alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (formssel.hpp)

This example Java source code file (formssel.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

attribute, constraint, debug, form, form::datatype, formdict, instructform, interface, matchnode, matchrule, namelist, operandform, predicate, write

The formssel.hpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_ADLC_FORMSSEL_HPP
#define SHARE_VM_ADLC_FORMSSEL_HPP

// FORMSSEL.HPP - ADL Parser Instruction Selection Forms Classes

// Class List
class Form;
class InstructForm;
class MachNodeForm;
class OperandForm;
class OpClassForm;
class AttributeForm;
class RegisterForm;
class PipelineForm;
class SourceForm;
class EncodeForm;
class Component;
class Constraint;
class Predicate;
class MatchRule;
class Attribute;
class Effect;
class ExpandRule;
class RewriteRule;
class ConstructRule;
class FormatRule;
class Peephole;
class EncClass;
class Interface;
class RegInterface;
class ConstInterface;
class MemInterface;
class CondInterface;
class Opcode;
class InsEncode;
class RegDef;
class RegClass;
class AllocClass;
class ResourceForm;
class PipeDesc;
class PipeClass;
class PeepMatch;
class PeepConstraint;
class PeepReplace;
class MatchList;

class ArchDesc;

//==============================Instructions===================================
//------------------------------InstructForm-----------------------------------
class InstructForm : public Form {
private:
  bool           _ideal_only;       // Not a user-defined instruction
  // Members used for tracking CISC-spilling
  int            _cisc_spill_operand;// Which operand may cisc-spill
  void           set_cisc_spill_operand(uint op_index) { _cisc_spill_operand = op_index; }
  bool           _is_cisc_alternate;
  InstructForm  *_cisc_spill_alternate;// cisc possible replacement
  const char    *_cisc_reg_mask_name;
  InstructForm  *_short_branch_form;
  bool           _is_short_branch;
  bool           _is_mach_constant;   // true if Node is a MachConstantNode
  uint           _alignment;

public:
  // Public Data
  const char    *_ident;           // Name of this instruction
  NameList       _parameters;      // Locally defined names
  FormDict       _localNames;      // Table of operands & their types
  MatchRule     *_matrule;         // Matching rule for this instruction
  Opcode        *_opcode;          // Encoding of the opcode for instruction
  char          *_size;            // Size of instruction
  InsEncode     *_insencode;       // Encoding class instruction belongs to
  InsEncode     *_constant;        // Encoding class constant value belongs to
  Attribute     *_attribs;         // List of Attribute rules
  Predicate     *_predicate;       // Predicate test for this instruction
  FormDict       _effects;         // Dictionary of effect rules
  ExpandRule    *_exprule;         // Expand rule for this instruction
  RewriteRule   *_rewrule;         // Rewrite rule for this instruction
  FormatRule    *_format;          // Format for assembly generation
  Peephole      *_peephole;        // List of peephole rules for instruction
  const char    *_ins_pipe;        // Instruction Scheduling description class

  uint          *_uniq_idx;        // Indexes of unique operands
  uint           _uniq_idx_length; // Length of _uniq_idx array
  uint           _num_uniq;        // Number  of unique operands
  ComponentList  _components;      // List of Components matches MachNode's
                                   // operand structure

  bool           _has_call;        // contain a call and caller save registers should be saved?

  // Public Methods
  InstructForm(const char *id, bool ideal_only = false);
  InstructForm(const char *id, InstructForm *instr, MatchRule *rule);
  ~InstructForm();

  // Dynamic type check
  virtual InstructForm *is_instruction() const;

  virtual bool        ideal_only() const;

  // This instruction sets a result
  virtual bool        sets_result() const;
  // This instruction needs projections for additional DEFs or KILLs
  virtual bool        needs_projections();
  // This instruction needs extra nodes for temporary inputs
  virtual bool        has_temps();
  // This instruction defines or kills more than one object
  virtual uint        num_defs_or_kills();
  // This instruction has an expand rule?
  virtual bool        expands() const ;
  // Return this instruction's first peephole rule, or NULL
  virtual Peephole   *peepholes() const;
  // Add a peephole rule to this instruction
  virtual void        append_peephole(Peephole *peep);

