'.
const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  const char *reg_class = NULL; // "RegMask::Empty";

  if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
    reg_class = constrained_reg_class();
    return reg_class;
  }
  const char *result   = NULL;
  const char *name     = NULL;
  const char *type     = NULL;
  // iterate through all base operands
  // until we reach the register that corresponds to "leaf"
  // This function is not looking for an ideal type.  It needs the first
  // level user type associated with the leaf.
  for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
    const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
    OperandForm *oper = form ? form->is_operand() : NULL;
    if( oper ) {
      reg_class = oper->constrained_reg_class();
      if( reg_class ) {
        reg_class = reg_class;
      } else {
        // ShouldNotReachHere();
      }
    } else {
      // ShouldNotReachHere();
    }

    // Increment our target leaf position if current leaf is not a candidate.
    if( reg_class == NULL)    ++leaf;
    // Exit the loop with the value of reg_class when at the correct index
    if( idx == leaf )         break;
    // May iterate through all base operands if reg_class for 'leaf' is NULL
  }
  return reg_class;
}


// Recursive call to construct list of top-level operands.
// Implementation does not modify state of internal structures
void OperandForm::build_components() {
  if (_matrule)  _matrule->append_components(_localNames, _components);

  // Add parameters that "do not appear in match rule".
  const char *name;
  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
    OperandForm *opForm = (OperandForm*)_localNames[name];

    if ( _components.operand_position(name) == -1 ) {
      _components.insert(name, opForm->_ident, Component::INVALID, false);
    }
  }

  return;
}

int OperandForm::operand_position(const char *name, int usedef) {
  return _components.operand_position(name, usedef, this);
}


// Return zero-based position in component list, only counting constants;
// Return -1 if not in list.
int OperandForm::constant_position(FormDict &globals, const Component *last) {
  // Iterate through components and count constants preceding 'constant'
  int position = 0;
  Component *comp;
  _components.reset();
  while( (comp = _components.iter()) != NULL  && (comp != last) ) {
    // Special case for operands that take a single user-defined operand
    // Skip the initial definition in the component list.
    if( strcmp(comp->_name,this->_ident) == 0 ) continue;

    const char *type = comp->_type;
    // Lookup operand form for replacement variable's type
    const Form *form = globals[type];
    assert( form != NULL, "Component's type not found");
    OperandForm *oper = form ? form->is_operand() : NULL;
    if( oper ) {
      if( oper->_matrule->is_base_constant(globals) != Form::none ) {
        ++position;
      }
    }
  }

  // Check for being passed a component that was not in the list
  if( comp != last )  position = -1;

  return position;
}
// Provide position of constant by "name"
int OperandForm::constant_position(FormDict &globals, const char *name) {
  const Component *comp = _components.search(name);
  int idx = constant_position( globals, comp );

  return idx;
}


// Return zero-based position in component list, only counting constants;
// Return -1 if not in list.
int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  // Iterate through components and count registers preceding 'last'
  uint  position = 0;
  Component *comp;
  _components.reset();
  while( (comp = _components.iter()) != NULL
         && (strcmp(comp->_name,reg_name) != 0) ) {
    // Special case for operands that take a single user-defined operand
    // Skip the initial definition in the component list.
    if( strcmp(comp->_name,this->_ident) == 0 ) continue;

    const char *type = comp->_type;
    // Lookup operand form for component's type
    const Form *form = globals[type];
    assert( form != NULL, "Component's type not found");
    OperandForm *oper = form ? form->is_operand() : NULL;
    if( oper ) {
      if( oper->_matrule->is_base_register(globals) ) {
        ++position;
      }
    }
  }

  return position;
}


const char *OperandForm::reduce_result()  const {
  return _ident;
}
// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *OperandForm::reduce_right(FormDict &globals)  const {
  return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
}

// Similar for left
const char *OperandForm::reduce_left(FormDict &globals)   const {
  return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
}


// --------------------------- FILE *output_routines
//
// Output code for disp_is_oop, if true.
void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  //  Check it is a memory interface with a non-user-constant disp field
  if ( this->_interface == NULL ) return;
  MemInterface *mem_interface = this->_interface->is_MemInterface();
  if ( mem_interface == NULL )    return;
  const char   *disp  = mem_interface->_disp;
  if ( *disp != '$' )             return;

  // Lookup replacement variable in operand's component list
  const char   *rep_var = disp + 1;
  const Component *comp = this->_components.search(rep_var);
  assert( comp != NULL, "Replacement variable not found in components");
  // Lookup operand form for replacement variable's type
  const char      *type = comp->_type;
  Form            *form = (Form*)globals[type];
  assert( form != NULL, "Replacement variable's type not found");
  OperandForm     *op   = form->is_operand();
  assert( op, "Memory Interface 'disp' can only emit an operand form");
  // Check if this is a ConP, which may require relocation
  if ( op->is_base_constant(globals) == Form::idealP ) {
    // Find the constant's index:  _c0, _c1, _c2, ... , _cN
    uint idx  = op->constant_position( globals, rep_var);
    fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
    fprintf(fp,  "  return _c%d->reloc();", idx);
    fprintf(fp, " }\n");
  }
}

// Generate code for internal and external format methods
//
// internal access to reg# node->_idx
// access to subsumed constant _c0, _c1,
void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  Form::DataType dtype;
  if (_matrule && (_matrule->is_base_register(globals) ||
                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
    // !!!!! !!!!!
    fprintf(fp,"  { char reg_str[128];\n");
    fprintf(fp,"    ra->dump_register(node,reg_str);\n");
    fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
    fprintf(fp,"  }\n");
  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
    format_constant( fp, index, dtype );
  } else if (ideal_to_sReg_type(_ident) != Form::none) {
    // Special format for Stack Slot Register
    fprintf(fp,"  { char reg_str[128];\n");
    fprintf(fp,"    ra->dump_register(node,reg_str);\n");
    fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
    fprintf(fp,"  }\n");
  } else {
    fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
    fflush(fp);
    fprintf(stderr,"No format defined for %s\n", _ident);
    dump();
    assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  }
}

// Similar to "int_format" but for cases where data is external to operand
// external access to reg# node->in(idx)->_idx,
void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  Form::DataType dtype;
  if (_matrule && (_matrule->is_base_register(globals) ||
                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
    fprintf(fp,"  { char reg_str[128];\n");
    fprintf(fp,"    ra->dump_register(node->in(idx");
    if ( index != 0 ) fprintf(fp,              "+%d",index);
    fprintf(fp,                                      "),reg_str);\n");
    fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
    fprintf(fp,"  }\n");
  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
    format_constant( fp, index, dtype );
  } else if (ideal_to_sReg_type(_ident) != Form::none) {
    // Special format for Stack Slot Register
    fprintf(fp,"  { char reg_str[128];\n");
    fprintf(fp,"    ra->dump_register(node->in(idx");
    if ( index != 0 ) fprintf(fp,                  "+%d",index);
    fprintf(fp,                                       "),reg_str);\n");
    fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
    fprintf(fp,"  }\n");
  } else {
    fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
    assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  }
}

void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  switch(const_type) {
  case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
  case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  case Form::idealNKlass:
  case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  case Form::idealL: fprintf(fp,"  st->print(\"#%%lld\", _c%d);\n", const_index); break;
  case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  default:
    assert( false, "ShouldNotReachHere()");
  }
}

