|
Java example source code file (output_h.cpp)
The output_h.cpp Java example source code/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // output_h.cpp - Class HPP file output routines for architecture definition #include "adlc.hpp" // The comment delimiter used in format statements after assembler instructions. #define commentSeperator "!" // Generate the #define that describes the number of registers. static void defineRegCount(FILE *fp, RegisterForm *registers) { if (registers) { int regCount = AdlcVMDeps::Physical + registers->_rdefs.count(); fprintf(fp,"\n"); fprintf(fp,"// the number of reserved registers + machine registers.\n"); fprintf(fp,"#define REG_COUNT %d\n", regCount); } } // Output enumeration of machine register numbers // (1) // // Enumerate machine registers starting after reserved regs. // // in the order of occurrence in the register block. // enum MachRegisterNumbers { // EAX_num = 0, // ... // _last_Mach_Reg // } void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) { if (_register) { RegDef *reg_def = NULL; // Output a #define for the number of machine registers defineRegCount(fp_hpp, _register); // Count all the Save_On_Entry and Always_Save registers int saved_on_entry = 0; int c_saved_on_entry = 0; _register->reset_RegDefs(); while( (reg_def = _register->iter_RegDefs()) != NULL ) { if( strcmp(reg_def->_callconv,"SOE") == 0 || strcmp(reg_def->_callconv,"AS") == 0 ) ++saved_on_entry; if( strcmp(reg_def->_c_conv,"SOE") == 0 || strcmp(reg_def->_c_conv,"AS") == 0 ) ++c_saved_on_entry; } fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n"); fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT %d\n", max(saved_on_entry,c_saved_on_entry)); fprintf(fp_hpp, "#define SAVED_ON_ENTRY_REG_COUNT %d\n", saved_on_entry); fprintf(fp_hpp, "#define C_SAVED_ON_ENTRY_REG_COUNT %d\n", c_saved_on_entry); // (1) // Build definition for enumeration of register numbers fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n"); fprintf(fp_hpp, "// in the order of occurrence in the register block.\n"); fprintf(fp_hpp, "enum MachRegisterNumbers {\n"); // Output the register number for each register in the allocation classes _register->reset_RegDefs(); int i = 0; while( (reg_def = _register->iter_RegDefs()) != NULL ) { fprintf(fp_hpp," %s_num,", reg_def->_regname); for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " "); fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n", i++, reg_def->register_num(), reg_def->register_encode()); } // Finish defining enumeration fprintf(fp_hpp, " _last_Mach_Reg // %d\n", i); fprintf(fp_hpp, "};\n"); } fprintf(fp_hpp, "\n// Size of register-mask in ints\n"); fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size()); fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n"); fprintf(fp_hpp, "#define FORALL_BODY "); int len = RegisterForm::RegMask_Size(); for( int i = 0; i < len; i++ ) fprintf(fp_hpp, "BODY(%d) ",i); fprintf(fp_hpp, "\n\n"); fprintf(fp_hpp,"class RegMask;\n"); // All RegMasks are declared "extern const ..." in ad_<arch>.hpp // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n"); } // Output enumeration of machine register encodings // (2) // // Enumerate machine registers starting after reserved regs. // // in the order of occurrence in the alloc_class(es). // enum MachRegisterEncodes { // EAX_enc = 0x00, // ... // } void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) { if (_register) { RegDef *reg_def = NULL; RegDef *reg_def_next = NULL; // (2) // Build definition for enumeration of encode values fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n"); fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n"); fprintf(fp_hpp, "enum MachRegisterEncodes {\n"); // Find max enum string length. size_t maxlen = 0; _register->reset_RegDefs(); reg_def = _register->iter_RegDefs(); while (reg_def != NULL) { size_t len = strlen(reg_def->_regname); if (len > maxlen) maxlen = len; reg_def = _register->iter_RegDefs(); } // Output the register encoding for each register in the allocation classes _register->reset_RegDefs(); reg_def_next = _register->iter_RegDefs(); while( (reg_def = reg_def_next) != NULL ) { reg_def_next = _register->iter_RegDefs(); fprintf(fp_hpp," %s_enc", reg_def->_regname); for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " "); fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," ); } // Finish defining enumeration fprintf(fp_hpp, "};\n"); } // Done with register form } // Declare an array containing the machine register names, strings. static void declareRegNames(FILE *fp, RegisterForm *registers) { if (registers) { // fprintf(fp,"\n"); // fprintf(fp,"// An array of character pointers to machine register names.\n"); // fprintf(fp,"extern const char *regName[];\n"); } } // Declare an array containing the machine register sizes in 32-bit words. void ArchDesc::declareRegSizes(FILE *fp) { // regSize[] is not used } // Declare an array containing the machine register encoding values static void declareRegEncodes(FILE *fp, RegisterForm *registers) { if (registers) { // // // // fprintf(fp,"\n"); // fprintf(fp,"// An array containing the machine register encode values\n"); // fprintf(fp,"extern const char regEncode[];\n"); } } // --------------------------------------------------------------------------- //------------------------------Utilities to build Instruction Classes-------- // --------------------------------------------------------------------------- static void out_RegMask(FILE *fp) { fprintf(fp," virtual const RegMask &out_RegMask() const;\n"); } // --------------------------------------------------------------------------- //--------Utilities to build MachOper and MachNode derived Classes------------ // --------------------------------------------------------------------------- //------------------------------Utilities to build Operand Classes------------ static void in_RegMask(FILE *fp) { fprintf(fp," virtual const RegMask *in_RegMask(int index) const;\n"); } static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) { int i = 0; Component *comp; if (oper->num_consts(globals) == 0) return; // Iterate over the component list looking for constants oper->_components.reset(); if ((comp = oper->_components.iter()) == NULL) { assert(oper->num_consts(globals) == 1, "Bad component list detected.\n"); const char *type = oper->ideal_type(globals); if (!strcmp(type, "ConI")) { if (i > 0) fprintf(fp,", "); fprintf(fp," int32 _c%d;\n", i); } else if (!strcmp(type, "ConP")) { if (i > 0) fprintf(fp,", "); fprintf(fp," const TypePtr *_c%d;\n", i); } else if (!strcmp(type, "ConN")) { if (i > 0) fprintf(fp,", "); fprintf(fp," const TypeNarrowOop *_c%d;\n", i); } else if (!strcmp(type, "ConNKlass")) { if (i > 0) fprintf(fp,", "); fprintf(fp," const TypeNarrowKlass *_c%d;\n", i); } else if (!strcmp(type, "ConL")) { if (i > 0) fprintf(fp,", "); fprintf(fp," jlong _c%d;\n", i); } else if (!strcmp(type, "ConF")) { if (i > 0) fprintf(fp,", "); fprintf(fp," jfloat _c%d;\n", i); } else if (!strcmp(type, "ConD")) { if (i > 0) fprintf(fp,", "); fprintf(fp," jdouble _c%d;\n", i); } else if (!strcmp(type, "Bool")) { fprintf(fp,"private:\n"); fprintf(fp," BoolTest::mask _c%d;\n", i); fprintf(fp,"public:\n"); } else { assert(0, "Non-constant operand lacks component list."); } } // end if NULL else { oper->_components.reset(); while ((comp = oper->_components.iter()) != NULL) { if (!strcmp(comp->base_type(globals), "ConI")) { fprintf(fp," jint _c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConP")) { fprintf(fp," const TypePtr *_c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConN")) { fprintf(fp," const TypePtr *_c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConNKlass")) { fprintf(fp," const TypePtr *_c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConL")) { fprintf(fp," jlong _c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConF")) { fprintf(fp," jfloat _c%d;\n", i); i++; } else if (!strcmp(comp->base_type(globals), "ConD")) { fprintf(fp," jdouble _c%d;\n", i); i++; } } } } // Declare constructor. // Parameters start with condition code, then all other constants // // (0) public: // (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn) // (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { } // static void defineConstructor(FILE *fp, const char *name, uint num_consts, ComponentList &lst, bool is_ideal_bool, Form::DataType constant_type, FormDict &globals) { fprintf(fp,"public:\n"); // generate line (1) fprintf(fp," %sOper(", name); if( num_consts == 0 ) { fprintf(fp,") {}\n"); return; } // generate parameters for constants uint i = 0; Component *comp; lst.reset(); if ((comp = lst.iter()) == NULL) { assert(num_consts == 1, "Bad component list detected.