alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (assembler.hpp)

This example Java source code file (assembler.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

abstractassembler, codesection, instructionmark, label, null, ooprecorder, registerorconstant, share_vm_asm_assembler_hpp, shortbranchverifier, stackobj, target_arch_arm, target_arch_ppc, target_arch_x86, target_arch_zero

The assembler.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_ASM_ASSEMBLER_HPP
#define SHARE_VM_ASM_ASSEMBLER_HPP

#include "asm/codeBuffer.hpp"
#include "code/oopRecorder.hpp"
#include "code/relocInfo.hpp"
#include "memory/allocation.hpp"
#include "utilities/debug.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/top.hpp"

#ifdef TARGET_ARCH_x86
# include "register_x86.hpp"
# include "vm_version_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "register_sparc.hpp"
# include "vm_version_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "register_zero.hpp"
# include "vm_version_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "register_arm.hpp"
# include "vm_version_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "register_ppc.hpp"
# include "vm_version_ppc.hpp"
#endif

// This file contains platform-independent assembler declarations.

class MacroAssembler;
class AbstractAssembler;
class Label;

/**
 * Labels represent destinations for control transfer instructions.  Such
 * instructions can accept a Label as their target argument.  A Label is
 * bound to the current location in the code stream by calling the
 * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
 * method.  A Label may be referenced by an instruction before it's bound
 * (i.e., 'forward referenced').  'bind' stores the current code offset
 * in the Label object.
 *
 * If an instruction references a bound Label, the offset field(s) within
 * the instruction are immediately filled in based on the Label's code
 * offset.  If an instruction references an unbound label, that
 * instruction is put on a list of instructions that must be patched
 * (i.e., 'resolved') when the Label is bound.
 *
 * 'bind' will call the platform-specific 'patch_instruction' method to
 * fill in the offset field(s) for each unresolved instruction (if there
 * are any).  'patch_instruction' lives in one of the
 * cpu/<arch>/vm/assembler_* files.
 *
 * Instead of using a linked list of unresolved instructions, a Label has
 * an array of unresolved instruction code offsets.  _patch_index
 * contains the total number of forward references.  If the Label's array
 * overflows (i.e., _patch_index grows larger than the array size), a
 * GrowableArray is allocated to hold the remaining offsets.  (The cache
 * size is 4 for now, which handles over 99.5% of the cases)
 *
 * Labels may only be used within a single CodeSection.  If you need
 * to create references between code sections, use explicit relocations.
 */
class Label VALUE_OBJ_CLASS_SPEC {
 private:
  enum { PatchCacheSize = 4 };

  // _loc encodes both the binding state (via its sign)
  // and the binding locator (via its value) of a label.
  //
  // _loc >= 0   bound label, loc() encodes the target (jump) position
  // _loc == -1  unbound label
  int _loc;

  // References to instructions that jump to this unresolved label.
  // These instructions need to be patched when the label is bound
  // using the platform-specific patchInstruction() method.
  //
  // To avoid having to allocate from the C-heap each time, we provide
  // a local cache and use the overflow only if we exceed the local cache
  int _patches[PatchCacheSize];
  int _patch_index;
  GrowableArray<int>* _patch_overflow;

  Label(const Label&) { ShouldNotReachHere(); }

 public:

  /**
   * After binding, be sure 'patch_instructions' is called later to link
   */
  void bind_loc(int loc) {
    assert(loc >= 0, "illegal locator");
    assert(_loc == -1, "already bound");
    _loc = loc;
  }
  void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }

#ifndef PRODUCT
  // Iterates over all unresolved instructions for printing
  void print_instructions(MacroAssembler* masm) const;
#endif // PRODUCT

  /**
   * Returns the position of the the Label in the code buffer
   * The position is a 'locator', which encodes both offset and section.
   */
  int loc() const {
    assert(_loc >= 0, "unbound label");
    return _loc;
  }
  int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
  int loc_sect() const { return CodeBuffer::locator_sect(loc()); }

  bool is_bound() const    { return _loc >=  0; }
  bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
  bool is_unused() const   { return _loc == -1 && _patch_index == 0; }

  /**
   * Adds a reference to an unresolved displacement instruction to
   * this unbound label
   *
   * @param cb         the code buffer being patched
   * @param branch_loc the locator of the branch instruction in the code buffer
   */
  void add_patch_at(CodeBuffer* cb, int branch_loc);