// Return the operand form corresponding to the given index, else NULL.
OperandForm *OperandForm::constant_operand(FormDict &globals,
                                           uint      index) {
  // !!!!!
  // Check behavior on complex operands
  uint n_consts = num_consts(globals);
  if( n_consts > 0 ) {
    uint i = 0;
    const char *type;
    Component  *comp;
    _components.reset();
    if ((comp = _components.iter()) == NULL) {
      assert(n_consts == 1, "Bad component list detected.\n");
      // Current operand is THE operand
      if ( index == 0 ) {
        return this;
      }
    } // end if NULL
    else {
      // Skip the first component, it can not be a DEF of a constant
      do {
        type = comp->base_type(globals);
        // Check that "type" is a 'ConI', 'ConP', ...
        if ( ideal_to_const_type(type) != Form::none ) {
          // When at correct component, get corresponding Operand
          if ( index == 0 ) {
            return globals[comp->_type]->is_operand();
          }
          // Decrement number of constants to go
          --index;
        }
      } while((comp = _components.iter()) != NULL);
    }
  }

  // Did not find a constant for this index.
  return NULL;
}

// If this operand has a single ideal type, return its type
Form::DataType OperandForm::simple_type(FormDict &globals) const {
  const char *type_name = ideal_type(globals);
  Form::DataType type   = type_name ? ideal_to_const_type( type_name )
                                    : Form::none;
  return type;
}

Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  if ( _matrule == NULL )    return Form::none;

  return _matrule->is_base_constant(globals);
}

// "true" if this operand is a simple type that is swallowed
bool  OperandForm::swallowed(FormDict &globals) const {
  Form::DataType type   = simple_type(globals);
  if( type != Form::none ) {
    return true;
  }

  return false;
}

// Output code to access the value of the index'th constant
void OperandForm::access_constant(FILE *fp, FormDict &globals,
                                  uint const_index) {
  OperandForm *oper = constant_operand(globals, const_index);
  assert( oper, "Index exceeds number of constants in operand");
  Form::DataType dtype = oper->is_base_constant(globals);

  switch(dtype) {
  case idealI: fprintf(fp,"_c%d",           const_index); break;
  case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  case idealL: fprintf(fp,"_c%d",           const_index); break;
  case idealF: fprintf(fp,"_c%d",           const_index); break;
  case idealD: fprintf(fp,"_c%d",           const_index); break;
  default:
    assert( false, "ShouldNotReachHere()");
  }
}


void OperandForm::dump() {
  output(stderr);
}

void OperandForm::output(FILE *fp) {
  fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  if (_matrule)    _matrule->dump();
  if (_interface)  _interface->dump();
  if (_attribs)    _attribs->dump();
  if (_predicate)  _predicate->dump();
  if (_constraint) _constraint->dump();
  if (_construct)  _construct->dump();
  if (_format)     _format->dump();
}

//------------------------------Constraint-------------------------------------
Constraint::Constraint(const char *func, const char *arg)
  : _func(func), _arg(arg) {
}
Constraint::~Constraint() { /* not owner of char* */
}

bool Constraint::stack_slots_only() const {
  return strcmp(_func, "ALLOC_IN_RC") == 0
      && strcmp(_arg,  "stack_slots") == 0;
}

void Constraint::dump() {
  output(stderr);
}

void Constraint::output(FILE *fp) {           // Write info to output files
  assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
}

//------------------------------Predicate--------------------------------------
Predicate::Predicate(char *pr)
  : _pred(pr) {
}
Predicate::~Predicate() {
}

void Predicate::dump() {
  output(stderr);
}

void Predicate::output(FILE *fp) {
  fprintf(fp,"Predicate");  // Write to output files
}
//------------------------------Interface--------------------------------------
Interface::Interface(const char *name) : _name(name) {
}
Interface::~Interface() {
}

Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  Interface *thsi = (Interface*)this;
  if ( thsi->is_RegInterface()   ) return Form::register_interface;
  if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  if ( thsi->is_CondInterface()  ) return Form::conditional_interface;

  return Form::no_interface;
}

RegInterface   *Interface::is_RegInterface() {
  if ( strcmp(_name,"REG_INTER") != 0 )
    return NULL;
  return (RegInterface*)this;
}
MemInterface   *Interface::is_MemInterface() {
  if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  return (MemInterface*)this;
}
ConstInterface *Interface::is_ConstInterface() {
  if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  return (ConstInterface*)this;
}
CondInterface  *Interface::is_CondInterface() {
  if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  return (CondInterface*)this;
}


void Interface::dump() {
  output(stderr);
}

// Write info to output files
void Interface::output(FILE *fp) {
  fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
}

//------------------------------RegInterface-----------------------------------
RegInterface::RegInterface() : Interface("REG_INTER") {
}
RegInterface::~RegInterface() {
}

void RegInterface::dump() {
  output(stderr);
}

// Write info to output files
void RegInterface::output(FILE *fp) {
  Interface::output(fp);
}

//------------------------------ConstInterface---------------------------------
ConstInterface::ConstInterface() : Interface("CONST_INTER") {
}
ConstInterface::~ConstInterface() {
}

void ConstInterface::dump() {
  output(stderr);
}

// Write info to output files
void ConstInterface::output(FILE *fp) {
  Interface::output(fp);
}

//------------------------------MemInterface-----------------------------------
MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
}
MemInterface::~MemInterface() {
  // not owner of any character arrays
}

void MemInterface::dump() {
  output(stderr);
}

// Write info to output files
void MemInterface::output(FILE *fp) {
  Interface::output(fp);
  if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  // fprintf(fp,"\n");
}

//------------------------------CondInterface----------------------------------
CondInterface::CondInterface(const char* equal,         const char* equal_format,
                             const char* not_equal,     const char* not_equal_format,
                             const char* less,          const char* less_format,
                             const char* greater_equal, const char* greater_equal_format,
                             const char* less_equal,    const char* less_equal_format,
                             const char* greater,       const char* greater_format,
                             const char* overflow,      const char* overflow_format,
                             const char* no_overflow,   const char* no_overflow_format)
  : Interface("COND_INTER"),
    _equal(equal),                 _equal_format(equal_format),
    _not_equal(not_equal),         _not_equal_format(not_equal_format),
    _less(less),                   _less_format(less_format),
    _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
    _less_equal(less_equal),       _less_equal_format(less_equal_format),
    _greater(greater),             _greater_format(greater_format),
    _overflow(overflow),           _overflow_format(overflow_format),
    _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
}
CondInterface::~CondInterface() {
  // not owner of any character arrays
}

void CondInterface::dump() {
  output(stderr);
}

// Write info to output files
void CondInterface::output(FILE *fp) {
  Interface::output(fp);
  if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
  if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
  if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
  if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
  if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
  if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
  if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
  if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
  // fprintf(fp,"\n");
}