\n"); switch( constant_type ) { case Form::idealI : { fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i); break; } case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; } case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; } case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; } case Form::idealL : { fprintf(fp,"jlong c%d", i); break; } case Form::idealF : { fprintf(fp,"jfloat c%d", i); break; } case Form::idealD : { fprintf(fp,"jdouble c%d", i); break; } default: assert(!is_ideal_bool, "Non-constant operand lacks component list."); break; } } // end if NULL else { lst.reset(); while((comp = lst.iter()) != NULL) { if (!strcmp(comp->base_type(globals), "ConI")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"int32 c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConP")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"const TypePtr *c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConN")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"const TypePtr *c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConNKlass")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"const TypePtr *c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConL")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"jlong c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConF")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"jfloat c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "ConD")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"jdouble c%d", i); i++; } else if (!strcmp(comp->base_type(globals), "Bool")) { if (i > 0) fprintf(fp,", "); fprintf(fp,"BoolTest::mask c%d", i); i++; } } } // finish line (1) and start line (2) fprintf(fp,") : "); // generate initializers for constants i = 0; fprintf(fp,"_c%d(c%d)", i, i); for( i = 1; i < num_consts; ++i) { fprintf(fp,", _c%d(c%d)", i, i); } // The body for the constructor is empty fprintf(fp," {}\n"); } // --------------------------------------------------------------------------- // Utilities to generate format rules for machine operands and instructions // --------------------------------------------------------------------------- // Generate the format rule for condition codes static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) { assert(oper != NULL, "what"); CondInterface* cond = oper->_interface->is_CondInterface(); fprintf(fp, " if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format); fprintf(fp, " else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format); fprintf(fp, " else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format); fprintf(fp, " else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format); fprintf(fp, " else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format); fprintf(fp, " else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format); fprintf(fp, " else if( _c%d == BoolTest::overflow ) st->print(\"%s\");\n",i,cond->_overflow_format); fprintf(fp, " else if( _c%d == BoolTest::no_overflow ) st->print(\"%s\");\n",i,cond->_no_overflow_format); } // Output code that dumps constant values, increment "i" if type is constant static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) { if (!strcmp(ideal_type, "ConI")) { fprintf(fp," st->print(\"#%%d\", _c%d);\n", i); fprintf(fp," st->print(\"/0x%%08x\", _c%d);\n", i); ++i; } else if (!strcmp(ideal_type, "ConP")) { fprintf(fp," _c%d->dump_on(st);\n", i); ++i; } else if (!strcmp(ideal_type, "ConN")) { fprintf(fp," _c%d->dump_on(st);\n", i); ++i; } else if (!strcmp(ideal_type, "ConNKlass")) { fprintf(fp," _c%d->dump_on(st);\n", i); ++i; } else if (!strcmp(ideal_type, "ConL")) { fprintf(fp," st->print(\"#\" INT64_FORMAT, _c%d);\n", i); fprintf(fp," st->print(\"/\" PTR64_FORMAT, _c%d);\n", i); ++i; } else if (!strcmp(ideal_type, "ConF")) { fprintf(fp," st->print(\"#%%f\", _c%d);\n", i); fprintf(fp," jint _c%di = JavaValue(_c%d).get_jint();\n", i, i); fprintf(fp," st->print(\"/0x%%x/\", _c%di);\n", i); ++i; } else if (!strcmp(ideal_type, "ConD")) { fprintf(fp," st->print(\"#%%f\", _c%d);\n", i); fprintf(fp," jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i); fprintf(fp," st->print(\"/\" PTR64_FORMAT, _c%dl);\n", i); ++i; } else if (!strcmp(ideal_type, "Bool")) { defineCCodeDump(oper, fp,i); ++i; } return i; } // Generate the format rule for an operand void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) { if (!for_c_file) { // invoked after output #ifndef PRODUCT to ad_<arch>.hpp // compile the bodies separately, to cut down on recompilations fprintf(fp," virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n"); fprintf(fp," virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n"); return; } // Local pointer indicates remaining part of format rule int idx = 0; // position of operand in match rule // Generate internal format function, used when stored locally fprintf(fp, "\n#ifndef PRODUCT\n"); fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident); // Generate the user-defined portion of the format if (oper._format) { if ( oper._format->_strings.count() != 0 ) { // No initialization code for int_format // Build the format from the entries in strings and rep_vars const char *string = NULL; oper._format->_rep_vars.reset(); oper._format->_strings.reset(); while ( (string = oper._format->_strings.iter()) != NULL ) { // Check if this is a standard string or a replacement variable if ( string != NameList::_signal ) { // Normal string // Pass through to st->print fprintf(fp," st->print(\"%s\");\n", string); } else { // Replacement variable const char *rep_var = oper._format->_rep_vars.iter(); // Check that it is a local name, and an operand const Form* form = oper._localNames[rep_var]; if (form == NULL) { globalAD->syntax_err(oper._linenum, "\'%s\' not found in format for %s\n", rep_var, oper._ident); assert(form, "replacement variable was not found in local names"); } OperandForm *op = form->is_operand(); // Get index if register or constant if ( op->_matrule && op->_matrule->is_base_register(globals) ) { idx = oper.register_position( globals, rep_var); } else if (op->_matrule && op->_matrule->is_base_constant(globals)) { idx = oper.constant_position( globals, rep_var); } else { idx = 0; } // output invocation of "$..."s format function if ( op != NULL ) op->int_format(fp, globals, idx); if ( idx == -1 ) { fprintf(stderr, "Using a name, %s, that isn't in match rule\n", rep_var); assert( strcmp(op->_ident,"label")==0, "Unimplemented"); } } // Done with a replacement variable } // Done with all format strings } else { // Default formats for base operands (RegI, RegP, ConI, ConP, ...) oper.int_format(fp, globals, 0); } } else { // oper._format == NULL // Provide a few special case formats where the AD writer cannot. if ( strcmp(oper._ident,"Universe")==0 ) { fprintf(fp, " st->print(\"$$univ\");\n"); } // labelOper::int_format is defined in ad_<...>.cpp } // ALWAYS! Provide a special case output for condition codes. if( oper.is_ideal_bool() ) { defineCCodeDump(&oper, fp,0); } fprintf(fp,"}\n"); // Generate external format function, when data is stored externally fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident); // Generate the user-defined portion of the format if (oper._format) { if ( oper._format->_strings.count() != 0 ) { // Check for a replacement string "$..." if ( oper._format->_rep_vars.count() != 0 ) { // Initialization code for ext_format } // Build the format from the entries in strings and rep_vars const char *string = NULL; oper._format->_rep_vars.reset(); oper._format->_strings.reset(); while ( (string = oper._format->_strings.iter()) != NULL ) { // Check if this is a standard string or a replacement variable if ( string != NameList::_signal ) { // Normal string // Pass through to st->print fprintf(fp," st->print(\"%s\");\n", string); } else { // Replacement variable const char *rep_var = oper._format->_rep_vars.iter(); // Check that it is a local name, and an operand const Form* form = oper._localNames[rep_var]; if (form == NULL) { globalAD->syntax_err(oper._linenum, "\'%s\' not found in format for %s\n", rep_var, oper._ident); assert(form, "replacement variable was not found in local names"); } OperandForm *op = form->is_operand(); // Get index if register or constant if ( op->_matrule && op->_matrule->is_base_register(globals) ) { idx = oper.register_position( globals, rep_var); } else if (op->_matrule && op->_matrule->is_base_constant(globals)) { idx = oper.constant_position( globals, rep_var); } else { idx = 0; } // output invocation of "$..."s format function if ( op != NULL ) op->ext_format(fp, globals, idx); // Lookup the index position of the replacement variable idx = oper._components.operand_position_format(rep_var, &oper); if ( idx == -1 ) { fprintf(stderr, "Using a name, %s, that isn't in match rule\n", rep_var); assert( strcmp(op->_ident,"label")==0, "Unimplemented"); } } // Done with a replacement variable } // Done with all format strings } else { // Default formats for base operands (RegI, RegP, ConI, ConP, ...) oper.ext_format(fp, globals, 0); } } else { // oper._format == NULL // Provide a few special case formats where the AD writer cannot. if ( strcmp(oper._ident,"Universe")==0 ) { fprintf(fp, " st->print(\"$$univ\");\n"); } // labelOper::ext_format is defined in ad_<...>.cpp } // ALWAYS! Provide a special case output for condition codes. if( oper.is_ideal_bool() ) { defineCCodeDump(&oper, fp,0); } fprintf(fp, "}\n"); fprintf(fp, "#endif\n"); } // Generate the format rule for an instruction void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) { if (!for_c_file) { // compile the bodies separately, to cut down on recompilations // #ifndef PRODUCT region generated by caller fprintf(fp," virtual void format(PhaseRegAlloc *ra, outputStream *st) const;\n"); return; } // Define the format function fprintf(fp, "#ifndef PRODUCT\n"); fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident); // Generate the user-defined portion of the format if( inst._format ) { // If there are replacement variables, // Generate index values needed for determining the operand position if( inst._format->_rep_vars.count() ) inst.index_temps(fp, globals); // Build the format from the entries in strings and rep_vars const char *string = NULL; inst._format->_rep_vars.reset(); inst._format->_strings.reset(); while( (string = inst._format->_strings.iter()) != NULL ) { fprintf(fp," "); // Check if this is a standard string or a replacement variable if( string == NameList::_signal ) { // Replacement variable const char* rep_var = inst._format->_rep_vars.iter(); inst.rep_var_format( fp, rep_var); } else if( string == NameList::_signal3 ) { // Replacement variable in raw text const char* rep_var = inst._format->_rep_vars.iter(); const Form *form = inst._localNames[rep_var]; if (form == NULL) { fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var); assert(false, "ShouldNotReachHere()"); } OpClassForm *opc = form->is_opclass(); assert( opc, "replacement variable was not found in local names"); // Lookup the index position of the replacement variable int idx = inst.operand_position_format(rep_var); if ( idx == -1 ) { assert( strcmp(opc->_ident,"label")==0, "Unimplemented"); assert( false, "ShouldNotReachHere()"); } if (inst.is_noninput_operand(idx)) { assert( false, "ShouldNotReachHere()"); } else { // Output the format call for this operand fprintf(fp,"opnd_array(%d)",idx); } rep_var = inst._format->_rep_vars.iter(); inst._format->_strings.iter(); if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) { Form::DataType constant_type = form->is_operand()->is_base_constant(globals); if ( constant_type == Form::idealD ) { fprintf(fp,"->constantD()"); } else if ( constant_type == Form::idealF ) { fprintf(fp,"->constantF()"); } else if ( constant_type == Form::idealL ) { fprintf(fp,"->constantL()"); } else { fprintf(fp,"->constant()"); } } else if ( strcmp(rep_var,"$cmpcode") == 0) { fprintf(fp,"->ccode()"); } else { assert( false, "ShouldNotReachHere()"); } } else if( string == NameList::_signal2 ) // Raw program text fputs(inst._format->_strings.iter(), fp); else fprintf(fp,"st->print(\"%s\");\n", string); } // Done with all format strings } // Done generating the user-defined portion of the format // Add call debug info automatically Form::CallType call_type = inst.is_ideal_call(); if( call_type != Form::invalid_type ) { switch( call_type ) { case Form::JAVA_DYNAMIC: fprintf(fp," _method->print_short_name(st);\n"); break; case Form::JAVA_STATIC: fprintf(fp," if( _method ) _method->print_short_name(st);\n"); fprintf(fp," else st->print(\" wrapper for: %%s\", _name);\n"); fprintf(fp," if( !_method ) dump_trap_args(st);\n"); break; case Form::JAVA_COMPILED: case Form::JAVA_INTERP: break; case Form::JAVA_RUNTIME: case Form::JAVA_LEAF: case Form::JAVA_NATIVE: fprintf(fp," st->print(\" %%s\", _name);"); break; default: assert(0,"ShouldNotReachHere"); } fprintf(fp, " st->print_cr(\"\");\n" ); fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" ); fprintf(fp, " st->print(\" # \");\n" ); fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n"); } else if(inst.is_ideal_safepoint()) { fprintf(fp, " st->print(\"\");\n" ); fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" ); fprintf(fp, " st->print(\" # \");\n" ); fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n"); } else if( inst.is_ideal_if() ) { fprintf(fp, " st->print(\" P=%%f C=%%f\",_prob,_fcnt);\n" ); } else if( inst.is_ideal_mem() ) { // Print out the field name if available to improve readability fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n"); fprintf(fp, " ciField* f = ra->C->alias_type(adr_type())->field();\n"); fprintf(fp, " st->print(\" %s Field: \");\n", commentSeperator); fprintf(fp, " if (f->is_volatile())\n"); fprintf(fp, " st->print(\"volatile \");\n"); fprintf(fp, " f->holder()->name()->print_symbol_on(st);\n"); fprintf(fp, " st->print(\".\");\n"); fprintf(fp, " f->name()->print_symbol_on(st);\n"); fprintf(fp, " if (f->is_constant())\n"); fprintf(fp, " st->print(\" (constant)\");\n"); fprintf(fp, " } else {\n"); // Make sure 'Volatile' gets printed out fprintf(fp, " if (ra->C->alias_type(adr_type())->is_volatile())\n"); fprintf(fp, " st->print(\" volatile!\");\n"); fprintf(fp, " }\n"); } // Complete the definition of the format function fprintf(fp, "}\n#endif\n"); } void ArchDesc::declare_pipe_classes(FILE *fp_hpp) { if (!_pipeline) return; fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n"); fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n"); if (_pipeline->_maxcycleused <= #ifdef SPARC 64 #else 32 #endif ) { fprintf(fp_hpp, "protected:\n"); fprintf(fp_hpp, " %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" ); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n"); if (_pipeline->_maxcycleused <= 32) fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n"); else { fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n"); } fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n"); fprintf(fp_hpp, " _mask = in._mask;\n"); fprintf(fp_hpp, " return *this;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n"); fprintf(fp_hpp, " return ((_mask & in2._mask) != 0);\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n"); fprintf(fp_hpp, " _mask <<= n;\n"); fprintf(fp_hpp, " return *this;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_hpp, " _mask |= in2._mask;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n"); fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n"); } else { fprintf(fp_hpp, "protected:\n"); uint masklen = (_pipeline->_maxcycleused + 31) >> 5; uint l; fprintf(fp_hpp, " uint "); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n"); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : "); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask("); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : "); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n"); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, " _mask%d = in._mask%d;\n", l, l); fprintf(fp_hpp, " return *this;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask out;\n"); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, " out._mask%d = _mask%d & in2._mask%d;\n", l, l, l); fprintf(fp_hpp, " return out;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n"); fprintf(fp_hpp, " return ("); for (l = 1; l <= masklen; l++) fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : ""); fprintf(fp_hpp, ") ? true : false;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n"); fprintf(fp_hpp, " if (n >= 32)\n"); fprintf(fp_hpp, " do {\n "); for (l = masklen; l > 1; l--) fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1); fprintf(fp_hpp, " _mask%d = 0;\n", 1); fprintf(fp_hpp, " } while ((n -= 32) >= 32);\n\n"); fprintf(fp_hpp, " if (n > 0) {\n"); fprintf(fp_hpp, " uint m = 32 - n;\n"); fprintf(fp_hpp, " uint mask = (1 << n) - 1;\n"); fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1); for (l = 2; l < masklen; l++) { fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l); } fprintf(fp_hpp, " _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen); fprintf(fp_hpp, " }\n"); fprintf(fp_hpp, " return *this;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &);\n\n"); fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n"); fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n"); } fprintf(fp_hpp, " friend class Pipeline_Use;\n\n"); fprintf(fp_hpp, " friend class Pipeline_Use_Element;\n\n"); fprintf(fp_hpp, "};\n\n"); uint rescount = 0; const char *resource; for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { int mask = _pipeline->_resdict[resource]->is_resource()->mask(); if ((mask & (mask-1)) == 0) rescount++; } fprintf(fp_hpp, "// Pipeline_Use_Element Class\n"); fprintf(fp_hpp, "class Pipeline_Use_Element {\n"); fprintf(fp_hpp, "protected:\n"); fprintf(fp_hpp, " // Mask of used functional units\n"); fprintf(fp_hpp, " uint _used;\n\n"); fprintf(fp_hpp, " // Lower and upper bound of functional unit number range\n"); fprintf(fp_hpp, " uint _lb, _ub;\n\n"); fprintf(fp_hpp, " // Indicates multiple functionals units available\n"); fprintf(fp_hpp, " bool _multiple;\n\n"); fprintf(fp_hpp, " // Mask of specific used cycles\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask _mask;\n\n"); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Pipeline_Use_Element() {}\n\n"); fprintf(fp_hpp, " Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n"); fprintf(fp_hpp, " : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n"); fprintf(fp_hpp, " uint used() const { return _used; }\n\n"); fprintf(fp_hpp, " uint lowerBound() const { return _lb; }\n\n"); fprintf(fp_hpp, " uint upperBound() const { return _ub; }\n\n"); fprintf(fp_hpp, " bool multiple() const { return _multiple; }\n\n"); fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n"); fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Element &in2) const {\n"); fprintf(fp_hpp, " return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " void step(uint cycles) {\n"); fprintf(fp_hpp, " _used = 0;\n"); fprintf(fp_hpp, " _mask <<= cycles;\n"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " friend class Pipeline_Use;\n"); fprintf(fp_hpp, "};\n\n"); fprintf(fp_hpp, "// Pipeline_Use Class\n"); fprintf(fp_hpp, "class Pipeline_Use {\n"); fprintf(fp_hpp, "protected:\n"); fprintf(fp_hpp, " // These resources can be used\n"); fprintf(fp_hpp, " uint _resources_used;\n\n"); fprintf(fp_hpp, " // These resources are used; excludes multiple choice functional units\n"); fprintf(fp_hpp, " uint _resources_used_exclusively;\n\n"); fprintf(fp_hpp, " // Number of elements\n"); fprintf(fp_hpp, " uint _count;\n\n"); fprintf(fp_hpp, " // This is the array of Pipeline_Use_Elements\n"); fprintf(fp_hpp, " Pipeline_Use_Element * _elements;\n\n"); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n"); fprintf(fp_hpp, " : _resources_used(resources_used)\n"); fprintf(fp_hpp, " , _resources_used_exclusively(resources_used_exclusively)\n"); fprintf(fp_hpp, " , _count(count)\n"); fprintf(fp_hpp, " , _elements(elements)\n"); fprintf(fp_hpp, " {}\n\n"); fprintf(fp_hpp, " uint resourcesUsed() const { return _resources_used; }\n\n"); fprintf(fp_hpp, " uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n"); fprintf(fp_hpp, " uint count() const { return _count; }\n\n"); fprintf(fp_hpp, " Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n"); fprintf(fp_hpp, " uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n"); fprintf(fp_hpp, " void add_usage(const Pipeline_Use &pred);\n\n"); fprintf(fp_hpp, " void reset() {\n"); fprintf(fp_hpp, " _resources_used = _resources_used_exclusively = 0;\n"); fprintf(fp_hpp, " };\n\n"); fprintf(fp_hpp, " void step(uint cycles) {\n"); fprintf(fp_hpp, " reset();\n"); fprintf(fp_hpp, " for (uint i = 0; i < %d; i++)\n", rescount); fprintf(fp_hpp, " (&_elements[i])->step(cycles);\n"); fprintf(fp_hpp, " };\n\n"); fprintf(fp_hpp, " static const Pipeline_Use elaborated_use;\n"); fprintf(fp_hpp, " static const Pipeline_Use_Element elaborated_elements[%d];\n\n", rescount); fprintf(fp_hpp, " friend class Pipeline;\n"); fprintf(fp_hpp, "};\n\n"); fprintf(fp_hpp, "// Pipeline Class\n"); fprintf(fp_hpp, "class Pipeline {\n"); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " static bool enabled() { return %s; }\n\n", _pipeline ? "true" : "false" ); assert( _pipeline->_maxInstrsPerBundle && ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) && _pipeline->_instrFetchUnitSize && _pipeline->_instrFetchUnits, "unspecified pipeline architecture units"); uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize; fprintf(fp_hpp, " enum {\n"); fprintf(fp_hpp, " _variable_size_instructions = %d,\n", _pipeline->_variableSizeInstrs ? 