alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (c1_Compilation.cpp)

This example Java source code file (c1_Compilation.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bailing, cfgprinter\:\:print_cfg, check_bailout, check_bailout_, growablearray, lir, null, phasetracetime, printcfgtofile, printir, product, rangecheckelimination, verbose

The c1_Compilation.cpp Java example source code

/*
 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "c1/c1_CFGPrinter.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_IR.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LinearScan.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_ValueMap.hpp"
#include "c1/c1_ValueStack.hpp"
#include "code/debugInfoRec.hpp"
#include "compiler/compileLog.hpp"
#include "c1/c1_RangeCheckElimination.hpp"


typedef enum {
  _t_compile,
  _t_setup,
  _t_buildIR,
  _t_optimize_blocks,
  _t_optimize_null_checks,
  _t_rangeCheckElimination,
  _t_emit_lir,
  _t_linearScan,
  _t_lirGeneration,
  _t_lir_schedule,
  _t_codeemit,
  _t_codeinstall,
  max_phase_timers
} TimerName;

static const char * timer_name[] = {
  "compile",
  "setup",
  "buildIR",
  "optimize_blocks",
  "optimize_null_checks",
  "rangeCheckElimination",
  "emit_lir",
  "linearScan",
  "lirGeneration",
  "lir_schedule",
  "codeemit",
  "codeinstall"
};

static elapsedTimer timers[max_phase_timers];
static int totalInstructionNodes = 0;

class PhaseTraceTime: public TraceTime {
 private:
  JavaThread* _thread;
  CompileLog* _log;
  TimerName _timer;

 public:
  PhaseTraceTime(TimerName timer)
  : TraceTime("", &timers[timer], CITime || CITimeEach, Verbose),
    _log(NULL), _timer(timer)
  {
    if (Compilation::current() != NULL) {
      _log = Compilation::current()->log();
    }

    if (_log != NULL) {
      _log->begin_head("phase name='%s'", timer_name[_timer]);
      _log->stamp();
      _log->end_head();
    }
  }

  ~PhaseTraceTime() {
    if (_log != NULL)
      _log->done("phase name='%s'", timer_name[_timer]);
  }
};

// Implementation of Compilation


#ifndef PRODUCT

void Compilation::maybe_print_current_instruction() {
  if (_current_instruction != NULL && _last_instruction_printed != _current_instruction) {
    _last_instruction_printed = _current_instruction;
    _current_instruction->print_line();
  }
}
#endif // PRODUCT


DebugInformationRecorder* Compilation::debug_info_recorder() const {
  return _env->debug_info();
}


Dependencies* Compilation::dependency_recorder() const {
  return _env->dependencies();
}


void Compilation::initialize() {
  // Use an oop recorder bound to the CI environment.
  // (The default oop recorder is ignorant of the CI.)
  OopRecorder* ooprec = new OopRecorder(_env->arena());
  _env->set_oop_recorder(ooprec);
  _env->set_debug_info(new DebugInformationRecorder(ooprec));
  debug_info_recorder()->set_oopmaps(new OopMapSet());
  _env->set_dependencies(new Dependencies(_env));
}


void Compilation::build_hir() {
  CHECK_BAILOUT();

  // setup ir
  CompileLog* log = this->log();
  if (log != NULL) {
    log->begin_head("parse method='%d' ",
                    log->identify(_method));
    log->stamp();
    log->end_head();
  }
  _hir = new IR(this, method(), osr_bci());
  if (log)  log->done("parse");
  if (!_hir->is_valid()) {
    bailout("invalid parsing");
    return;
  }

#ifndef PRODUCT
  if (PrintCFGToFile) {
    CFGPrinter::print_cfg(_hir, "After Generation of HIR", true, false);
  }
#endif

#ifndef PRODUCT
  if (PrintCFG || PrintCFG0) { tty->print_cr("CFG after parsing"); _hir->print(true); }
  if (PrintIR  || PrintIR0 ) { tty->print_cr("IR after parsing"); _hir->print(false); }
#endif

  _hir->verify();

  if (UseC1Optimizations) {
    NEEDS_CLEANUP
    // optimization
    PhaseTraceTime timeit(_t_optimize_blocks);

    _hir->optimize_blocks();
  }

  _hir->verify();

  _hir->split_critical_edges();

#ifndef PRODUCT
  if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after optimizations"); _hir->print(true); }
  if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after optimizations"); _hir->print(false); }
#endif

  _hir->verify();

  // compute block ordering for code generation
  // the control flow must not be changed from here on
  _hir->compute_code();

  if (UseGlobalValueNumbering) {
    // No resource mark here! LoopInvariantCodeMotion can allocate ValueStack objects.
    int instructions = Instruction::number_of_instructions();
    GlobalValueNumbering gvn(_hir);
    assert(instructions == Instruction::number_of_instructions(),
           "shouldn't have created an instructions");
  }

  _hir->verify();