//------------------------------ConstructRule----------------------------------
ConstructRule::ConstructRule(char *cnstr)
  : _construct(cnstr) {
}
ConstructRule::~ConstructRule() {
}

void ConstructRule::dump() {
  output(stderr);
}

void ConstructRule::output(FILE *fp) {
  fprintf(fp,"\nConstruct Rule\n");  // Write to output files
}


//==============================Shared Forms===================================
//------------------------------AttributeForm----------------------------------
int         AttributeForm::_insId   = 0;           // start counter at 0
int         AttributeForm::_opId    = 0;           // start counter at 0
const char* AttributeForm::_ins_cost = "ins_cost"; // required name
const char* AttributeForm::_op_cost  = "op_cost";  // required name

AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
    if (type==OP_ATTR) {
      id = ++_opId;
    }
    else if (type==INS_ATTR) {
      id = ++_insId;
    }
    else assert( false,"");
}
AttributeForm::~AttributeForm() {
}

// Dynamic type check
AttributeForm *AttributeForm::is_attribute() const {
  return (AttributeForm*)this;
}


// inlined  // int  AttributeForm::type() { return id;}

void AttributeForm::dump() {
  output(stderr);
}

void AttributeForm::output(FILE *fp) {
  if( _attrname && _attrdef ) {
    fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
            _attrname, _attrdef);
  }
  else {
    fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
            (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  }
}

//------------------------------Component--------------------------------------
Component::Component(const char *name, const char *type, int usedef)
  : _name(name), _type(type), _usedef(usedef) {
    _ftype = Form::COMP;
}
Component::~Component() {
}

// True if this component is equal to the parameter.
bool Component::is(int use_def_kill_enum) const {
  return (_usedef == use_def_kill_enum ? true : false);
}
// True if this component is used/def'd/kill'd as the parameter suggests.
bool Component::isa(int use_def_kill_enum) const {
  return (_usedef & use_def_kill_enum) == use_def_kill_enum;
}

// Extend this component with additional use/def/kill behavior
int Component::promote_use_def_info(int new_use_def) {
  _usedef |= new_use_def;

  return _usedef;
}

// Check the base type of this component, if it has one
const char *Component::base_type(FormDict &globals) {
  const Form *frm = globals[_type];
  if (frm == NULL) return NULL;
  OperandForm *op = frm->is_operand();
  if (op == NULL) return NULL;
  if (op->ideal_only()) return op->_ident;
  return (char *)op->ideal_type(globals);
}

void Component::dump() {
  output(stderr);
}

void Component::output(FILE *fp) {
  fprintf(fp,"Component:");  // Write to output files
  fprintf(fp, "  name = %s", _name);
  fprintf(fp, ", type = %s", _type);
  assert(_usedef != 0, "unknown effect");
  fprintf(fp, ", use/def = %s\n", getUsedefName());
}


//------------------------------ComponentList---------------------------------
ComponentList::ComponentList() : NameList(), _matchcnt(0) {
}
ComponentList::~ComponentList() {
  // // This list may not own its elements if copied via assignment
  // Component *component;
  // for (reset(); (component = iter()) != NULL;) {
  //   delete component;
  // }
}

void   ComponentList::insert(Component *component, bool mflag) {
  NameList::addName((char *)component);
  if(mflag) _matchcnt++;
}
void   ComponentList::insert(const char *name, const char *opType, int usedef,
                             bool mflag) {
  Component * component = new Component(name, opType, usedef);
  insert(component, mflag);
}
Component *ComponentList::current() { return (Component*)NameList::current(); }
Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
Component *ComponentList::match_iter() {
  if(_iter < _matchcnt) return (Component*)NameList::iter();
  return NULL;
}
Component *ComponentList::post_match_iter() {
  Component *comp = iter();
  // At end of list?
  if ( comp == NULL ) {
    return comp;
  }
  // In post-match components?
  if (_iter > match_count()-1) {
    return comp;
  }

  return post_match_iter();
}

void       ComponentList::reset()   { NameList::reset(); }
int        ComponentList::count()   { return NameList::count(); }

Component *ComponentList::operator[](int position) {
  // Shortcut complete iteration if there are not enough entries
  if (position >= count()) return NULL;

  int        index     = 0;
  Component *component = NULL;
  for (reset(); (component = iter()) != NULL;) {
    if (index == position) {
      return component;
    }
    ++index;
  }

  return NULL;
}

const Component *ComponentList::search(const char *name) {
  PreserveIter pi(this);
  reset();
  for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
    if( strcmp(comp->_name,name) == 0 ) return comp;
  }

  return NULL;
}

// Return number of USEs + number of DEFs
// When there are no components, or the first component is a USE,
// then we add '1' to hold a space for the 'result' operand.
int ComponentList::num_operands() {
  PreserveIter pi(this);
  uint       count = 1;           // result operand
  uint       position = 0;

  Component *component  = NULL;
  for( reset(); (component = iter()) != NULL; ++position ) {
    if( component->isa(Component::USE) ||
        ( position == 0 && (! component->isa(Component::DEF))) ) {
      ++count;
    }
  }

  return count;
}

// Return zero-based position of operand 'name' in list;  -1 if not in list.
// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
  PreserveIter pi(this);
  int position = 0;
  int num_opnds = num_operands();
  Component *component;
  Component* preceding_non_use = NULL;
  Component* first_def = NULL;
  for (reset(); (component = iter()) != NULL; ++position) {
    // When the first component is not a DEF,
    // leave space for the result operand!
    if ( position==0 && (! component->isa(Component::DEF)) ) {
      ++position;
      ++num_opnds;
    }
    if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
      // When the first entry in the component list is a DEF and a USE
      // Treat them as being separate, a DEF first, then a USE
      if( position==0
          && usedef==Component::USE && component->isa(Component::DEF) ) {
        assert(position+1 < num_opnds, "advertised index in bounds");
        return position+1;
      } else {
        if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
          fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
                  preceding_non_use->_name, preceding_non_use->getUsedefName(),
                  name, component->getUsedefName());
          if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
          if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
          fprintf(stderr,  "\n");
        }
        if( position >= num_opnds ) {
          fprintf(stderr, "the name '%s' is too late in its name list", name);
          if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
          if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
          fprintf(stderr,  "\n");
        }
        assert(position < num_opnds, "advertised index in bounds");
        return position;
      }
    }
    if( component->isa(Component::DEF)
        && component->isa(Component::USE) ) {
      ++position;
      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
    }
    if( component->isa(Component::DEF) && !first_def ) {
      first_def = component;
    }
    if( !component->isa(Component::USE) && component != first_def ) {
      preceding_non_use = component;
    } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
      preceding_non_use = NULL;
    }
  }
  return Not_in_list;
}