  virtual bool        is_pinned(FormDict &globals); // should be pinned inside block
  virtual bool        is_projection(FormDict &globals); // node requires projection
  virtual bool        is_parm(FormDict &globals); // node matches ideal 'Parm'
  // ideal opcode enumeration
  virtual const char *ideal_Opcode(FormDict &globals)  const;
  virtual int         is_expensive() const;     // node matches ideal 'CosD'
  virtual int         is_empty_encoding() const; // _size=0 and/or _insencode empty
  virtual int         is_tls_instruction() const; // tlsLoadP rule or ideal ThreadLocal
  virtual int         is_ideal_copy() const;    // node matches ideal 'Copy*'
  virtual bool        is_ideal_negD() const;    // node matches ideal 'NegD'
  virtual bool        is_ideal_if()   const;    // node matches ideal 'If'
  virtual bool        is_ideal_fastlock() const; // node matches 'FastLock'
  virtual bool        is_ideal_membar() const;  // node matches ideal 'MemBarXXX'
  virtual bool        is_ideal_loadPC() const;  // node matches ideal 'LoadPC'
  virtual bool        is_ideal_box() const;     // node matches ideal 'Box'
  virtual bool        is_ideal_goto() const;    // node matches ideal 'Goto'
  virtual bool        is_ideal_branch() const;  // "" 'If' | 'Goto' | 'LoopEnd' | 'Jump'
  virtual bool        is_ideal_jump() const;    // node matches ideal 'Jump'
  virtual bool        is_ideal_return() const;  // node matches ideal 'Return'
  virtual bool        is_ideal_halt() const;    // node matches ideal 'Halt'
  virtual bool        is_ideal_safepoint() const; // node matches 'SafePoint'
  virtual bool        is_ideal_nop() const;     // node matches 'Nop'
  virtual bool        is_ideal_control() const; // control node
  virtual bool        is_vector() const;        // vector instruction

  virtual Form::CallType is_ideal_call() const; // matches ideal 'Call'
  virtual Form::DataType is_ideal_load() const; // node matches ideal 'LoadXNode'
  // Should antidep checks be disabled for this Instruct
  // See definition of MatchRule::skip_antidep_check
  bool skip_antidep_check() const;
  virtual Form::DataType is_ideal_store() const;// node matches ideal 'StoreXNode'
          bool        is_ideal_mem() const { return is_ideal_load() != Form::none || is_ideal_store() != Form::none; }
  virtual uint        two_address(FormDict &globals); // output reg must match input reg
  // when chaining a constant to an instruction, return 'true' and set opType
  virtual Form::DataType is_chain_of_constant(FormDict &globals);
  virtual Form::DataType is_chain_of_constant(FormDict &globals, const char * &opType);
  virtual Form::DataType is_chain_of_constant(FormDict &globals, const char * &opType, const char * &result_type);

  // Check if a simple chain rule
  virtual bool        is_simple_chain_rule(FormDict &globals) const;

  // check for structural rematerialization
  virtual bool        rematerialize(FormDict &globals, RegisterForm *registers);

  // loads from memory, so must check for anti-dependence
  virtual bool        needs_anti_dependence_check(FormDict &globals) const;
  virtual int         memory_operand(FormDict &globals) const;
          bool        is_wide_memory_kill(FormDict &globals) const;

  enum memory_operand_type {
    NO_MEMORY_OPERAND = -1,
    MANY_MEMORY_OPERANDS = 999999
  };


  // This instruction captures the machine-independent bottom_type
  // Expected use is for pointer vs oop determination for LoadP
  virtual bool        captures_bottom_type(FormDict& globals) const;

  virtual const char *cost();      // Access ins_cost attribute
  virtual uint        num_opnds(); // Count of num_opnds for MachNode class
                                   // Counts USE_DEF opnds twice.  See also num_unique_opnds().
  virtual uint        num_post_match_opnds();
  virtual uint        num_consts(FormDict &globals) const;// Constants in match rule
  // Constants in match rule with specified type
  virtual uint        num_consts(FormDict &globals, Form::DataType type) const;

  // Return the register class associated with 'leaf'.
  virtual const char *out_reg_class(FormDict &globals);

  // number of ideal node inputs to skip
  virtual uint        oper_input_base(FormDict &globals);

  // Does this instruction need a base-oop edge?
  int needs_base_oop_edge(FormDict &globals) const;

  // Build instruction predicates.  If the user uses the same operand name
  // twice, we need to check that the operands are pointer-eequivalent in
  // the DFA during the labeling process.
  Predicate *build_predicate();

  virtual void        build_components(); // top-level operands
  // Return zero-based position in component list; -1 if not in list.
  virtual int         operand_position(const char *name, int usedef);
  virtual int         operand_position_format(const char *name);