1 : 0); fprintf(fp_hpp, " _fixed_size_instructions = %d,\n", _pipeline->_variableSizeInstrs ? 0 : 1); fprintf(fp_hpp, " _branch_has_delay_slot = %d,\n", _pipeline->_branchHasDelaySlot ? 1 : 0); fprintf(fp_hpp, " _max_instrs_per_bundle = %d,\n", _pipeline->_maxInstrsPerBundle); fprintf(fp_hpp, " _max_bundles_per_cycle = %d,\n", _pipeline->_maxBundlesPerCycle); fprintf(fp_hpp, " _max_instrs_per_cycle = %d\n", _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle); fprintf(fp_hpp, " };\n\n"); fprintf(fp_hpp, " static bool instr_has_unit_size() { return %s; }\n\n", _pipeline->_instrUnitSize != 0 ? "true" : "false" ); if( _pipeline->_bundleUnitSize != 0 ) if( _pipeline->_instrUnitSize != 0 ) fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n"); else fprintf(fp_hpp, "// Instructions exist only in bundles\n\n"); else fprintf(fp_hpp, "// Bundling is not supported\n\n"); if( _pipeline->_instrUnitSize != 0 ) fprintf(fp_hpp, " // Size of an instruction\n"); else fprintf(fp_hpp, " // Size of an individual instruction does not exist - unsupported\n"); fprintf(fp_hpp, " static uint instr_unit_size() {"); if( _pipeline->_instrUnitSize == 0 ) fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );"); fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize); if( _pipeline->_bundleUnitSize != 0 ) fprintf(fp_hpp, " // Size of a bundle\n"); else fprintf(fp_hpp, " // Bundles do not exist - unsupported\n"); fprintf(fp_hpp, " static uint bundle_unit_size() {"); if( _pipeline->_bundleUnitSize == 0 ) fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );"); fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize); fprintf(fp_hpp, " static bool requires_bundling() { return %s; }\n\n", _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" ); fprintf(fp_hpp, "private:\n"); fprintf(fp_hpp, " Pipeline(); // Not a legal constructor\n"); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, " const unsigned char _read_stage_count;\n"); fprintf(fp_hpp, " const unsigned char _write_stage;\n"); fprintf(fp_hpp, " const unsigned char _fixed_latency;\n"); fprintf(fp_hpp, " const unsigned char _instruction_count;\n"); fprintf(fp_hpp, " const bool _has_fixed_latency;\n"); fprintf(fp_hpp, " const bool _has_branch_delay;\n"); fprintf(fp_hpp, " const bool _has_multiple_bundles;\n"); fprintf(fp_hpp, " const bool _force_serialization;\n"); fprintf(fp_hpp, " const bool _may_have_no_code;\n"); fprintf(fp_hpp, " const enum machPipelineStages * const _read_stages;\n"); fprintf(fp_hpp, " const enum machPipelineStages * const _resource_stage;\n"); fprintf(fp_hpp, " const uint * const _resource_cycles;\n"); fprintf(fp_hpp, " const Pipeline_Use _resource_use;\n"); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Pipeline(uint write_stage,\n"); fprintf(fp_hpp, " uint count,\n"); fprintf(fp_hpp, " bool has_fixed_latency,\n"); fprintf(fp_hpp, " uint fixed_latency,\n"); fprintf(fp_hpp, " uint instruction_count,\n"); fprintf(fp_hpp, " bool has_branch_delay,\n"); fprintf(fp_hpp, " bool has_multiple_bundles,\n"); fprintf(fp_hpp, " bool force_serialization,\n"); fprintf(fp_hpp, " bool may_have_no_code,\n"); fprintf(fp_hpp, " enum machPipelineStages * const dst,\n"); fprintf(fp_hpp, " enum machPipelineStages * const stage,\n"); fprintf(fp_hpp, " uint * const cycles,\n"); fprintf(fp_hpp, " Pipeline_Use resource_use)\n"); fprintf(fp_hpp, " : _write_stage(write_stage)\n"); fprintf(fp_hpp, " , _read_stage_count(count)\n"); fprintf(fp_hpp, " , _has_fixed_latency(has_fixed_latency)\n"); fprintf(fp_hpp, " , _fixed_latency(fixed_latency)\n"); fprintf(fp_hpp, " , _read_stages(dst)\n"); fprintf(fp_hpp, " , _resource_stage(stage)\n"); fprintf(fp_hpp, " , _resource_cycles(cycles)\n"); fprintf(fp_hpp, " , _resource_use(resource_use)\n"); fprintf(fp_hpp, " , _instruction_count(instruction_count)\n"); fprintf(fp_hpp, " , _has_branch_delay(has_branch_delay)\n"); fprintf(fp_hpp, " , _has_multiple_bundles(has_multiple_bundles)\n"); fprintf(fp_hpp, " , _force_serialization(force_serialization)\n"); fprintf(fp_hpp, " , _may_have_no_code(may_have_no_code)\n"); fprintf(fp_hpp, " {};\n"); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, " uint writeStage() const {\n"); fprintf(fp_hpp, " return (_write_stage);\n"); fprintf(fp_hpp, " }\n"); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, " enum machPipelineStages readStage(int ndx) const {\n"); fprintf(fp_hpp, " return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);"); fprintf(fp_hpp, " }\n\n"); fprintf(fp_hpp, " uint resourcesUsed() const {\n"); fprintf(fp_hpp, " return _resource_use.resourcesUsed();\n }\n\n"); fprintf(fp_hpp, " uint resourcesUsedExclusively() const {\n"); fprintf(fp_hpp, " return _resource_use.resourcesUsedExclusively();\n }\n\n"); fprintf(fp_hpp, " bool hasFixedLatency() const {\n"); fprintf(fp_hpp, " return (_has_fixed_latency);\n }\n\n"); fprintf(fp_hpp, " uint fixedLatency() const {\n"); fprintf(fp_hpp, " return (_fixed_latency);\n }\n\n"); fprintf(fp_hpp, " uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n"); fprintf(fp_hpp, " uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n"); fprintf(fp_hpp, " const Pipeline_Use& resourceUse() const {\n"); fprintf(fp_hpp, " return (_resource_use); }\n\n"); fprintf(fp_hpp, " const Pipeline_Use_Element * resourceUseElement(uint i) const {\n"); fprintf(fp_hpp, " return (&_resource_use._elements[i]); }\n\n"); fprintf(fp_hpp, " uint resourceUseCount() const {\n"); fprintf(fp_hpp, " return (_resource_use._count); }\n\n"); fprintf(fp_hpp, " uint instructionCount() const {\n"); fprintf(fp_hpp, " return (_instruction_count); }\n\n"); fprintf(fp_hpp, " bool hasBranchDelay() const {\n"); fprintf(fp_hpp, " return (_has_branch_delay); }\n\n"); fprintf(fp_hpp, " bool hasMultipleBundles() const {\n"); fprintf(fp_hpp, " return (_has_multiple_bundles); }\n\n"); fprintf(fp_hpp, " bool forceSerialization() const {\n"); fprintf(fp_hpp, " return (_force_serialization); }\n\n"); fprintf(fp_hpp, " bool mayHaveNoCode() const {\n"); fprintf(fp_hpp, " return (_may_have_no_code); }\n\n"); fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n"); fprintf(fp_hpp, "// return (_resource_use_masks[resource]); }\n\n"); fprintf(fp_hpp, "\n#ifndef PRODUCT\n"); fprintf(fp_hpp, " static const char * stageName(uint i);\n"); fprintf(fp_hpp, "#endif\n"); fprintf(fp_hpp, "};\n\n"); fprintf(fp_hpp, "// Bundle class\n"); fprintf(fp_hpp, "class Bundle {\n"); uint mshift = 0; for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1) mshift++; uint rshift = rescount; fprintf(fp_hpp, "protected:\n"); fprintf(fp_hpp, " enum {\n"); fprintf(fp_hpp, " _unused_delay = 0x%x,\n", 0); fprintf(fp_hpp, " _use_nop_delay = 0x%x,\n", 1); fprintf(fp_hpp, " _use_unconditional_delay = 0x%x,\n", 2); fprintf(fp_hpp, " _use_conditional_delay = 0x%x,\n", 3); fprintf(fp_hpp, " _used_in_conditional_delay = 0x%x,\n", 4); fprintf(fp_hpp, " _used_in_unconditional_delay = 0x%x,\n", 5); fprintf(fp_hpp, " _used_in_all_conditional_delays = 0x%x,\n", 6); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, " _use_delay = 0x%x,\n", 3); fprintf(fp_hpp, " _used_in_delay = 0x%x\n", 4); fprintf(fp_hpp, " };\n\n"); fprintf(fp_hpp, " uint _flags : 3,\n"); fprintf(fp_hpp, " _starts_bundle : 1,\n"); fprintf(fp_hpp, " _instr_count : %d,\n", mshift); fprintf(fp_hpp, " _resources_used : %d;\n", rshift); fprintf(fp_hpp, "public:\n"); fprintf(fp_hpp, " Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n"); fprintf(fp_hpp, " void set_instr_count(uint i) { _instr_count = i; }\n"); fprintf(fp_hpp, " void set_resources_used(uint i) { _resources_used = i; }\n"); fprintf(fp_hpp, " void clear_usage() { _flags = _unused_delay; }\n"); fprintf(fp_hpp, " void set_starts_bundle() { _starts_bundle = true; }\n"); fprintf(fp_hpp, " uint flags() const { return (_flags); }\n"); fprintf(fp_hpp, " uint instr_count() const { return (_instr_count); }\n"); fprintf(fp_hpp, " uint resources_used() const { return (_resources_used); }\n"); fprintf(fp_hpp, " bool starts_bundle() const { return (_starts_bundle != 0); }\n"); fprintf(fp_hpp, " void set_use_nop_delay() { _flags = _use_nop_delay; }\n"); fprintf(fp_hpp, " void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n"); fprintf(fp_hpp, " void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n"); fprintf(fp_hpp, " void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n"); fprintf(fp_hpp, " void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n"); fprintf(fp_hpp, " void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n"); fprintf(fp_hpp, " bool use_nop_delay() { return (_flags == _use_nop_delay); }\n"); fprintf(fp_hpp, " bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n"); fprintf(fp_hpp, " bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n"); fprintf(fp_hpp, " bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n"); fprintf(fp_hpp, " bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n"); fprintf(fp_hpp, " bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n"); fprintf(fp_hpp, " bool