// Find position for this name, regardless of use/def information
int ComponentList::operand_position(const char *name) {
  PreserveIter pi(this);
  int position = 0;
  Component *component;
  for (reset(); (component = iter()) != NULL; ++position) {
    // When the first component is not a DEF,
    // leave space for the result operand!
    if ( position==0 && (! component->isa(Component::DEF)) ) {
      ++position;
    }
    if (strcmp(name, component->_name)==0) {
      return position;
    }
    if( component->isa(Component::DEF)
        && component->isa(Component::USE) ) {
      ++position;
      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
    }
  }
  return Not_in_list;
}

int ComponentList::operand_position_format(const char *name, Form *fm) {
  PreserveIter pi(this);
  int  first_position = operand_position(name);
  int  use_position   = operand_position(name, Component::USE, fm);

  return ((first_position < use_position) ? use_position : first_position);
}

int ComponentList::label_position() {
  PreserveIter pi(this);
  int position = 0;
  reset();
  for( Component *comp; (comp = iter()) != NULL; ++position) {
    // When the first component is not a DEF,
    // leave space for the result operand!
    if ( position==0 && (! comp->isa(Component::DEF)) ) {
      ++position;
    }
    if (strcmp(comp->_type, "label")==0) {
      return position;
    }
    if( comp->isa(Component::DEF)
        && comp->isa(Component::USE) ) {
      ++position;
      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
    }
  }

  return -1;
}

int ComponentList::method_position() {
  PreserveIter pi(this);
  int position = 0;
  reset();
  for( Component *comp; (comp = iter()) != NULL; ++position) {
    // When the first component is not a DEF,
    // leave space for the result operand!
    if ( position==0 && (! comp->isa(Component::DEF)) ) {
      ++position;
    }
    if (strcmp(comp->_type, "method")==0) {
      return position;
    }
    if( comp->isa(Component::DEF)
        && comp->isa(Component::USE) ) {
      ++position;
      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
    }
  }

  return -1;
}

void ComponentList::dump() { output(stderr); }

void ComponentList::output(FILE *fp) {
  PreserveIter pi(this);
  fprintf(fp, "\n");
  Component *component;
  for (reset(); (component = iter()) != NULL;) {
    component->output(fp);
  }
  fprintf(fp, "\n");
}

//------------------------------MatchNode--------------------------------------
MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
                     const char *opType, MatchNode *lChild, MatchNode *rChild)
  : _AD(ad), _result(result), _name(mexpr), _opType(opType),
    _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
    _commutative_id(0) {
  _numleaves = (lChild ? lChild->_numleaves : 0)
               + (rChild ? rChild->_numleaves : 0);
}

MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  : _AD(ad), _result(mnode._result), _name(mnode._name),
    _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
    _internalop(0), _numleaves(mnode._numleaves),
    _commutative_id(mnode._commutative_id) {
}

MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  : _AD(ad), _result(mnode._result), _name(mnode._name),
    _opType(mnode._opType),
    _internalop(0), _numleaves(mnode._numleaves),
    _commutative_id(mnode._commutative_id) {
  if (mnode._lChild) {
    _lChild = new MatchNode(ad, *mnode._lChild, clone);
  } else {
    _lChild = NULL;
  }
  if (mnode._rChild) {
    _rChild = new MatchNode(ad, *mnode._rChild, clone);
  } else {
    _rChild = NULL;
  }
}

MatchNode::~MatchNode() {
  // // This node may not own its children if copied via assignment
  // if( _lChild ) delete _lChild;
  // if( _rChild ) delete _rChild;
}

bool  MatchNode::find_type(const char *type, int &position) const {
  if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;

  if (strcmp(type,_opType)==0)  {
    return true;
  } else {
    ++position;
  }
  return false;
}

// Recursive call collecting info on top-level operands, not transitive.
// Implementation does not modify state of internal structures.
void MatchNode::append_components(FormDict& locals, ComponentList& components,
                                  bool def_flag) const {
  int usedef = def_flag ? Component::DEF : Component::USE;
  FormDict &globals = _AD.globalNames();

  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  // Base case
  if (_lChild==NULL && _rChild==NULL) {
    // If _opType is not an operation, do not build a component for it #####
    const Form *f = globals[_opType];
    if( f != NULL ) {
      // Add non-ideals that are operands, operand-classes,
      if( ! f->ideal_only()
          && (f->is_opclass() || f->is_operand()) ) {
        components.insert(_name, _opType, usedef, true);
      }
    }
    return;
  }
  // Promote results of "Set" to DEF
  bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  tmpdef_flag = false;   // only applies to component immediately following 'Set'
  if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
}

// Find the n'th base-operand in the match node,
// recursively investigates match rules of user-defined operands.
//
// Implementation does not modify state of internal structures since they
// can be shared.
bool MatchNode::base_operand(uint &position, FormDict &globals,
                             const char * &result, const char * &name,
                             const char * &opType) const {
  assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  // Base case
  if (_lChild==NULL && _rChild==NULL) {
    // Check for special case: "Universe", "label"
    if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
      if (position == 0) {
        result = _result;
        name   = _name;
        opType = _opType;
        return 1;
      } else {
        -- position;
        return 0;
      }
    }

    const Form *form = globals[_opType];
    MatchNode *matchNode = NULL;
    // Check for user-defined type
    if (form) {
      // User operand or instruction?
      OperandForm  *opForm = form->is_operand();
      InstructForm *inForm = form->is_instruction();
      if ( opForm ) {
        matchNode = (MatchNode*)opForm->_matrule;
      } else if ( inForm ) {
        matchNode = (MatchNode*)inForm->_matrule;
      }
    }
    // if this is user-defined, recurse on match rule
    // User-defined operand and instruction forms have a match-rule.
    if (matchNode) {
      return (matchNode->base_operand(position,globals,result,name,opType));
    } else {
      // Either not a form, or a system-defined form (no match rule).
      if (position==0) {
        result = _result;
        name   = _name;
        opType = _opType;
        return 1;
      } else {
        --position;
        return 0;
      }
    }