  // Return zero-based position in component list; -1 if not in list.
  virtual int         label_position();
  virtual int         method_position();
  // Return number of relocation entries needed for this instruction.
  virtual uint        reloc(FormDict &globals);

  const char         *opnd_ident(int idx);  // Name of operand #idx.
  const char         *reduce_result();
  // Return the name of the operand on the right hand side of the binary match
  // Return NULL if there is no right hand side
  const char         *reduce_right(FormDict &globals)  const;
  const char         *reduce_left(FormDict &globals)   const;

  // Base class for this instruction, MachNode except for calls
  virtual const char *mach_base_class(FormDict &globals)  const;

  // Check if this instruction can cisc-spill to 'alternate'
  bool                cisc_spills_to(ArchDesc &AD, InstructForm *alternate);
  InstructForm       *cisc_spill_alternate() { return _cisc_spill_alternate; }
  int                 cisc_spill_operand() const { return _cisc_spill_operand; }
  bool                is_cisc_alternate() const { return _is_cisc_alternate; }
  void                set_cisc_alternate(bool val) { _is_cisc_alternate = val; }
  const char         *cisc_reg_mask_name() const { return _cisc_reg_mask_name; }
  void                set_cisc_reg_mask_name(const char *rm_name) { _cisc_reg_mask_name = rm_name; }
  // Output cisc-method prototypes and method bodies
  void                declare_cisc_version(ArchDesc &AD, FILE *fp_cpp);
  bool                define_cisc_version (ArchDesc &AD, FILE *fp_cpp);

  bool                check_branch_variant(ArchDesc &AD, InstructForm *short_branch);

  bool                is_short_branch() { return _is_short_branch; }
  void                set_short_branch(bool val) { _is_short_branch = val; }

  bool                    is_mach_constant() const { return _is_mach_constant;     }
  void                set_is_mach_constant(bool x) {        _is_mach_constant = x; }

  InstructForm       *short_branch_form() { return _short_branch_form; }
  bool                has_short_branch_form() { return _short_branch_form != NULL; }
  // Output short branch prototypes and method bodies
  void                declare_short_branch_methods(FILE *fp_cpp);
  bool                define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp);

  uint                alignment() { return _alignment; }
  void                set_alignment(uint val) { _alignment = val; }

  // Seach through operands to determine operands unique positions.
  void                set_unique_opnds();
  uint                num_unique_opnds() { return _num_uniq; }
  uint                unique_opnds_idx(int idx) {
    if (_uniq_idx != NULL && idx > 0) {
      assert((uint)idx < _uniq_idx_length, "out of bounds");
      return _uniq_idx[idx];
    } else {
      return idx;
    }
  }
  const char         *unique_opnd_ident(uint idx);  // Name of operand at unique idx.

  // Operands which are only KILLs aren't part of the input array and
  // require special handling in some cases.  Their position in this
  // operand list is higher than the number of unique operands.
  bool is_noninput_operand(uint idx) {
    return (idx >= num_unique_opnds());
  }

  // --------------------------- FILE *output_routines
  //
  // Generate the format call for the replacement variable
  void                rep_var_format(FILE *fp, const char *rep_var);
  // Generate index values needed for determining the operand position
  void                index_temps   (FILE *fp, FormDict &globals, const char *prefix = "", const char *receiver = "");
  // ---------------------------

  virtual bool verify();           // Check consistency after parsing

  virtual void dump();             // Debug printer
  virtual void output(FILE *fp);   // Write to output files
};

//------------------------------EncodeForm-------------------------------------
class EncodeForm : public Form {
private:

public:
  // Public Data
  NameList  _eclasses;            // List of encode class names
  Dict      _encClass;            // Map encode class names to EncClass objects

  // Public Methods
  EncodeForm();
  ~EncodeForm();

  EncClass   *add_EncClass(const char *className);
  EncClass   *encClass(const char *className);

  const char *encClassPrototype(const char *className);
  const char *encClassBody(const char *className);

  void dump();                     // Debug printer
  void output(FILE *fp);           // Write info to output files
};

//------------------------------EncClass---------------------------------------
class EncClass : public Form {
public:
  // NameList for parameter type and name
  NameList       _parameter_type;
  NameList       _parameter_name;

  // Breakdown the encoding into strings separated by $replacement_variables
  // There is an entry in _strings, perhaps NULL, that precedes each _rep_vars
  NameList       _code;            // Strings passed through to tty->print
  NameList       _rep_vars;        // replacement variables

  NameList       _parameters;      // Locally defined names
  FormDict       _localNames;      // Table of components & their types

public:
  // Public Data
  const char    *_name;            // encoding class name

  // Public Methods
  EncClass(const char *name);
  ~EncClass();