use_delay() { return ((_flags & _use_delay) != 0); }\n"); fprintf(fp_hpp, " bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n"); fprintf(fp_hpp, " enum {\n"); fprintf(fp_hpp, " _nop_count = %d\n", _pipeline->_nopcnt); fprintf(fp_hpp, " };\n\n"); fprintf(fp_hpp, " static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n", _pipeline->_nopcnt); fprintf(fp_hpp, "#ifndef PRODUCT\n"); fprintf(fp_hpp, " void dump(outputStream *st = tty) const;\n"); fprintf(fp_hpp, "#endif\n"); fprintf(fp_hpp, "};\n\n"); // const char *classname; // for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) { // PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass(); // fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname); // } } //------------------------------declareClasses--------------------------------- // Construct the class hierarchy of MachNode classes from the instruction & // operand lists void ArchDesc::declareClasses(FILE *fp) { // Declare an array containing the machine register names, strings. declareRegNames(fp, _register); // Declare an array containing the machine register encoding values declareRegEncodes(fp, _register); // Generate declarations for the total number of operands fprintf(fp,"\n"); fprintf(fp,"// Total number of operands defined in architecture definition\n"); int num_operands = 0; OperandForm *op; for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) { // Ensure this is a machine-world instruction if (op->ideal_only()) continue; ++num_operands; } int first_operand_class = num_operands; OpClassForm *opc; for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) { // Ensure this is a machine-world instruction if (opc->ideal_only()) continue; ++num_operands; } fprintf(fp,"#define FIRST_OPERAND_CLASS %d\n", first_operand_class); fprintf(fp,"#define NUM_OPERANDS %d\n", num_operands); fprintf(fp,"\n"); // Generate declarations for the total number of instructions fprintf(fp,"// Total number of instructions defined in architecture definition\n"); fprintf(fp,"#define NUM_INSTRUCTIONS %d\n",instructFormCount()); // Generate Machine Classes for each operand defined in AD file fprintf(fp,"\n"); fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n"); // Iterate through all operands _operands.reset(); OperandForm *oper; for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) { // Ensure this is a machine-world instruction if (oper->ideal_only() ) continue; // The declaration of labelOper is in machine-independent file: machnode if ( strcmp(oper->_ident,"label") == 0 ) continue; // The declaration of methodOper is in machine-independent file: machnode if ( strcmp(oper->_ident,"method") == 0 ) continue; // Build class definition for this operand fprintf(fp,"\n"); fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident); fprintf(fp,"private:\n"); // Operand definitions that depend upon number of input edges { uint num_edges = oper->num_edges(_globalNames); if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;} fprintf(fp," virtual uint num_edges() const { return %d; }\n", num_edges ); } if( num_edges > 0 ) { in_RegMask(fp); } } // Support storing constants inside the MachOper declareConstStorage(fp,_globalNames,oper); // Support storage of the condition codes if( oper->is_ideal_bool() ) { fprintf(fp," virtual int ccode() const { \n"); fprintf(fp," switch (_c0) {\n"); fprintf(fp," case BoolTest::eq : return equal();\n"); fprintf(fp," case BoolTest::gt : return greater();\n"); fprintf(fp," case BoolTest::lt : return less();\n"); fprintf(fp," case BoolTest::ne : return not_equal();\n"); fprintf(fp," case BoolTest::le : return less_equal();\n"); fprintf(fp," case BoolTest::ge : return greater_equal();\n"); fprintf(fp," case BoolTest::overflow : return overflow();\n"); fprintf(fp," case BoolTest::no_overflow: return no_overflow();\n"); fprintf(fp," default : ShouldNotReachHere(); return 0;\n"); fprintf(fp," }\n"); fprintf(fp," };\n"); } // Support storage of the condition codes if( oper->is_ideal_bool() ) { fprintf(fp," virtual void negate() { \n"); fprintf(fp," _c0 = (BoolTest::mask)((int)_c0^0x4); \n"); fprintf(fp," };\n"); } // Declare constructor. // Parameters start with condition code, then all other constants // // (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn) // (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { } // Form::DataType constant_type = oper->simple_type(_globalNames); defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames), oper->_components, oper->is_ideal_bool(), constant_type, _globalNames); // Clone function fprintf(fp," virtual MachOper *clone(Compile* C) const;\n"); // Support setting a spill offset into a constant operand. // We only support setting an 'int' offset, while in the // LP64 build spill offsets are added with an AddP which // requires a long constant. Thus we don't support spilling // in frames larger than 4Gig. if( oper->has_conI(_globalNames) || oper->has_conL(_globalNames) ) fprintf(fp, " virtual void set_con( jint c0 ) { _c0 = c0; }\n"); // virtual functions for encoding and format // fprintf(fp," virtual void encode() const {\n %s }\n", // (oper->_encrule)?(oper->_encrule->_encrule):""); // Check the interface type, and generate the correct query functions // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER. fprintf(fp," virtual uint opcode() const { return %s; }\n", machOperEnum(oper->_ident)); // virtual function to look up ideal return type of machine instruction // // (1) virtual const Type *type() const { return .....; } // if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) && (oper->_matrule->_rChild == NULL)) { unsigned int position = 0; const char *opret, *opname, *optype; oper->_matrule->base_operand(position,_globalNames,opret,opname,optype); fprintf(fp," virtual const Type *type() const {"); const char *type = getIdealType(optype); if( type != NULL ) { Form::DataType data_type = oper->is_base_constant(_globalNames); // Check if we are an ideal pointer type if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) { // Return the ideal type we already have: <TypePtr *> fprintf(fp," return _c0;"); } else { // Return the appropriate bottom type fprintf(fp," return %s;", getIdealType(optype)); } } else { fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;"); } fprintf(fp," }\n"); } else { // Check for user-defined stack slots, based upon sRegX Form::DataType data_type = oper->is_user_name_for_sReg(); if( data_type != Form::none ){ const char *type = NULL; switch( data_type ) { case Form::idealI: type = "TypeInt::INT"; break; case Form::idealP: type = "TypePtr::BOTTOM";break; case Form::idealF: type = "Type::FLOAT"; break; case Form::idealD: type = "Type::DOUBLE"; break; case Form::idealL: type = "TypeLong::LONG"; break; case Form::none: // fall through default: assert( false, "No support for this type of stackSlot"); } fprintf(fp," virtual const Type *type() const { return %s; } // stackSlotX\n", type); } } // // virtual functions for defining the encoding interface. // // Access the linearized ideal register mask, // map to physical register encoding if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) { // Just use the default virtual 'reg' call } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) { // Special handling for operand 'sReg', a Stack Slot Register. // Map linearized ideal register mask to stack slot number fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node) const {\n"); fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n"); fprintf(fp," }\n"); fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n"); fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n"); fprintf(fp," }\n"); } // Output the operand specific access functions used by an enc_class // These are only defined when we want to override the default virtual func if (oper->_interface != NULL) { fprintf(fp,"\n"); // Check if it is a Memory Interface if ( oper->_interface->is_MemInterface() != NULL ) { MemInterface *mem_interface = oper->_interface->is_MemInterface(); const char *base = mem_interface->_base; if( base != NULL ) { define_oper_interface(fp, *oper, _globalNames, "base", base); } char *index = mem_interface->_index; if( index != NULL ) { define_oper_interface(fp, *oper, _globalNames, "index", index); } const char *scale = mem_interface->_scale; if( scale != NULL ) { define_oper_interface(fp, *oper, _globalNames, "scale", scale); } const char *disp = mem_interface->_disp; if( disp != NULL ) { define_oper_interface(fp, *oper, _globalNames, "disp", disp); oper->disp_is_oop(fp, _globalNames); } if( oper->stack_slots_only(_globalNames) ) { // should not call this: fprintf(fp," virtual int constant_disp() const { return Type::OffsetBot; }"); } else if ( disp != NULL ) { define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp); } } // end Memory Interface // Check if it is a Conditional Interface else if (oper->_interface->is_CondInterface() != NULL) { CondInterface *cInterface = oper->_interface->is_CondInterface(); const char *equal = cInterface->_equal; if( equal != NULL ) { define_oper_interface(fp, *oper, _globalNames, "equal", equal); } const char *not_equal = cInterface->_not_equal; if( not_equal != NULL ) { define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal); } const char *less = cInterface->_less; if( less != NULL ) { define_oper_interface(fp, *oper, _globalNames, "less", less); } const char *greater_equal = cInterface->_greater_equal; if( greater_equal != NULL ) { define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal); } const char *less_equal = cInterface->_less_equal; if( less_equal != NULL ) { define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal); } const char *greater = cInterface->_greater; if( greater != NULL ) { define_oper_interface(fp, *oper, _globalNames, "greater", greater); } const char *overflow = cInterface->_overflow; if( overflow != NULL ) { define_oper_interface(fp, *oper, _globalNames, "overflow", overflow); } const char *no_overflow = cInterface->_no_overflow; if( no_overflow != NULL ) { define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow); } } // end Conditional Interface // Check if it is a Constant Interface else if (oper->_interface->is_ConstInterface() != NULL ) { assert( oper->num_consts(_globalNames) == 1, "Must have one constant when using CONST_INTER encoding"); if (!strcmp(oper->ideal_type(_globalNames), "ConI")) { // Access the locally stored constant fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " return (intptr_t)_c0;"); fprintf(fp," }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) { // Access the locally stored constant fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " return _c0->get_con();"); fprintf(fp, " }\n"); // Generate query to determine if this pointer is an oop fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); fprintf(fp, " return _c0->reloc();"); fprintf(fp, " }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) { // Access the locally stored constant fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " return _c0->get_ptrtype()->get_con();"); fprintf(fp, " }\n"); // Generate query to determine if this pointer is an oop fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); fprintf(fp, " return _c0->get_ptrtype()->reloc();"); fprintf(fp, " }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) { // Access the locally stored constant fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " return _c0->get_ptrtype()->get_con();"); fprintf(fp, " }\n"); // Generate query to determine if this pointer is an oop fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); fprintf(fp, " return _c0->get_ptrtype()->reloc();"); fprintf(fp, " }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) { fprintf(fp," virtual intptr_t constant() const {"); // We don't support addressing modes with > 4Gig offsets. // Truncate to int. fprintf(fp, " return (intptr_t)_c0;"); fprintf(fp, " }\n"); fprintf(fp," virtual jlong constantL() const {"); fprintf(fp, " return _c0;"); fprintf(fp, " }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) { fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " ShouldNotReachHere(); return 0; "); fprintf(fp, " }\n"); fprintf(fp," virtual jfloat constantF() const {"); fprintf(fp, " return (jfloat)_c0;"); fprintf(fp, " }\n"); } else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) { fprintf(fp," virtual intptr_t constant() const {"); fprintf(fp, " ShouldNotReachHere(); return 0; "); fprintf(fp, " }\n"); fprintf(fp," virtual jdouble constantD() const {"); fprintf(fp, " return _c0;"); fprintf(fp, " }\n"); } } else if (oper->_interface->is_RegInterface() != NULL) { // make sure that a fixed format string isn't used for an // operand which might be assiged to multiple registers. // Otherwise the opto assembly output could be misleading. if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) { syntax_err(oper->_linenum, "Only bound registers can have fixed formats: %s\n", oper->_ident); } } else { assert( false, "ShouldNotReachHere();"); } } fprintf(fp,"\n"); // // Currently all XXXOper::hash() methods are identical (990820) // declare_hash(fp); // // Currently all XXXOper::Cmp() methods are identical (990820) // declare_cmp(fp); // Do not place dump_spec() and Name() into PRODUCT code // int_format and ext_format are not needed in PRODUCT code either fprintf(fp, "#ifndef PRODUCT\n"); // Declare int_format() and ext_format() gen_oper_format(fp, _globalNames, *oper); // Machine independent print functionality for debugging // IF we have constants, create a dump_spec function for the derived class // // (1) virtual void dump_spec() const { // (2) st->print("#%d", _c#); // Constant != ConP // OR _c#->dump_on(st); // Type ConP // ... // (3) } uint num_consts = oper->num_consts(_globalNames); if( num_consts > 0 ) { // line (1) fprintf(fp, " virtual void dump_spec(outputStream *st) const {\n"); // generate format string for st->print // Iterate over the component list & spit out the right thing uint i = 0; const char *type = oper->ideal_type(_globalNames); Component *comp; oper->_components.reset(); if ((comp = oper->_components.iter()) == NULL) { assert(num_consts == 1, "Bad component list detected.\n"); i = dump_spec_constant( fp, type, i, oper ); // Check that type actually matched assert( i != 0, "Non-constant operand lacks component list."); } // end if NULL else { // line (2) // dump all components oper->_components.reset(); while((comp = oper->_components.iter()) != NULL) { type = comp->base_type(_globalNames); i = dump_spec_constant( fp, type, i, NULL ); } } // finish line (3) fprintf(fp," }\n"); } fprintf(fp," virtual const char *Name() const { return \"%s\";}\n", oper->_ident); fprintf(fp,"#endif\n"); // Close definition of this XxxMachOper fprintf(fp,"};\n"); } // Generate Machine Classes for each instruction defined in AD file fprintf(fp,"\n"); fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n"); declare_pipe_classes(fp); // Generate Machine Classes for each instruction defined in AD file fprintf(fp,"\n"); fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n"); _instructions.reset(); InstructForm *instr; for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { // Ensure this is a machine-world instruction if ( instr->ideal_only() ) continue; // Build class definition for this instruction fprintf(fp,"\n"); fprintf(fp,"class %sNode : public %s { \n", instr->_ident, instr->mach_base_class(_globalNames) ); fprintf(fp,"private:\n"); fprintf(fp," MachOper *_opnd_array[%d];\n", instr->num_opnds() ); if ( instr->is_ideal_jump() ) { fprintf(fp, " GrowableArray<Label*> _index2label;\n"); } fprintf(fp,"public:\n"); fprintf(fp," MachOper *opnd_array(uint operand_index) const {\n"); fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n"); fprintf(fp," return _opnd_array[operand_index];\n"); fprintf(fp," }\n"); fprintf(fp," void set_opnd_array(uint operand_index, MachOper *operand) {\n"); fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n"); fprintf(fp," _opnd_array[operand_index] = operand;\n"); fprintf(fp," }\n"); fprintf(fp,"private:\n"); if ( instr->is_ideal_jump() ) { fprintf(fp," virtual void add_case_label(int index_num, Label* blockLabel) {\n"); fprintf(fp," _index2label.at_put_grow(index_num, blockLabel);\n"); fprintf(fp," }\n"); } if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) { fprintf(fp," const RegMask *_cisc_RegMask;\n"); } out_RegMask(fp); // output register mask fprintf(fp," virtual uint rule() const { return %s_rule; }\n", instr->_ident); // If this instruction contains a labelOper // Declare Node::methods that set operand Label's contents int label_position = instr->label_position(); if( label_position != -1 ) { // Set/Save the label, stored in labelOper::_branch_label fprintf(fp," virtual void label_set( Label* label, uint block_num );\n"); fprintf(fp," virtual void save_label( Label** label, uint* block_num );\n"); } // If this instruction contains a methodOper // Declare Node::methods that set operand method's contents int method_position = instr->method_position(); if( method_position != -1 ) { // Set the address method, stored in methodOper::_method fprintf(fp," virtual void method_set( intptr_t method );\n"); } // virtual functions for attributes // // Each instruction attribute results in a virtual call of same name. // The ins_cost is not handled here. Attribute *attr = instr->_attribs; bool avoid_back_to_back = false; while (attr != NULL) { if (strcmp(attr->_ident,"ins_cost") && strcmp(attr->_ident,"ins_short_branch")) { fprintf(fp," int %s() const { return %s; }\n", attr->_ident, attr->_val); } // Check value for ins_avoid_back_to_back, and if it is true (1), set the flag if (!strcmp(attr->_ident,"ins_avoid_back_to_back") && attr->int_val(*this) != 0) avoid_back_to_back = true; attr = (Attribute *)attr->_next; } // virtual functions for encode and format // Virtual function for evaluating the constant. if (instr->is_mach_constant()) { fprintf(fp," virtual void eval_constant(Compile* C);\n"); } // Output the opcode function and the encode function here using the // encoding class information in the _insencode slot. if ( instr->_insencode ) { fprintf(fp," virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n"); } // virtual function for getting the size of an instruction if ( instr->_size ) { fprintf(fp," virtual uint size(PhaseRegAlloc *ra_) const;\n"); } // Return the top-level ideal opcode. // Use MachNode::ideal_Opcode() for nodes based on MachNode class // if the ideal_Opcode == Op_Node. if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 || strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) { fprintf(fp," virtual int ideal_Opcode() const { return Op_%s; }\n", instr->ideal_Opcode(_globalNames) ); } // Allow machine-independent optimization, invert the sense of the IF test if( instr->is_ideal_if() ) { fprintf(fp," virtual void negate() { \n"); // Identify which operand contains the negate(able) ideal condition code int idx = 0; instr->_components.reset(); for( Component *comp; (comp = instr->_components.iter()) != NULL; ) { // Check that component is an operand Form *form = (Form*)_globalNames[comp->_type]; OperandForm *opForm = form ? form->is_operand() : NULL; if( opForm == NULL ) continue; // Lookup the position of the operand in the instruction. if( opForm->is_ideal_bool() ) { idx = instr->operand_position(comp->_name, comp->_usedef); assert( idx != NameList::Not_in_list, "Did not find component in list that contained