  } else {
    // Examine the left child and right child as well
    if (_lChild) {
      if (_lChild->base_operand(position, globals, result, name, opType))
        return 1;
    }

    if (_rChild) {
      if (_rChild->base_operand(position, globals, result, name, opType))
        return 1;
    }
  }

  return 0;
}

// Recursive call on all operands' match rules in my match rule.
uint  MatchNode::num_consts(FormDict &globals) const {
  uint        index      = 0;
  uint        num_consts = 0;
  const char *result;
  const char *name;
  const char *opType;

  for (uint position = index;
       base_operand(position,globals,result,name,opType); position = index) {
    ++index;
    if( ideal_to_const_type(opType) )        num_consts++;
  }

  return num_consts;
}

// Recursive call on all operands' match rules in my match rule.
// Constants in match rule subtree with specified type
uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  uint        index      = 0;
  uint        num_consts = 0;
  const char *result;
  const char *name;
  const char *opType;

  for (uint position = index;
       base_operand(position,globals,result,name,opType); position = index) {
    ++index;
    if( ideal_to_const_type(opType) == type ) num_consts++;
  }

  return num_consts;
}

// Recursive call on all operands' match rules in my match rule.
uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  return  num_consts( globals, Form::idealP );
}

bool  MatchNode::sets_result() const {
  return   ( (strcmp(_name,"Set") == 0) ? true : false );
}

const char *MatchNode::reduce_right(FormDict &globals) const {
  // If there is no right reduction, return NULL.
  const char      *rightStr    = NULL;

  // If we are a "Set", start from the right child.
  const MatchNode *const mnode = sets_result() ?
    (const MatchNode *)this->_rChild :
    (const MatchNode *)this;

  // If our right child exists, it is the right reduction
  if ( mnode->_rChild ) {
    rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
      : mnode->_rChild->_opType;
  }
  // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  return rightStr;
}

const char *MatchNode::reduce_left(FormDict &globals) const {
  // If there is no left reduction, return NULL.
  const char  *leftStr  = NULL;

  // If we are a "Set", start from the right child.
  const MatchNode *const mnode = sets_result() ?
    (const MatchNode *)this->_rChild :
    (const MatchNode *)this;

  // If our left child exists, it is the left reduction
  if ( mnode->_lChild ) {
    leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
      : mnode->_lChild->_opType;
  } else {
    // May be simple chain rule: (Set dst operand_form_source)
    if ( sets_result() ) {
      OperandForm *oper = globals[mnode->_opType]->is_operand();
      if( oper ) {
        leftStr = mnode->_opType;
      }
    }
  }
  return leftStr;
}

//------------------------------count_instr_names------------------------------
// Count occurrences of operands names in the leaves of the instruction
// match rule.
void MatchNode::count_instr_names( Dict &names ) {
  if( !this ) return;
  if( _lChild ) _lChild->count_instr_names(names);
  if( _rChild ) _rChild->count_instr_names(names);
  if( !_lChild && !_rChild ) {
    uintptr_t cnt = (uintptr_t)names[_name];
    cnt++;                      // One more name found
    names.Insert(_name,(void*)cnt);
  }
}

//------------------------------build_instr_pred-------------------------------
// Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
// can skip some leading instances of 'name'.
int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  if( _lChild ) {
    if( !cnt ) strcpy( buf, "_kids[0]->" );
    cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
    if( cnt < 0 ) return cnt;   // Found it, all done
  }
  if( _rChild ) {
    if( !cnt ) strcpy( buf, "_kids[1]->" );
    cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
    if( cnt < 0 ) return cnt;   // Found it, all done
  }
  if( !_lChild && !_rChild ) {  // Found a leaf
    // Wrong name?  Give up...
    if( strcmp(name,_name) ) return cnt;
    if( !cnt ) strcpy(buf,"_leaf");
    return cnt-1;
  }
  return cnt;
}


//------------------------------build_internalop-------------------------------
// Build string representation of subtree
void MatchNode::build_internalop( ) {
  char *iop, *subtree;
  const char *lstr, *rstr;
  // Build string representation of subtree
  // Operation lchildType rchildType
  int len = (int)strlen(_opType) + 4;
  lstr = (_lChild) ? ((_lChild->_internalop) ?
                       _lChild->_internalop : _lChild->_opType) : "";
  rstr = (_rChild) ? ((_rChild->_internalop) ?
                       _rChild->_internalop : _rChild->_opType) : "";
  len += (int)strlen(lstr) + (int)strlen(rstr);
  subtree = (char *)malloc(len);
  sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  // Hash the subtree string in _internalOps; if a name exists, use it
  iop = (char *)_AD._internalOps[subtree];
  // Else create a unique name, and add it to the hash table
  if (iop == NULL) {
    iop = subtree;
    _AD._internalOps.Insert(subtree, iop);
    _AD._internalOpNames.addName(iop);
    _AD._internalMatch.Insert(iop, this);
  }
  // Add the internal operand name to the MatchNode
  _internalop = iop;
  _result = iop;
}


void MatchNode::dump() {
  output(stderr);
}

void MatchNode::output(FILE *fp) {
  if (_lChild==0 && _rChild==0) {
    fprintf(fp," %s",_name);    // operand
  }
  else {
    fprintf(fp," (%s ",_name);  // " (opcodeName "
    if(_lChild) _lChild->output(fp); //               left operand
    if(_rChild) _rChild->output(fp); //                    right operand
    fprintf(fp,")");                 //                                 ")"
  }
}

int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  static const char *needs_ideal_memory_list[] = {
    "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
    "StoreB","StoreC","Store" ,"StoreFP",
    "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
    "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
    "StoreVector", "LoadVector",
    "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
    "LoadPLocked",
    "StorePConditional", "StoreIConditional", "StoreLConditional",
    "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
    "StoreCM",
    "ClearArray",
    "GetAndAddI", "GetAndSetI", "GetAndSetP",
    "GetAndAddL", "GetAndSetL", "GetAndSetN",
  };
  int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  if( strcmp(_opType,"PrefetchRead")==0 ||
      strcmp(_opType,"PrefetchWrite")==0 ||
      strcmp(_opType,"PrefetchAllocation")==0 )
    return 1;
  if( _lChild ) {
    const char *opType = _lChild->_opType;
    for( int i=0; i<cnt; i++ )
      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
        return 1;
    if( _lChild->needs_ideal_memory_edge(globals) )
      return 1;
  }
  if( _rChild ) {
    const char *opType = _rChild->_opType;
    for( int i=0; i<cnt; i++ )
      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
        return 1;
    if( _rChild->needs_ideal_memory_edge(globals) )
      return 1;
  }

  return 0;
}

// TRUE if defines a derived oop, and so needs a base oop edge present
// post-matching.
int MatchNode::needs_base_oop_edge() const {
  if( !strcmp(_opType,"AddP") ) return 1;
  if( strcmp(_opType,"Set") ) return 0;
  return !strcmp(_rChild->_opType,"AddP");
}

int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  if( is_simple_chain_rule(globals) ) {
    const char *src = _matrule->_rChild->_opType;
    OperandForm *src_op = globals[src]->is_operand();
    assert( src_op, "Not operand class of chain rule" );
    return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  }                             // Else check instruction

  return _matrule ? _matrule->needs_base_oop_edge() : 0;
}


//-------------------------cisc spilling methods-------------------------------
// helper routines and methods for detecting cisc-spilling instructions
//-------------------------cisc_spill_merge------------------------------------
int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  int cisc_spillable  = Maybe_cisc_spillable;