  // --------------------------- Parameters
  // Add a parameter <type,name> pair
  void add_parameter(const char *parameter_type, const char *parameter_name);
  // Verify operand types in parameter list
  bool check_parameter_types(FormDict &globals);
  // Obtain the zero-based index corresponding to a replacement variable
  int         rep_var_index(const char *rep_var);
  int         num_args() { return _parameter_name.count(); }

  // --------------------------- Code Block
  // Add code
  void add_code(const char *string_preceding_replacement_var);
  // Add a replacement variable or one of its subfields
  // Subfields are stored with a leading '$'
  void add_rep_var(char *replacement_var);

  bool verify();
  void dump();
  void output(FILE *fp);
};

//------------------------------MachNode---------------------------------------
class MachNodeForm: public Form {
private:

public:
  char          *_ident;           // Name of this instruction
  const char    *_machnode_pipe;   // Instruction Scheduline description class

  // Public Methods
  MachNodeForm(char *id);
  ~MachNodeForm();

  virtual MachNodeForm *is_machnode() const;

  void dump();                     // Debug printer
  void output(FILE *fp);           // Write info to output files
};

//------------------------------Opcode-----------------------------------------
class Opcode : public Form {
private:

public:
  // Public Data
  // Strings representing instruction opcodes, user defines placement in emit
  char *_primary;
  char *_secondary;
  char *_tertiary;

  enum opcode_type {
    NOT_AN_OPCODE = -1,
    PRIMARY   = 1,
    SECONDARY = 2,
    TERTIARY  = 3
  };

  // Public Methods
  Opcode(char *primary, char *secondary, char *tertiary);
  ~Opcode();

  static Opcode::opcode_type as_opcode_type(const char *designator);

  void dump();
  void output(FILE *fp);

  // --------------------------- FILE *output_routines
  bool print_opcode(FILE *fp, Opcode::opcode_type desired_opcode);
};

//------------------------------InsEncode--------------------------------------
class InsEncode : public Form {
private:
  // Public Data (access directly only for reads)
  // The encodings can only have the values predefined by the ADLC:
  // blank, RegReg, RegMem, MemReg, ...
  NameList    _encoding;
  // NameList    _parameter;
  // The parameters for each encoding are preceeded by a NameList::_signal
  // and follow the parameters for the previous encoding.

  // char *_encode;                  // Type of instruction encoding

public:
  // Public Methods
  InsEncode();
  ~InsEncode();

  // Add "encode class name" and its parameters
  NameAndList  *add_encode(char *encode_method_name);
  // Parameters are added to the returned "NameAndList" by the parser

  // Access the list of encodings
  void          reset();
  const char   *encode_class_iter();

  // Returns the number of arguments to the current encoding in the iteration
  int current_encoding_num_args() {
    return ((NameAndList*)_encoding.current())->count();
  }

  // --------------------------- Parameters
  // The following call depends upon position within encode_class_iteration
  //
  // Obtain parameter name from zero based index
  const char   *rep_var_name(InstructForm &inst, uint param_no);
  // ---------------------------

  void dump();
  void output(FILE *fp);
};

//------------------------------Effect-----------------------------------------
class Effect : public Form {
private:

public:
  // Public Data
  const char  *_name;            // Pre-defined name for effect
  int         _use_def;          // Enumeration value of effect

  // Public Methods
  Effect(const char *name);      // Constructor
  ~Effect();                     // Destructor

  // Dynamic type check
  virtual Effect *is_effect() const;

  // Return 'true' if this use def info equals the parameter
  bool  is(int use_def_kill_enum) const;
  // Return 'true' if this use def info is a superset of parameter
  bool  isa(int use_def_kill_enum) const;

  void dump();                   // Debug printer
  void output(FILE *fp);         // Write info to output files
};

//------------------------------ExpandRule-------------------------------------
class ExpandRule : public Form {
private:
  NameList _expand_instrs;        // ordered list of instructions and operands

public:
  // Public Data
  NameList _newopers;             // List of newly created operands
  Dict     _newopconst;           // Map new operands to their constructors

  void     add_instruction(NameAndList *instruction_name_and_operand_list);
  void     reset_instructions();
  NameAndList *iter_instructions();

  // Public Methods
  ExpandRule();                   // Constructor
  ~ExpandRule();                  // Destructor

  void dump();                    // Debug printer
  void output(FILE *fp);          // Write info to output files
};

//------------------------------RewriteRule------------------------------------
class RewriteRule : public Form {
private:

public:
  // Public Data
  SourceForm     *_condition;      // Rewrite condition code
  InstructForm   *_instrs;         // List of instructions to expand to
  OperandForm    *_opers;          // List of operands generated by expand
  char           *_tempParams;     // Hold string until parser is finished.
  char           *_tempBlock;      // Hold string until parser is finished.