it."); break; } } fprintf(fp," opnd_array(%d)->negate();\n", idx); fprintf(fp," _prob = 1.0f - _prob;\n"); fprintf(fp," };\n"); } // Identify which input register matches the input register. uint matching_input = instr->two_address(_globalNames); // Generate the method if it returns != 0 otherwise use MachNode::two_adr() if( matching_input != 0 ) { fprintf(fp," virtual uint two_adr() const "); fprintf(fp,"{ return oper_input_base()"); for( uint i = 2; i <= matching_input; i++ ) fprintf(fp," + opnd_array(%d)->num_edges()",i-1); fprintf(fp,"; }\n"); } // Declare cisc_version, if applicable // MachNode *cisc_version( int offset /* ,... */ ); instr->declare_cisc_version(*this, fp); // If there is an explicit peephole rule, build it if ( instr->peepholes() != NULL ) { fprintf(fp," virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n"); } // Output the declaration for number of relocation entries if ( instr->reloc(_globalNames) != 0 ) { fprintf(fp," virtual int reloc() const;\n"); } if (instr->alignment() != 1) { fprintf(fp," virtual int alignment_required() const { return %d; }\n", instr->alignment()); fprintf(fp," virtual int compute_padding(int current_offset) const;\n"); } // Starting point for inputs matcher wants. // Use MachNode::oper_input_base() for nodes based on MachNode class // if the base == 1. if ( instr->oper_input_base(_globalNames) != 1 || strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) { fprintf(fp," virtual uint oper_input_base() const { return %d; }\n", instr->oper_input_base(_globalNames)); } // Make the constructor and following methods 'public:' fprintf(fp,"public:\n"); // Constructor if ( instr->is_ideal_jump() ) { fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident); } else { fprintf(fp," %sNode() { ", instr->_ident); if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) { fprintf(fp,"_cisc_RegMask = NULL; "); } } fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds()); bool node_flags_set = false; // flag: if this instruction matches an ideal 'Copy*' node if ( instr->is_ideal_copy() != 0 ) { fprintf(fp,"init_flags(Flag_is_Copy"); node_flags_set = true; } // Is an instruction is a constant? If so, get its type Form::DataType data_type; const char *opType = NULL; const char *result = NULL; data_type = instr->is_chain_of_constant(_globalNames, opType, result); // Check if this instruction is a constant if ( data_type != Form::none ) { if ( node_flags_set ) { fprintf(fp," | Flag_is_Con"); } else { fprintf(fp,"init_flags(Flag_is_Con"); node_flags_set = true; } } // flag: if this instruction is cisc alternate if ( can_cisc_spill() && instr->is_cisc_alternate() ) { if ( node_flags_set ) { fprintf(fp," | Flag_is_cisc_alternate"); } else { fprintf(fp,"init_flags(Flag_is_cisc_alternate"); node_flags_set = true; } } // flag: if this instruction has short branch form if ( instr->has_short_branch_form() ) { if ( node_flags_set ) { fprintf(fp," | Flag_may_be_short_branch"); } else { fprintf(fp,"init_flags(Flag_may_be_short_branch"); node_flags_set = true; } } // flag: if this instruction should not be generated back to back. if ( avoid_back_to_back ) { if ( node_flags_set ) { fprintf(fp," | Flag_avoid_back_to_back"); } else { fprintf(fp,"init_flags(Flag_avoid_back_to_back"); node_flags_set = true; } } // Check if machine instructions that USE memory, but do not DEF memory, // depend upon a node that defines memory in machine-independent graph. if ( instr->needs_anti_dependence_check(_globalNames) ) { if ( node_flags_set ) { fprintf(fp," | Flag_needs_anti_dependence_check"); } else { fprintf(fp,"init_flags(Flag_needs_anti_dependence_check"); node_flags_set = true; } } // flag: if this instruction is implemented with a call if ( instr->_has_call ) { if ( node_flags_set ) { fprintf(fp," | Flag_has_call"); } else { fprintf(fp,"init_flags(Flag_has_call"); node_flags_set = true; } } if ( node_flags_set ) { fprintf(fp,"); "); } fprintf(fp,"}\n"); // size_of, used by base class's clone to obtain the correct size. fprintf(fp," virtual uint size_of() const {"); fprintf(fp, " return sizeof(%sNode);", instr->_ident); fprintf(fp, " }\n"); // Virtual methods which are only generated to override base class if( instr->expands() || instr->needs_projections() || instr->has_temps() || instr->is_mach_constant() || instr->_matrule != NULL && instr->num_opnds() != instr->num_unique_opnds() ) { fprintf(fp," virtual MachNode *Expand(State *state, Node_List &proj_list, Node* mem);\n"); } if (instr->is_pinned(_globalNames)) { fprintf(fp," virtual bool pinned() const { return "); if (instr->is_parm(_globalNames)) { fprintf(fp,"_in[0]->pinned();"); } else { fprintf(fp,"true;"); } fprintf(fp," }\n"); } if (instr->is_projection(_globalNames)) { fprintf(fp," virtual const Node *is_block_proj() const { return this; }\n"); } if ( instr->num_post_match_opnds() != 0 || instr->is_chain_of_constant(_globalNames) ) { fprintf(fp," friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n"); } if ( instr->rematerialize(_globalNames, get_registers()) ) { fprintf(fp," // Rematerialize %s\n", instr->_ident); } // Declare short branch methods, if applicable instr->declare_short_branch_methods(fp); // See if there is an "ins_pipe" declaration for this instruction if (instr->_ins_pipe) { fprintf(fp," static const Pipeline *pipeline_class();\n"); fprintf(fp," virtual const Pipeline *pipeline() const;\n"); } // Generate virtual function for MachNodeX::bottom_type when necessary // // Note on accuracy: Pointer-types of machine nodes need to be accurate, // or else alias analysis on the matched graph may produce bad code. // Moreover, the aliasing decisions made on machine-node graph must be // no less accurate than those made on the ideal graph, or else the graph // may fail to schedule. (Reason: Memory ops which are reordered in // the ideal graph might look interdependent in the machine graph, // thereby removing degrees of scheduling freedom that the optimizer // assumed would be available.) // // %%% We should handle many of these cases with an explicit ADL clause: // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %} if( data_type != Form::none ) { // A constant's bottom_type returns a Type containing its constant value // !!!!! // Convert all ints, floats, ... to machine-independent TypeXs // as is done for pointers // // Construct appropriate constant type containing the constant value. fprintf(fp," virtual const class Type *bottom_type() const {\n"); switch( data_type ) { case Form::idealI: fprintf(fp," return TypeInt::make(opnd_array(1)->constant());\n"); break; case Form::idealP: case Form::idealN: case Form::idealNKlass: fprintf(fp," return opnd_array(1)->type();\n"); break; case Form::idealD: fprintf(fp," return TypeD::make(opnd_array(1)->constantD());\n"); break; case Form::idealF: fprintf(fp," return TypeF::make(opnd_array(1)->constantF());\n"); break; case Form::idealL: fprintf(fp," return TypeLong::make(opnd_array(1)->constantL());\n"); break; default: assert( false, "Unimplemented()" ); break; } fprintf(fp," };\n"); } /* else if ( instr->_matrule && instr->_matrule->_rChild && ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0 || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) { // !!!!! !!!!! // Provide explicit bottom type for conversions to int // On Intel the result operand is a stackSlot, untyped. fprintf(fp," virtual const class Type *bottom_type() const {"); fprintf(fp, " return TypeInt::INT;"); fprintf(fp, " };\n"); }*/ else if( instr->is_ideal_copy() && !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) { // !!!!! // Special hack for ideal Copy of pointer. Bottom type is oop or not depending on input. fprintf(fp," const Type *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n"); } else if( instr->is_ideal_loadPC() ) { // LoadPCNode provides the return address of a call to native code. // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM // since it is a pointer to an internal VM location and must have a zero offset. // Allocation detects derived pointers, in part, by their non-zero offsets. fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n"); } else if( instr->is_ideal_box() ) { // BoxNode provides the address of a stack slot. // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM // This prevent s insert_anti_dependencies from complaining. It will // complain if it sees that the pointer base is TypePtr::BOTTOM since // it doesn't understand what that might alias. fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n"); } else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) { int offset = 1; // Special special hack to see if the Cmp? has been incorporated in the conditional move MatchNode *rl = instr->_matrule->_rChild->_lChild; if( rl && !strcmp(rl->_opType, "Binary") ) { MatchNode *rlr = rl->_rChild; if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0) offset = 2; } // Special hack for ideal CMoveP; ideal type depends on inputs fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n", offset, offset+1, offset+1); } else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) { int offset = 1; // Special special hack to see if the Cmp? has been incorporated in the conditional move MatchNode *rl = instr->_matrule->_rChild->_lChild; if( rl && !strcmp(rl->_opType, "Binary") ) { MatchNode *rlr = rl->_rChild; if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0) offset = 2; } // Special hack for ideal CMoveN; ideal type depends on inputs fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n", offset, offset+1, offset+1); } else if (instr->is_tls_instruction()) { // Special hack for tlsLoadP fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n"); } else if ( instr->is_ideal_if() ) { fprintf(fp," const Type *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n"); } else if ( instr->is_ideal_membar() ) { fprintf(fp," const