  // Combine results of left and right checks
  if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
    // neither side is spillable, nor prevents cisc spilling
    cisc_spillable = Maybe_cisc_spillable;
  }
  else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
    // right side is spillable
    cisc_spillable = right_spillable;
  }
  else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
    // left side is spillable
    cisc_spillable = left_spillable;
  }
  else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
    // left or right prevents cisc spilling this instruction
    cisc_spillable = Not_cisc_spillable;
  }
  else {
    // Only allow one to spill
    cisc_spillable = Not_cisc_spillable;
  }

  return cisc_spillable;
}

//-------------------------root_ops_match--------------------------------------
bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  // Base Case: check that the current operands/operations match
  assert( op1, "Must have op's name");
  assert( op2, "Must have op's name");
  const Form *form1 = globals[op1];
  const Form *form2 = globals[op2];

  return (form1 == form2);
}

//-------------------------cisc_spill_match_node-------------------------------
// Recursively check two MatchRules for legal conversion via cisc-spilling
int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* ®_type) {
  int cisc_spillable  = Maybe_cisc_spillable;
  int left_spillable  = Maybe_cisc_spillable;
  int right_spillable = Maybe_cisc_spillable;

  // Check that each has same number of operands at this level
  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
    return Not_cisc_spillable;

  // Base Case: check that the current operands/operations match
  // or are CISC spillable
  assert( _opType, "Must have _opType");
  assert( mRule2->_opType, "Must have _opType");
  const Form *form  = globals[_opType];
  const Form *form2 = globals[mRule2->_opType];
  if( form == form2 ) {
    cisc_spillable = Maybe_cisc_spillable;
  } else {
    const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
    const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
    const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
    DataType data_type = Form::none;
    if (form->is_operand()) {
      // Make sure the loadX matches the type of the reg
      data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
    }
    // Detect reg vs (loadX memory)
    if( form->is_cisc_reg(globals)
        && form2_inst
        && data_type != Form::none
        && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
        && (name_left != NULL)       // NOT (load)
        && (name_right == NULL) ) {  // NOT (load memory foo)
      const Form *form2_left = name_left ? globals[name_left] : NULL;
      if( form2_left && form2_left->is_cisc_mem(globals) ) {
        cisc_spillable = Is_cisc_spillable;
        operand        = _name;
        reg_type       = _result;
        return Is_cisc_spillable;
      } else {
        cisc_spillable = Not_cisc_spillable;
      }
    }
    // Detect reg vs memory
    else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
      cisc_spillable = Is_cisc_spillable;
      operand        = _name;
      reg_type       = _result;
      return Is_cisc_spillable;
    } else {
      cisc_spillable = Not_cisc_spillable;
    }
  }

  // If cisc is still possible, check rest of tree
  if( cisc_spillable == Maybe_cisc_spillable ) {
    // Check that each has same number of operands at this level
    if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;

    // Check left operands
    if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
      left_spillable = Maybe_cisc_spillable;
    } else {
      left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
    }

    // Check right operands
    if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
      right_spillable =  Maybe_cisc_spillable;
    } else {
      right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
    }

    // Combine results of left and right checks
    cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  }

  return cisc_spillable;
}

//---------------------------cisc_spill_match_rule------------------------------
// Recursively check two MatchRules for legal conversion via cisc-spilling
// This method handles the root of Match tree,
// general recursive checks done in MatchNode
int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
                                           MatchRule* mRule2, const char* &operand,
                                           const char* ®_type) {
  int cisc_spillable  = Maybe_cisc_spillable;
  int left_spillable  = Maybe_cisc_spillable;
  int right_spillable = Maybe_cisc_spillable;

  // Check that each sets a result
  if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  // Check that each has same number of operands at this level
  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;

  // Check left operands: at root, must be target of 'Set'
  if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
    left_spillable = Not_cisc_spillable;
  } else {
    // Do not support cisc-spilling instruction's target location
    if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
      left_spillable = Maybe_cisc_spillable;
    } else {
      left_spillable = Not_cisc_spillable;
    }
  }

  // Check right operands: recursive walk to identify reg->mem operand
  if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
    right_spillable =  Maybe_cisc_spillable;
  } else {
    right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  }

  // Combine results of left and right checks
  cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);

  return cisc_spillable;
}

//----------------------------- equivalent ------------------------------------
// Recursively check to see if two match rules are equivalent.
// This rule handles the root.
bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  // Check that each sets a result
  if (sets_result() != mRule2->sets_result()) {
    return false;
  }

  // Check that the current operands/operations match
  assert( _opType, "Must have _opType");
  assert( mRule2->_opType, "Must have _opType");
  const Form *form  = globals[_opType];
  const Form *form2 = globals[mRule2->_opType];
  if( form != form2 ) {
    return false;
  }

  if (_lChild ) {
    if( !_lChild->equivalent(globals, mRule2->_lChild) )
      return false;
  } else if (mRule2->_lChild) {
    return false; // I have NULL left child, mRule2 has non-NULL left child.
  }

  if (_rChild ) {
    if( !_rChild->equivalent(globals, mRule2->_rChild) )
      return false;
  } else if (mRule2->_rChild) {
    return false; // I have NULL right child, mRule2 has non-NULL right child.
  }

  // We've made it through the gauntlet.
  return true;
}

//----------------------------- equivalent ------------------------------------
// Recursively check to see if two match rules are equivalent.
// This rule handles the operands.
bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  if( !mNode2 )
    return false;

  // Check that the current operands/operations match
  assert( _opType, "Must have _opType");
  assert( mNode2->_opType, "Must have _opType");
  const Form *form  = globals[_opType];
  const Form *form2 = globals[mNode2->_opType];
  if( form != form2 ) {
    return false;
  }

  // Check that their children also match
  if (_lChild ) {
    if( !_lChild->equivalent(globals, mNode2->_lChild) )
      return false;
  } else if (mNode2->_lChild) {
    return false; // I have NULL left child, mNode2 has non-NULL left child.
  }

  if (_rChild ) {
    if( !_rChild->equivalent(globals, mNode2->_rChild) )
      return false;
  } else if (mNode2->_rChild) {
    return false; // I have NULL right child, mNode2 has non-NULL right child.
  }

  // We've made it through the gauntlet.
  return true;
}

//-------------------------- has_commutative_op -------------------------------
// Recursively check for commutative operations with subtree operands
// which could be swapped.
void MatchNode::count_commutative_op(int& count) {
  static const char *commut_op_list[] = {
    "AddI","AddL","AddF","AddD",
    "AndI","AndL",
    "MaxI","MinI",
    "MulI","MulL","MulF","MulD",
    "OrI" ,"OrL" ,
    "XorI","XorL"
  };
  int cnt = sizeof(commut_op_list)/sizeof(char*);

  if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
    // Don't swap if right operand is an immediate constant.
    bool is_const = false;
    if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
      FormDict &globals = _AD.globalNames();
      const Form *form = globals[_rChild->_opType];
      if ( form ) {
        OperandForm  *oper = form->is_operand();
        if( oper && oper->interface_type(globals) == Form::constant_interface )
          is_const = true;
      }
    }
    if( !is_const ) {
      for( int i=0; i<cnt; i++ ) {
        if( strcmp(_opType, commut_op_list[i]) == 0 ) {
          count++;
          _commutative_id = count; // id should be > 0
          break;
        }
      }
    }
  }
  if( _lChild )
    _lChild->count_commutative_op(count);
  if( _rChild )
    _rChild->count_commutative_op(count);
}