  // Public Methods
  RewriteRule(char* params, char* block) ;
  ~RewriteRule();                  // Destructor
  void dump();                     // Debug printer
  void output(FILE *fp);           // Write info to output files
};


//==============================Operands=======================================
//------------------------------OpClassForm------------------------------------
class OpClassForm : public Form {
public:
  // Public Data
  const char    *_ident;           // Name of this operand
  NameList       _oplst;           // List of operand forms included in class

  // Public Methods
  OpClassForm(const char *id);
  ~OpClassForm();

  // dynamic type check
  virtual OpClassForm         *is_opclass() const;
  virtual Form::InterfaceType  interface_type(FormDict &globals) const;
  virtual bool                 stack_slots_only(FormDict &globals) const;

  virtual bool                 is_cisc_mem(FormDict &globals) const;


  // Min and Max opcodes of operands in this operand class
  int _minCode;
  int _maxCode;

  virtual bool ideal_only() const;
  virtual void dump();             // Debug printer
  virtual void output(FILE *fp);   // Write to output files
};

//------------------------------OperandForm------------------------------------
class OperandForm : public OpClassForm {
private:
  bool         _ideal_only; // Not a user-defined instruction

public:
  // Public Data
  NameList       _parameters; // Locally defined names
  FormDict       _localNames; // Table of components & their types
  MatchRule     *_matrule;    // Matching rule for this operand
  Interface     *_interface;  // Encoding interface for this operand
  Attribute     *_attribs;    // List of Attribute rules
  Predicate     *_predicate;  // Predicate test for this operand
  Constraint    *_constraint; // Constraint Rule for this operand
  ConstructRule *_construct;  // Construction of operand data after matching
  FormatRule    *_format;     // Format for assembly generation
  NameList       _classes;    // List of opclasses which contain this oper

  ComponentList _components;  //

  // Public Methods
  OperandForm(const char *id);
  OperandForm(const char *id, bool ideal_only);
  ~OperandForm();

  // Dynamic type check
  virtual OperandForm *is_operand() const;

  virtual bool        ideal_only() const;
  virtual Form::InterfaceType interface_type(FormDict &globals) const;
  virtual bool                 stack_slots_only(FormDict &globals) const;

  virtual const char *cost();  // Access ins_cost attribute
  virtual uint        num_leaves() const;// Leaves in complex operand
  // Constants in operands' match rules
  virtual uint        num_consts(FormDict &globals) const;
  // Constants in operand's match rule with specified type
  virtual uint        num_consts(FormDict &globals, Form::DataType type) const;
  // Pointer Constants in operands' match rules
  virtual uint        num_const_ptrs(FormDict &globals) const;
  // The number of input edges in the machine world == num_leaves - num_consts
  virtual uint        num_edges(FormDict &globals) const;

  // Check if this operand is usable for cisc-spilling
  virtual bool        is_cisc_reg(FormDict &globals) const;

  // node matches ideal 'Bool', grab condition codes from the ideal world
  virtual bool        is_ideal_bool()  const;

  // Has an integer constant suitable for spill offsets
  bool has_conI(FormDict &globals) const {
    return (num_consts(globals,idealI) == 1) && !is_ideal_bool(); }
  bool has_conL(FormDict &globals) const {
    return (num_consts(globals,idealL) == 1) && !is_ideal_bool(); }

  // Node is user-defined operand for an sRegX
  virtual Form::DataType is_user_name_for_sReg() const;

  // Return ideal type, if there is a single ideal type for this operand
  virtual const char *ideal_type(FormDict &globals, RegisterForm *registers = NULL) const;
  // If there is a single ideal type for this interface field, return it.
  virtual const char *interface_ideal_type(FormDict   &globals,
                                           const char *field_name) const;

  // Return true if this operand represents a bound register class
  bool is_bound_register() const;

  // Return the Register class for this operand.  Returns NULL if
  // operand isn't a register form.
  RegClass* get_RegClass() const;

  virtual       bool  is_interface_field(const char   *field_name,
                                         const char   * &value) const;

  // If this operand has a single ideal type, return its type
  virtual Form::DataType simple_type(FormDict &globals) const;
  // If this operand is an ideal constant, return its type
  virtual Form::DataType is_base_constant(FormDict &globals) const;

  // "true" if this operand is a simple type that is swallowed
  virtual bool        swallowed(FormDict &globals) const;

  // Return register class name if a constraint specifies the register class.
  virtual const char *constrained_reg_class() const;
  // Return the register class associated with 'leaf'.
  virtual const char *in_reg_class(uint leaf, FormDict &globals);