  /**
   * Iterate over the list of patches, resolving the instructions
   * Call patch_instruction on each 'branch_loc' value
   */
  void patch_instructions(MacroAssembler* masm);

  void init() {
    _loc = -1;
    _patch_index = 0;
    _patch_overflow = NULL;
  }

  Label() {
    init();
  }
};

// A union type for code which has to assemble both constant and
// non-constant operands, when the distinction cannot be made
// statically.
class RegisterOrConstant VALUE_OBJ_CLASS_SPEC {
 private:
  Register _r;
  intptr_t _c;

 public:
  RegisterOrConstant(): _r(noreg), _c(0) {}
  RegisterOrConstant(Register r): _r(r), _c(0) {}
  RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}

  Register as_register() const { assert(is_register(),""); return _r; }
  intptr_t as_constant() const { assert(is_constant(),""); return _c; }

  Register register_or_noreg() const { return _r; }
  intptr_t constant_or_zero() const  { return _c; }

  bool is_register() const { return _r != noreg; }
  bool is_constant() const { return _r == noreg; }
};

// The Abstract Assembler: Pure assembler doing NO optimizations on the
// instruction level; i.e., what you write is what you get.
// The Assembler is generating code into a CodeBuffer.
class AbstractAssembler : public ResourceObj  {
  friend class Label;

 protected:
  CodeSection* _code_section;          // section within the code buffer
  OopRecorder* _oop_recorder;          // support for relocInfo::oop_type

  // Code emission & accessing
  address addr_at(int pos) const { return code_section()->start() + pos; }


  // This routine is called with a label is used for an address.
  // Labels and displacements truck in offsets, but target must return a PC.
  address target(Label& L)             { return code_section()->target(L, pc()); }

  bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
  bool isByte(int x) const             { return 0 <= x && x < 0x100; }
  bool isShiftCount(int x) const       { return 0 <= x && x < 32; }

  // Instruction boundaries (required when emitting relocatable values).
  class InstructionMark: public StackObj {
   private:
    AbstractAssembler* _assm;

   public:
    InstructionMark(AbstractAssembler* assm) : _assm(assm) {
      assert(assm->inst_mark() == NULL, "overlapping instructions");
      _assm->set_inst_mark();
    }
    ~InstructionMark() {
      _assm->clear_inst_mark();
    }
  };
  friend class InstructionMark;
#ifdef ASSERT
  // Make it return true on platforms which need to verify
  // instruction boundaries for some operations.
  static bool pd_check_instruction_mark();

  // Add delta to short branch distance to verify that it still fit into imm8.
  int _short_branch_delta;

  int  short_branch_delta() const { return _short_branch_delta; }
  void set_short_branch_delta()   { _short_branch_delta = 32; }
  void clear_short_branch_delta() { _short_branch_delta = 0; }

  class ShortBranchVerifier: public StackObj {
   private:
    AbstractAssembler* _assm;

   public:
    ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
      assert(assm->short_branch_delta() == 0, "overlapping instructions");
      _assm->set_short_branch_delta();
    }
    ~ShortBranchVerifier() {
      _assm->clear_short_branch_delta();
    }
  };
#else
  // Dummy in product.
  class ShortBranchVerifier: public StackObj {
   public:
    ShortBranchVerifier(AbstractAssembler* assm) {}
  };
#endif

 public:

  // Creation
  AbstractAssembler(CodeBuffer* code);

  // ensure buf contains all code (call this before using/copying the code)
  void flush();

  void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
  void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
  void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
  void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }

  void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
  void emit_double( jdouble x) { code_section()->emit_double( x); }
  void emit_address(address x) { code_section()->emit_address(x); }

  // min and max values for signed immediate ranges
  static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
  static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }

  // Define some:
  static int min_simm10() { return min_simm(10); }
  static int min_simm13() { return min_simm(13); }
  static int min_simm16() { return min_simm(16); }

  // Test if x is within signed immediate range for nbits
  static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }

  // Define some:
  static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
  static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
  static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
  static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
  static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
  static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
  static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
  static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
  static bool is_simm32(intptr_t x) { return is_simm(x, 32); }

  // Accessors
  CodeSection*  code_section() const   { return _code_section; }
  CodeBuffer*   code()         const   { return code_section()->outer(); }
  int           sect()         const   { return code_section()->index(); }
  address       pc()           const   { return code_section()->end();   }
  int           offset()       const   { return code_section()->size();  }
  int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }

  OopRecorder*  oop_recorder() const   { return _oop_recorder; }
  void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }

  address       inst_mark() const { return code_section()->mark();       }
  void      set_inst_mark()       {        code_section()->set_mark();   }
  void    clear_inst_mark()       {        code_section()->clear_mark(); }

  // Constants in code
  void relocate(RelocationHolder const& rspec, int format = 0) {
    assert(!pd_check_instruction_mark()
        || inst_mark() == NULL || inst_mark() == code_section()->end(),
        "call relocate() between instructions");
    code_section()->relocate(code_section()->end(), rspec, format);
  }
  void relocate(   relocInfo::relocType rtype, int format = 0) {
    code_section()->relocate(code_section()->end(), rtype, format);
  }

  static int code_fill_byte();         // used to pad out odd-sized code buffers

  // Associate a comment with the current offset.  It will be printed
  // along with the disassembly when printing nmethods.  Currently
  // only supported in the instruction section of the code buffer.
  void block_comment(const char* comment);
  // Copy str to a buffer that has the same lifetime as the CodeBuffer
  const char* code_string(const char* str);

  // Label functions
  void bind(Label& L); // binds an unbound label L to the current code position

  // Move to a different section in the same code buffer.
  void set_code_section(CodeSection* cs);

  // Inform assembler when generating stub code and relocation info
  address    start_a_stub(int required_space);
  void       end_a_stub();
  // Ditto for constants.
  address    start_a_const(int required_space, int required_align = sizeof(double));
  void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).

  // constants support
  //
  // We must remember the code section (insts or stubs) in c1
  // so we can reset to the proper section in end_a_const().
  address long_constant(jlong c) {
    CodeSection* c1 = _code_section;
    address ptr = start_a_const(sizeof(c), sizeof(c));
    if (ptr != NULL) {
      emit_int64(c);
      end_a_const(c1);
    }
    return ptr;
  }
  address double_constant(jdouble c) {
    CodeSection* c1 = _code_section;
    address ptr = start_a_const(sizeof(c), sizeof(c));
    if (ptr != NULL) {
      emit_double(c);
      end_a_const(c1);
    }
    return ptr;
  }
  address float_constant(jfloat c) {
    CodeSection* c1 = _code_section;
    address ptr = start_a_const(sizeof(c), sizeof(c));
    if (ptr != NULL) {
      emit_float(c);
      end_a_const(c1);
    }
    return ptr;
  }
  address address_constant(address c) {
    CodeSection* c1 = _code_section;
    address ptr = start_a_const(sizeof(c), sizeof(c));
    if (ptr != NULL) {
      emit_address(c);
      end_a_const(c1);
    }
    return ptr;
  }
  address address_constant(address c, RelocationHolder const& rspec) {
    CodeSection* c1 = _code_section;
    address ptr = start_a_const(sizeof(c), sizeof(c));
    if (ptr != NULL) {
      relocate(rspec);
      emit_address(c);
      end_a_const(c1);
    }
    return ptr;
  }

  // Bootstrapping aid to cope with delayed determination of constants.
  // Returns a static address which will eventually contain the constant.
  // The value zero (NULL) stands instead of a constant which is still uncomputed.
  // Thus, the eventual value of the constant must not be zero.
  // This is fine, since this is designed for embedding object field
  // offsets in code which must be generated before the object class is loaded.
  // Field offsets are never zero, since an object's header (mark word)
  // is located at offset zero.
  RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
  RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
  // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
  static intptr_t* delayed_value_addr(int(*constant_fn)());
  static intptr_t* delayed_value_addr(address(*constant_fn)());
  static void update_delayed_values();

  // Bang stack to trigger StackOverflowError at a safe location
  // implementation delegates to machine-specific bang_stack_with_offset
  void generate_stack_overflow_check( int frame_size_in_bytes );
  virtual void bang_stack_with_offset(int offset) = 0;


  /**
   * A platform-dependent method to patch a jump instruction that refers
   * to this label.
   *
   * @param branch the location of the instruction to patch
   * @param masm the assembler which generated the branch
   */
  void pd_patch_instruction(address branch, address target);

};

#ifdef TARGET_ARCH_x86
# include "assembler_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "assembler_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "assembler_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "assembler_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "assembler_ppc.hpp"
#endif


#endif // SHARE_VM_ASM_ASSEMBLER_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java assembler.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.