//-------------------------- swap_commutative_op ------------------------------
// Recursively swap specified commutative operation with subtree operands.
void MatchNode::swap_commutative_op(bool atroot, int id) {
  if( _commutative_id == id ) { // id should be > 0
    assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
            "not swappable operation");
    MatchNode* tmp = _lChild;
    _lChild = _rChild;
    _rChild = tmp;
    // Don't exit here since we need to build internalop.
  }

  bool is_set = ( strcmp(_opType, "Set") == 0 );
  if( _lChild )
    _lChild->swap_commutative_op(is_set, id);
  if( _rChild )
    _rChild->swap_commutative_op(is_set, id);

  // If not the root, reduce this subtree to an internal operand
  if( !atroot && (_lChild || _rChild) ) {
    build_internalop();
  }
}

//-------------------------- swap_commutative_op ------------------------------
// Recursively swap specified commutative operation with subtree operands.
void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  assert(match_rules_cnt < 100," too many match rule clones");
  // Clone
  MatchRule* clone = new MatchRule(_AD, this);
  // Swap operands of commutative operation
  ((MatchNode*)clone)->swap_commutative_op(true, count);
  char* buf = (char*) malloc(strlen(instr_ident) + 4);
  sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  clone->_result = buf;

  clone->_next = this->_next;
  this-> _next = clone;
  if( (--count) > 0 ) {
    this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
    clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  }
}

//------------------------------MatchRule--------------------------------------
MatchRule::MatchRule(ArchDesc &ad)
  : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
    _next = NULL;
}

MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
    _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
    _next = NULL;
}

MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
                     int numleaves)
  : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
    _numchilds(0) {
      _next = NULL;
      mroot->_lChild = NULL;
      mroot->_rChild = NULL;
      delete mroot;
      _numleaves = numleaves;
      _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
}
MatchRule::~MatchRule() {
}

// Recursive call collecting info on top-level operands, not transitive.
// Implementation does not modify state of internal structures.
void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");

  MatchNode::append_components(locals, components,
                               false /* not necessarily a def */);
}

// Recursive call on all operands' match rules in my match rule.
// Implementation does not modify state of internal structures  since they
// can be shared.
// The MatchNode that is called first treats its
bool MatchRule::base_operand(uint &position0, FormDict &globals,
                             const char *&result, const char * &name,
                             const char * &opType)const{
  uint position = position0;

  return (MatchNode::base_operand( position, globals, result, name, opType));
}


bool MatchRule::is_base_register(FormDict &globals) const {
  uint   position = 1;
  const char  *result   = NULL;
  const char  *name     = NULL;
  const char  *opType   = NULL;
  if (!base_operand(position, globals, result, name, opType)) {
    position = 0;
    if( base_operand(position, globals, result, name, opType) &&
        (strcmp(opType,"RegI")==0 ||
         strcmp(opType,"RegP")==0 ||
         strcmp(opType,"RegN")==0 ||
         strcmp(opType,"RegL")==0 ||
         strcmp(opType,"RegF")==0 ||
         strcmp(opType,"RegD")==0 ||
         strcmp(opType,"VecS")==0 ||
         strcmp(opType,"VecD")==0 ||
         strcmp(opType,"VecX")==0 ||
         strcmp(opType,"VecY")==0 ||
         strcmp(opType,"Reg" )==0) ) {
      return 1;
    }
  }
  return 0;
}

Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  uint         position = 1;
  const char  *result   = NULL;
  const char  *name     = NULL;
  const char  *opType   = NULL;
  if (!base_operand(position, globals, result, name, opType)) {
    position = 0;
    if (base_operand(position, globals, result, name, opType)) {
      return ideal_to_const_type(opType);
    }
  }
  return Form::none;
}

bool MatchRule::is_chain_rule(FormDict &globals) const {

  // Check for chain rule, and do not generate a match list for it
  if ((_lChild == NULL) && (_rChild == NULL) ) {
    const Form *form = globals[_opType];
    // If this is ideal, then it is a base match, not a chain rule.
    if ( form && form->is_operand() && (!form->ideal_only())) {
      return true;
    }
  }
  // Check for "Set" form of chain rule, and do not generate a match list
  if (_rChild) {
    const char *rch = _rChild->_opType;
    const Form *form = globals[rch];
    if ((!strcmp(_opType,"Set") &&
         ((form) && form->is_operand()))) {
      return true;
    }
  }
  return false;
}

int MatchRule::is_ideal_copy() const {
  if( _rChild ) {
    const char  *opType = _rChild->_opType;
#if 1
    if( strcmp(opType,"CastIP")==0 )
      return 1;
#else
    if( strcmp(opType,"CastII")==0 )
      return 1;
    // Do not treat *CastPP this way, because it
    // may transfer a raw pointer to an oop.
    // If the register allocator were to coalesce this
    // into a single LRG, the GC maps would be incorrect.
    //if( strcmp(opType,"CastPP")==0 )
    //  return 1;
    //if( strcmp(opType,"CheckCastPP")==0 )
    //  return 1;
    //
    // Do not treat CastX2P or CastP2X this way, because
    // raw pointers and int types are treated differently
    // when saving local & stack info for safepoints in
    // Output().
    //if( strcmp(opType,"CastX2P")==0 )
    //  return 1;
    //if( strcmp(opType,"CastP2X")==0 )
    //  return 1;
#endif
  }
  if( is_chain_rule(_AD.globalNames()) &&
      _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
    return 1;
  return 0;
}