  // Build component list from MatchRule and operand's parameter list
  virtual void        build_components(); // top-level operands

  // Return zero-based position in component list; -1 if not in list.
  virtual int         operand_position(const char *name, int usedef);

  // Return zero-based position in component list; -1 if not in list.
  virtual int         constant_position(FormDict &globals, const Component *comp);
  virtual int         constant_position(FormDict &globals, const char *local_name);
  // Return the operand form corresponding to the given index, else NULL.
  virtual OperandForm *constant_operand(FormDict &globals, uint const_index);

  // Return zero-based position in component list; -1 if not in list.
  virtual int         register_position(FormDict &globals, const char *regname);

  const char         *reduce_result() const;
  // Return the name of the operand on the right hand side of the binary match
  // Return NULL if there is no right hand side
  const char         *reduce_right(FormDict &globals)  const;
  const char         *reduce_left(FormDict &globals)   const;


  // --------------------------- FILE *output_routines
  //
  // Output code for disp_is_oop, if true.
  void                disp_is_oop(FILE *fp, FormDict &globals);
  // Generate code for internal and external format methods
  void                int_format(FILE *fp, FormDict &globals, uint index);
  void                ext_format(FILE *fp, FormDict &globals, uint index);
  void                format_constant(FILE *fp, uint con_index, uint con_type);
  // Output code to access the value of the index'th constant
  void                access_constant(FILE *fp, FormDict &globals,
                                      uint con_index);
  // ---------------------------


  virtual void dump();             // Debug printer
  virtual void output(FILE *fp);   // Write to output files
};

//------------------------------Constraint-------------------------------------
class Constraint : public Form {
private:

public:
  const char      *_func;          // Constraint function
  const char      *_arg;           // function's argument

  // Public Methods
  Constraint(const char *func, const char *arg); // Constructor
  ~Constraint();

  bool stack_slots_only() const;

  void dump();                     // Debug printer
  void output(FILE *fp);           // Write info to output files
};

//------------------------------Predicate--------------------------------------
class Predicate : public Form {
private:

public:
  // Public Data
  char *_pred;                     // C++ source string for predicate

  // Public Methods
  Predicate(char *pr);
  ~Predicate();

  void dump();
  void output(FILE *fp);
};

//------------------------------Interface--------------------------------------
class Interface : public Form {
private:

public:
  // Public Data
  const char *_name;               // String representing the interface name

  // Public Methods
  Interface(const char *name);
  ~Interface();

  virtual Form::InterfaceType interface_type(FormDict &globals) const;

  RegInterface   *is_RegInterface();
  MemInterface   *is_MemInterface();
  ConstInterface *is_ConstInterface();
  CondInterface  *is_CondInterface();


  void dump();
  void output(FILE *fp);
};

//------------------------------RegInterface-----------------------------------
class RegInterface : public Interface {
private:

public:
  // Public Methods
  RegInterface();
  ~RegInterface();

  void dump();
  void output(FILE *fp);
};

//------------------------------ConstInterface---------------------------------
class ConstInterface : public Interface {
private:

public:
  // Public Methods
  ConstInterface();
  ~ConstInterface();

  void dump();
  void output(FILE *fp);
};

//------------------------------MemInterface-----------------------------------
class MemInterface : public Interface {
private:

public:
  // Public Data
  char *_base;                     // Base address
  char *_index;                    // index
  char *_scale;                    // scaling factor
  char *_disp;                     // displacement

  // Public Methods
  MemInterface(char *base, char *index, char *scale, char *disp);
  ~MemInterface();

  void dump();
  void output(FILE *fp);
};

//------------------------------CondInterface----------------------------------
class CondInterface : public Interface {
private:

public:
  const char *_equal;
  const char *_not_equal;
  const char *_less;
  const char *_greater_equal;
  const char *_less_equal;
  const char *_greater;
  const char *_overflow;
  const char *_no_overflow;
  const char *_equal_format;
  const char *_not_equal_format;
  const char *_less_format;
  const char *_greater_equal_format;
  const char *_less_equal_format;
  const char *_greater_format;
  const char *_overflow_format;
  const char *_no_overflow_format;

  // Public Methods
  CondInterface(const char* equal,         const char* equal_format,
                const char* not_equal,     const char* not_equal_format,
                const char* less,          const char* less_format,
                const char* greater_equal, const char* greater_equal_format,
                const char* less_equal,    const char* less_equal_format,
                const char* greater,       const char* greater_format,
                const char* overflow,      const char* overflow_format,
                const char* no_overflow,   const char* no_overflow_format);
  ~CondInterface();

  void dump();
  void output(FILE *fp);
};