Type *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n"); } // Check where 'ideal_type' must be customized /* if ( instr->_matrule && instr->_matrule->_rChild && ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0 || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) { fprintf(fp," virtual uint ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n"); }*/ // Analyze machine instructions that either USE or DEF memory. int memory_operand = instr->memory_operand(_globalNames); // Some guys kill all of memory if ( instr->is_wide_memory_kill(_globalNames) ) { memory_operand = InstructForm::MANY_MEMORY_OPERANDS; } if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) { fprintf(fp," virtual const TypePtr *adr_type() const;\n"); } fprintf(fp," virtual const MachOper *memory_operand() const;\n"); } fprintf(fp, "#ifndef PRODUCT\n"); // virtual function for generating the user's assembler output gen_inst_format(fp, _globalNames,*instr); // Machine independent print functionality for debugging fprintf(fp," virtual const char *Name() const { return \"%s\";}\n", instr->_ident); fprintf(fp, "#endif\n"); // Close definition of this XxxMachNode fprintf(fp,"};\n"); }; } void ArchDesc::defineStateClass(FILE *fp) { static const char *state__valid = "_valid[((uint)index) >> 5] & (0x1 << (((uint)index) & 0x0001F))"; static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))"; fprintf(fp,"\n"); fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n"); fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n"); fprintf(fp,"// uint word = index >> 5; // Shift out bit position\n"); fprintf(fp,"// uint bitpos = index & 0x0001F; // Mask off word bits\n"); fprintf(fp,"#define STATE__VALID(index) "); fprintf(fp," (%s)\n", state__valid); fprintf(fp,"\n"); fprintf(fp,"#define STATE__NOT_YET_VALID(index) "); fprintf(fp," ( (%s) == 0 )\n", state__valid); fprintf(fp,"\n"); fprintf(fp,"#define STATE__VALID_CHILD(state,index) "); fprintf(fp," ( state && (state->%s) )\n", state__valid); fprintf(fp,"\n"); fprintf(fp,"#define STATE__SET_VALID(index) "); fprintf(fp," (%s)\n", state__set_valid); fprintf(fp,"\n"); fprintf(fp, "//---------------------------State-------------------------------------------\n"); fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n"); fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n"); fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n"); fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n"); fprintf(fp,"// two for convenience, but this could change).\n"); fprintf(fp,"class State : public ResourceObj {\n"); fprintf(fp,"public:\n"); fprintf(fp," int _id; // State identifier\n"); fprintf(fp," Node *_leaf; // Ideal (non-machine-node) leaf of match tree\n"); fprintf(fp," State *_kids[2]; // Children of state node in label tree\n"); fprintf(fp," unsigned int _cost[_LAST_MACH_OPER]; // Cost vector, indexed by operand opcodes\n"); fprintf(fp," unsigned int _rule[_LAST_MACH_OPER]; // Rule vector, indexed by operand opcodes\n"); fprintf(fp," unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n"); fprintf(fp,"\n"); fprintf(fp," State(void); // Constructor\n"); fprintf(fp," DEBUG_ONLY( ~State(void); ) // Destructor\n"); fprintf(fp,"\n"); fprintf(fp," // Methods created by ADLC and invoked by Reduce\n"); fprintf(fp," MachOper *MachOperGenerator( int opcode, Compile* C );\n"); fprintf(fp," MachNode *MachNodeGenerator( int opcode, Compile* C );\n"); fprintf(fp,"\n"); fprintf(fp," // Assign a state to a node, definition of method produced by ADLC\n"); fprintf(fp," bool DFA( int opcode, const Node *ideal );\n"); fprintf(fp,"\n"); fprintf(fp," // Access function for _valid bit vector\n"); fprintf(fp," bool valid(uint index) {\n"); fprintf(fp," return( STATE__VALID(index) != 0 );\n"); fprintf(fp," }\n"); fprintf(fp,"\n"); fprintf(fp," // Set function for _valid bit vector\n"); fprintf(fp," void set_valid(uint index) {\n"); fprintf(fp," STATE__SET_VALID(index);\n"); fprintf(fp," }\n"); fprintf(fp,"\n"); fprintf(fp,"#ifndef PRODUCT\n"); fprintf(fp," void dump(); // Debugging prints\n"); fprintf(fp," void dump(int depth);\n"); fprintf(fp,"#endif\n"); if (_dfa_small) { // Generate the routine name we'll need for (int i = 1; i < _last_opcode; i++) { if (_mlistab[i] == NULL) continue; fprintf(fp, " void _sub_Op_%s(const Node *n);\n", NodeClassNames[i]); } } fprintf(fp,"};\n"); fprintf(fp,"\n"); fprintf(fp,"\n"); } //---------------------------buildMachOperEnum--------------------------------- // Build enumeration for densely packed operands. // This enumeration is used to index into the arrays in the State objects // that indicate cost and a successfull rule match. // Information needed to generate the ReduceOp mapping for the DFA class OutputMachOperands : public OutputMap { public: OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD, "MachOperands") {}; void declaration() { } void definition() { fprintf(_cpp, "enum MachOperands {\n"); } void closing() { fprintf(_cpp, " _LAST_MACH_OPER\n"); OutputMap::closing(); } void map(OpClassForm &opc) { const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident); fprintf(_cpp, " %s", opc_ident_to_upper); delete[] opc_ident_to_upper; } void map(OperandForm &oper) { const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident); fprintf(_cpp, " %s", oper_ident_to_upper); delete[] oper_ident_to_upper; } void map(char *name) { const char* name_to_upper = _AD.machOperEnum(name); fprintf(_cpp, " %s", name_to_upper); delete[] name_to_upper; } bool do_instructions() { return false; } void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); } }; void ArchDesc::buildMachOperEnum(FILE *fp_hpp) { // Construct the table for MachOpcodes OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this); build_map(output_mach_operands); } //---------------------------buildMachEnum---------------------------------- // Build enumeration for all MachOpers and all MachNodes // Information needed to generate the ReduceOp mapping for the DFA class OutputMachOpcodes : public OutputMap { int begin_inst_chain_rule; int end_inst_chain_rule; int begin_rematerialize; int end_rematerialize; int end_instructions; public: OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"), begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1) {}; void declaration() { } void definition() { fprintf(_cpp, "enum MachOpcodes {\n"); } void closing() { if( begin_inst_chain_rule != -1 ) fprintf(_cpp, " _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule); if( end_inst_chain_rule != -1 ) fprintf(_cpp, " _END_INST_CHAIN_RULE = %d,\n", end_inst_chain_rule); if( begin_rematerialize != -1 ) fprintf(_cpp, " _BEGIN_REMATERIALIZE = %d,\n", begin_rematerialize); if( end_rematerialize != -1 ) fprintf(_cpp, " _END_REMATERIALIZE = %d,\n", end_rematerialize); // always execute since do_instructions() is true, and avoids trailing comma fprintf(_cpp, " _last_Mach_Node = %d \n", end_instructions); OutputMap::closing(); } void map(OpClassForm &opc) { fprintf(_cpp, " %s_rule", opc._ident ); } void map(OperandForm &oper) { fprintf(_cpp, " %s_rule", oper._ident ); } void map(char *name) { if (name) fprintf(_cpp, " %s_rule", name); else fprintf(_cpp, " 0"); } void map(InstructForm &inst) {fprintf(_cpp, " %s_rule", inst._ident ); } void record_position(OutputMap::position place, int idx ) { switch(place) { case OutputMap::BEGIN_INST_CHAIN_RULES : begin_inst_chain_rule = idx; break; case OutputMap::END_INST_CHAIN_RULES : end_inst_chain_rule = idx; break; case OutputMap::BEGIN_REMATERIALIZE : begin_rematerialize = idx; break; case OutputMap::END_REMATERIALIZE : end_rematerialize = idx; break; case OutputMap::END_INSTRUCTIONS : end_instructions = idx; break; default: break; } } }; void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) { // Construct the table for MachOpcodes OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this); build_map(output_mach_opcodes); } // Generate an enumeration of the pipeline states, and both // the functional units (resources) and the masks for // specifying resources void ArchDesc::build_pipeline_enums(FILE *fp_hpp) { int stagelen = (int)strlen("undefined"); int stagenum = 0; if (_pipeline) { // Find max enum string length const char *stage; for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) { int len = (int)strlen(stage); if (stagelen < len) stagelen = len; } } // Generate a list of stages fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// Pipeline Stages\n"); fprintf(fp_hpp, "enum machPipelineStages {\n"); fprintf(fp_hpp, " stage_%-*s = 0,\n", stagelen, "undefined"); if( _pipeline ) { const char *stage; for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) fprintf(fp_hpp, " stage_%-*s = %d,\n", stagelen, stage, ++stagenum); } fprintf(fp_hpp, " stage_%-*s = %d\n", stagelen, "count", stagenum); fprintf(fp_hpp, "};\n"); fprintf(fp_hpp, "\n"); fprintf(fp_hpp, "// Pipeline Resources\n"); fprintf(fp_hpp, "enum machPipelineResources {\n"); int rescount = 0; if( _pipeline ) { const char *resource; int reslen = 0; // Generate a list of resources, and masks for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { int len = (int)strlen(resource); if (reslen < len) reslen = len; } for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource(); int mask = resform->mask(); if ((mask & (mask-1)) == 0) fprintf(fp_hpp, " resource_%-*s = %d,\n", reslen, resource, rescount++); } fprintf(fp_hpp, "\n"); for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource(); fprintf(fp_hpp, " res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask()); } fprintf(fp_hpp, "\n"); } fprintf(fp_hpp, " resource_count = %d\n", rescount); fprintf(fp_hpp, "};\n"); } Other Java examples (source code examples)Here is a short list of links related to this Java output_h.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.