int MatchRule::is_expensive() const {
  if( _rChild ) {
    const char  *opType = _rChild->_opType;
    if( strcmp(opType,"AtanD")==0 ||
        strcmp(opType,"CosD")==0 ||
        strcmp(opType,"DivD")==0 ||
        strcmp(opType,"DivF")==0 ||
        strcmp(opType,"DivI")==0 ||
        strcmp(opType,"ExpD")==0 ||
        strcmp(opType,"LogD")==0 ||
        strcmp(opType,"Log10D")==0 ||
        strcmp(opType,"ModD")==0 ||
        strcmp(opType,"ModF")==0 ||
        strcmp(opType,"ModI")==0 ||
        strcmp(opType,"PowD")==0 ||
        strcmp(opType,"SinD")==0 ||
        strcmp(opType,"SqrtD")==0 ||
        strcmp(opType,"TanD")==0 ||
        strcmp(opType,"ConvD2F")==0 ||
        strcmp(opType,"ConvD2I")==0 ||
        strcmp(opType,"ConvD2L")==0 ||
        strcmp(opType,"ConvF2D")==0 ||
        strcmp(opType,"ConvF2I")==0 ||
        strcmp(opType,"ConvF2L")==0 ||
        strcmp(opType,"ConvI2D")==0 ||
        strcmp(opType,"ConvI2F")==0 ||
        strcmp(opType,"ConvI2L")==0 ||
        strcmp(opType,"ConvL2D")==0 ||
        strcmp(opType,"ConvL2F")==0 ||
        strcmp(opType,"ConvL2I")==0 ||
        strcmp(opType,"DecodeN")==0 ||
        strcmp(opType,"EncodeP")==0 ||
        strcmp(opType,"EncodePKlass")==0 ||
        strcmp(opType,"DecodeNKlass")==0 ||
        strcmp(opType,"RoundDouble")==0 ||
        strcmp(opType,"RoundFloat")==0 ||
        strcmp(opType,"ReverseBytesI")==0 ||
        strcmp(opType,"ReverseBytesL")==0 ||
        strcmp(opType,"ReverseBytesUS")==0 ||
        strcmp(opType,"ReverseBytesS")==0 ||
        strcmp(opType,"ReplicateB")==0 ||
        strcmp(opType,"ReplicateS")==0 ||
        strcmp(opType,"ReplicateI")==0 ||
        strcmp(opType,"ReplicateL")==0 ||
        strcmp(opType,"ReplicateF")==0 ||
        strcmp(opType,"ReplicateD")==0 ||
        0 /* 0 to line up columns nicely */ )
      return 1;
  }
  return 0;
}

bool MatchRule::is_ideal_if() const {
  if( !_opType ) return false;
  return
    !strcmp(_opType,"If"            ) ||
    !strcmp(_opType,"CountedLoopEnd");
}

bool MatchRule::is_ideal_fastlock() const {
  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    return (strcmp(_rChild->_opType,"FastLock") == 0);
  }
  return false;
}

bool MatchRule::is_ideal_membar() const {
  if( !_opType ) return false;
  return
    !strcmp(_opType,"MemBarAcquire"  ) ||
    !strcmp(_opType,"MemBarRelease"  ) ||
    !strcmp(_opType,"MemBarAcquireLock") ||
    !strcmp(_opType,"MemBarReleaseLock") ||
    !strcmp(_opType,"MemBarVolatile" ) ||
    !strcmp(_opType,"MemBarCPUOrder" ) ||
    !strcmp(_opType,"MemBarStoreStore" );
}

bool MatchRule::is_ideal_loadPC() const {
  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    return (strcmp(_rChild->_opType,"LoadPC") == 0);
  }
  return false;
}

bool MatchRule::is_ideal_box() const {
  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    return (strcmp(_rChild->_opType,"Box") == 0);
  }
  return false;
}

bool MatchRule::is_ideal_goto() const {
  bool   ideal_goto = false;

  if( _opType && (strcmp(_opType,"Goto") == 0) ) {
    ideal_goto = true;
  }
  return ideal_goto;
}

bool MatchRule::is_ideal_jump() const {
  if( _opType ) {
    if( !strcmp(_opType,"Jump") )
      return true;
  }
  return false;
}

bool MatchRule::is_ideal_bool() const {
  if( _opType ) {
    if( !strcmp(_opType,"Bool") )
      return true;
  }
  return false;
}


Form::DataType MatchRule::is_ideal_load() const {
  Form::DataType ideal_load = Form::none;

  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    const char *opType = _rChild->_opType;
    ideal_load = is_load_from_memory(opType);
  }

  return ideal_load;
}

bool MatchRule::is_vector() const {
  static const char *vector_list[] = {
    "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
    "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
    "MulVS","MulVI","MulVF","MulVD",
    "DivVF","DivVD",
    "AndV" ,"XorV" ,"OrV",
    "LShiftCntV","RShiftCntV",
    "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
    "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
    "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
    "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
    "LoadVector","StoreVector",
    // Next are not supported currently.
    "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
    "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
  };
  int cnt = sizeof(vector_list)/sizeof(char*);
  if (_rChild) {
    const char  *opType = _rChild->_opType;
    for (int i=0; i<cnt; i++)
      if (strcmp(opType,vector_list[i]) == 0)
        return true;
  }
  return false;
}


bool MatchRule::skip_antidep_check() const {
  // Some loads operate on what is effectively immutable memory so we
  // should skip the anti dep computations.  For some of these nodes
  // the rewritable field keeps the anti dep logic from triggering but
  // for certain kinds of LoadKlass it does not since they are
  // actually reading memory which could be rewritten by the runtime,
  // though never by generated code.  This disables it uniformly for
  // the nodes that behave like this: LoadKlass, LoadNKlass and
  // LoadRange.
  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    const char *opType = _rChild->_opType;
    if (strcmp("LoadKlass", opType) == 0 ||
        strcmp("LoadNKlass", opType) == 0 ||
        strcmp("LoadRange", opType) == 0) {
      return true;
    }
  }

  return false;
}


Form::DataType MatchRule::is_ideal_store() const {
  Form::DataType ideal_store = Form::none;

  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
    const char *opType = _rChild->_opType;
    ideal_store = is_store_to_memory(opType);
  }

  return ideal_store;
}


void MatchRule::dump() {
  output(stderr);
}

// Write just one line.
void MatchRule::output_short(FILE *fp) {
  fprintf(fp,"MatchRule: ( %s",_name);
  if (_lChild) _lChild->output(fp);
  if (_rChild) _rChild->output(fp);
  fprintf(fp," )");
}

void MatchRule::output(FILE *fp) {
  output_short(fp);
  fprintf(fp,"\n   nesting depth = %d\n", _depth);
  if (_result) fprintf(fp,"   Result Type = %s", _result);
  fprintf(fp,"\n");
}

//------------------------------Attribute--------------------------------------
Attribute::Attribute(char *id, char* val, int type)
  : _ident(id), _val(val), _atype(type) {
}
Attribute::~Attribute() {
}

int Attribute::int_val(ArchDesc &ad) {
  // Make sure it is an integer constant:
  int result = 0;
  if (!_val || !ADLParser::is_int_token(_val, result)) {
    ad.syntax_err(0, "Attribute %s must have an integer value: %s",
                  _ident, _val ? _val : "");
  }
  return result;
}

void Attribute::dump() {
  output(stderr);
} // Debug printer

// Write to output files
void Attribute::output(FILE *fp) {
  fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
}

//------------------------------FormatRule----------------------------------
FormatRule::FormatRule(char *temp)
  : _temp(temp) {
}
FormatRule::~FormatRule() {
}

void FormatRule::dump() {
  output(stderr);
}

// Write to output files
void FormatRule::output(FILE *fp) {
  fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  fprintf(fp,"\n");
}

Other Java examples (source code examples)

Here is a short list of links related to this Java formssel.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.