//------------------------------ConstructRule----------------------------------
class ConstructRule : public Form {
private:

public:
  // Public Data
  char *_expr;                     // String representing the match expression
  char *_construct;                // String representing C++ constructor code

  // Public Methods
  ConstructRule(char *cnstr);
  ~ConstructRule();

  void dump();
  void output(FILE *fp);
};


//==============================Shared=========================================
//------------------------------AttributeForm----------------------------------
class AttributeForm : public Form {
private:
  // counters for unique instruction or operand ID
  static int   _insId;             // user-defined machine instruction types
  static int   _opId;              // user-defined operand types

  int  id;                         // hold type for this object

public:
  // Public Data
  char *_attrname;                 // Name of attribute
  int   _atype;                    // Either INS_ATTR or OP_ATTR
  char *_attrdef;                  // C++ source which evaluates to constant

  // Public Methods
  AttributeForm(char *attr, int type, char *attrdef);
  ~AttributeForm();

  // Dynamic type check
  virtual AttributeForm *is_attribute() const;

  int  type() { return id;}        // return this object's "id"

  static const char* _ins_cost;        // "ins_cost"
  static const char* _op_cost;         // "op_cost"

  void dump();                     // Debug printer
  void output(FILE *fp);           // Write output files
};

//------------------------------Component--------------------------------------
class Component : public Form {
private:

public:
  // Public Data
  const char *_name;              // Name of this component
  const char *_type;              // Type of this component
  int         _usedef;            // Value of component

  // Public Methods
  Component(const char *name, const char *type, int usedef);
  ~Component();


  // Return 'true' if this use def info equals the parameter
  bool  is(int use_def_kill_enum) const;
  // Return 'true' if this use def info is a superset of parameter
  bool  isa(int use_def_kill_enum) const;
  int   promote_use_def_info(int new_use_def);
  const char *base_type(FormDict &globals);
  // Form::DataType is_base_constant(FormDict &globals);

  void dump();                     // Debug printer
  void output(FILE *fp);           // Write to output files
  const char* getUsedefName();

public:
  // Implementation depends upon working bit intersection and union.
  enum use_def_enum {
    INVALID = 0x0,
    USE     = 0x1,
    DEF     = 0x2, USE_DEF   = 0x3,
    KILL    = 0x4, USE_KILL  = 0x5,
    SYNTHETIC = 0x8,
    TEMP = USE | SYNTHETIC,
    CALL = 0x10
  };
};


//------------------------------MatchNode--------------------------------------
class MatchNode : public Form {
private:

public:
  // Public Data
  const char  *_result;            // The name of the output of this node
  const char  *_name;              // The name that appeared in the match rule
  const char  *_opType;            // The Operation/Type matched
  MatchNode   *_lChild;            // Left child in expression tree
  MatchNode   *_rChild;            // Right child in expression tree
  int         _numleaves;          // Sum of numleaves for all direct children
  ArchDesc    &_AD;                // Reference to ArchDesc object
  char        *_internalop;        // String representing internal operand
  int         _commutative_id;     // id of commutative operation

  // Public Methods
  MatchNode(ArchDesc &ad, const char *result = 0, const char *expr = 0,
            const char *opType=0, MatchNode *lChild=NULL,
            MatchNode *rChild=NULL);
  MatchNode(ArchDesc &ad, MatchNode& mNode); // Shallow copy constructor;
  MatchNode(ArchDesc &ad, MatchNode& mNode, int clone); // Construct clone
  ~MatchNode();

  // return 0 if not found:
  // return 1 if found and position is incremented by operand offset in rule
  bool       find_name(const char *str, int &position) const;
  bool       find_type(const char *str, int &position) const;
  virtual void append_components(FormDict& locals, ComponentList& components,
                                 bool def_flag = false) const;
  bool       base_operand(uint &position, FormDict &globals,
                         const char * &result, const char * &name,
                         const char * &opType) const;
  // recursive count on operands
  uint       num_consts(FormDict &globals) const;
  uint       num_const_ptrs(FormDict &globals) const;
  // recursive count of constants with specified type
  uint       num_consts(FormDict &globals, Form::DataType type) const;
  // uint       num_consts() const;   // Local inspection only
  int        needs_ideal_memory_edge(FormDict &globals) const;
  int        needs_base_oop_edge() const;

  // Help build instruction predicates.  Search for operand names.
  void count_instr_names( Dict &names );
  int build_instr_pred( char *buf, const char *name, int cnt );
  void build_internalop( );

  // Return the name of the operands associated with reducing to this operand:
  // The result type, plus the left and right sides of the binary match
  // Return NULL if there is no left or right hand side
  bool       sets_result()   const;    // rule "Set"s result of match
  const char *reduce_right(FormDict &globals)  const;
  const char *reduce_left (FormDict &globals)  const;

  // Recursive version of check in MatchRule
  int        cisc_spill_match(FormDict& globals, RegisterForm* registers,
                              MatchNode* mRule2, const char* &operand,
                              const char* ®_type);
  int        cisc_spill_merge(int left_result, int right_result);

  virtual bool equivalent(FormDict& globals, MatchNode* mNode2);

  void       count_commutative_op(int& count);
  void       swap_commutative_op(bool atroot, int count);

  void dump();
  void output(FILE *fp);
};

//------------------------------MatchRule--------------------------------------
class MatchRule : public MatchNode {
private:

public:
  // Public Data
  const char *_machType;            // Machine type index
  int         _depth;               // Expression tree depth
  char       *_construct;           // String representing C++ constructor code
  int         _numchilds;           // Number of direct children
  MatchRule  *_next;                // Pointer to next match rule

  // Public Methods
  MatchRule(ArchDesc &ad);
  MatchRule(ArchDesc &ad, MatchRule* mRule); // Shallow copy constructor;
  MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char* construct, int numleaves);
  ~MatchRule();

  virtual void append_components(FormDict& locals, ComponentList& components, bool def_flag = false) const;
  // Recursive call on all operands' match rules in my match rule.
  bool       base_operand(uint &position, FormDict &globals,
                         const char * &result, const char * &name,
                         const char * &opType) const;


  bool       is_base_register(FormDict &globals) const;
  Form::DataType is_base_constant(FormDict &globals) const;
  bool       is_chain_rule(FormDict &globals) const;
  int        is_ideal_copy() const;
  int        is_expensive() const;     // node matches ideal 'CosD'
  bool       is_ideal_if()   const;    // node matches ideal 'If'
  bool       is_ideal_fastlock() const; // node matches ideal 'FastLock'
  bool       is_ideal_jump()   const;  // node matches ideal 'Jump'
  bool       is_ideal_membar() const;  // node matches ideal 'MemBarXXX'
  bool       is_ideal_loadPC() const;  // node matches ideal 'LoadPC'
  bool       is_ideal_box() const;     // node matches ideal 'Box'
  bool       is_ideal_goto() const;    // node matches ideal 'Goto'
  bool       is_ideal_loopEnd() const; // node matches ideal 'LoopEnd'
  bool       is_ideal_bool() const;    // node matches ideal 'Bool'
  bool       is_vector() const;        // vector instruction
  Form::DataType is_ideal_load() const;// node matches ideal 'LoadXNode'
  // Should antidep checks be disabled for this rule
  // See definition of MatchRule::skip_antidep_check
  bool skip_antidep_check() const;
  Form::DataType is_ideal_store() const;// node matches ideal 'StoreXNode'

  // Check if 'mRule2' is a cisc-spill variant of this MatchRule
  int        matchrule_cisc_spill_match(FormDict &globals, RegisterForm* registers,
                                        MatchRule* mRule2, const char* &operand,
                                        const char* ®_type);

  // Check if 'mRule2' is equivalent to this MatchRule
  virtual bool equivalent(FormDict& globals, MatchNode* mRule2);

  void       matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt);

  void dump();
  void output_short(FILE *fp);
  void output(FILE *fp);
};

//------------------------------Attribute--------------------------------------
class Attribute : public Form {
private:

public:
  // Public Data
  char *_ident;                    // Name of predefined attribute
  char *_val;                      // C++ source which evaluates to constant
  int   _atype;                    // Either INS_ATTR or OP_ATTR
  int   int_val(ArchDesc &ad);     // Return atoi(_val), ensuring syntax.

  // Public Methods
  Attribute(char *id, char* val, int type);
  ~Attribute();

  void dump();
  void output(FILE *fp);
};

//------------------------------FormatRule-------------------------------------
class FormatRule : public Form {
private:

public:
  // Public Data
  // There is an entry in _strings, perhaps NULL, that precedes each _rep_vars
  NameList  _strings;              // Strings passed through to tty->print
  NameList  _rep_vars;             // replacement variables
  char     *_temp;                 // String representing the assembly code

  // Public Methods
  FormatRule(char *temp);
  ~FormatRule();

  void dump();
  void output(FILE *fp);
};

#endif // SHARE_VM_ADLC_FORMSSEL_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java formssel.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.