#ifndef PRODUCT
  if (PrintCFGToFile) {
    CFGPrinter::print_cfg(_hir, "Before RangeCheckElimination", true, false);
  }
#endif

  if (RangeCheckElimination) {
    if (_hir->osr_entry() == NULL) {
      PhaseTraceTime timeit(_t_rangeCheckElimination);
      RangeCheckElimination::eliminate(_hir);
    }
  }

#ifndef PRODUCT
  if (PrintCFGToFile) {
    CFGPrinter::print_cfg(_hir, "After RangeCheckElimination", true, false);
  }
#endif

  if (UseC1Optimizations) {
    // loop invariant code motion reorders instructions and range
    // check elimination adds new instructions so do null check
    // elimination after.
    NEEDS_CLEANUP
    // optimization
    PhaseTraceTime timeit(_t_optimize_null_checks);

    _hir->eliminate_null_checks();
  }

  _hir->verify();

  // compute use counts after global value numbering
  _hir->compute_use_counts();

#ifndef PRODUCT
  if (PrintCFG || PrintCFG2) { tty->print_cr("CFG before code generation"); _hir->code()->print(true); }
  if (PrintIR  || PrintIR2 ) { tty->print_cr("IR before code generation"); _hir->code()->print(false, true); }
#endif

  _hir->verify();
}


void Compilation::emit_lir() {
  CHECK_BAILOUT();

  LIRGenerator gen(this, method());
  {
    PhaseTraceTime timeit(_t_lirGeneration);
    hir()->iterate_linear_scan_order(&gen);
  }

  CHECK_BAILOUT();

  {
    PhaseTraceTime timeit(_t_linearScan);

    LinearScan* allocator = new LinearScan(hir(), &gen, frame_map());
    set_allocator(allocator);
    // Assign physical registers to LIR operands using a linear scan algorithm.
    allocator->do_linear_scan();
    CHECK_BAILOUT();

    _max_spills = allocator->max_spills();
  }

  if (BailoutAfterLIR) {
    if (PrintLIR && !bailed_out()) {
      print_LIR(hir()->code());
    }
    bailout("Bailing out because of -XX:+BailoutAfterLIR");
  }
}


void Compilation::emit_code_epilog(LIR_Assembler* assembler) {
  CHECK_BAILOUT();

  CodeOffsets* code_offsets = assembler->offsets();

  // generate code or slow cases
  assembler->emit_slow_case_stubs();
  CHECK_BAILOUT();

  // generate exception adapters
  assembler->emit_exception_entries(exception_info_list());
  CHECK_BAILOUT();

  // Generate code for exception handler.
  code_offsets->set_value(CodeOffsets::Exceptions, assembler->emit_exception_handler());
  CHECK_BAILOUT();

  // Generate code for deopt handler.
  code_offsets->set_value(CodeOffsets::Deopt, assembler->emit_deopt_handler());
  CHECK_BAILOUT();

  // Emit the MethodHandle deopt handler code (if required).
  if (has_method_handle_invokes()) {
    // We can use the same code as for the normal deopt handler, we
    // just need a different entry point address.
    code_offsets->set_value(CodeOffsets::DeoptMH, assembler->emit_deopt_handler());
    CHECK_BAILOUT();
  }

  // Emit the handler to remove the activation from the stack and
  // dispatch to the caller.
  offsets()->set_value(CodeOffsets::UnwindHandler, assembler->emit_unwind_handler());

  // done
  masm()->flush();
}


bool Compilation::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
  // Preinitialize the consts section to some large size:
  int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
  char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
  code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
                                        locs_buffer_size / sizeof(relocInfo));
  code->initialize_consts_size(Compilation::desired_max_constant_size());
  // Call stubs + two deopt handlers (regular and MH) + exception handler
  int stub_size = (call_stub_estimate * LIR_Assembler::call_stub_size) +
                   LIR_Assembler::exception_handler_size +
                   (2 * LIR_Assembler::deopt_handler_size);
  if (stub_size >= code->insts_capacity()) return false;
  code->initialize_stubs_size(stub_size);
  return true;
}


int Compilation::emit_code_body() {
  // emit code
  if (!setup_code_buffer(code(), allocator()->num_calls())) {
    BAILOUT_("size requested greater than avail code buffer size", 0);
  }
  code()->initialize_oop_recorder(env()->oop_recorder());

  _masm = new C1_MacroAssembler(code());
  _masm->set_oop_recorder(env()->oop_recorder());

  LIR_Assembler lir_asm(this);

  lir_asm.emit_code(hir()->code());
  CHECK_BAILOUT_(0);

  emit_code_epilog(&lir_asm);
  CHECK_BAILOUT_(0);

  generate_exception_handler_table();

#ifndef PRODUCT
  if (PrintExceptionHandlers && Verbose) {
    exception_handler_table()->print();
  }
#endif /* PRODUCT */

  return frame_map()->framesize();
}


int Compilation::compile_java_method() {
  assert(!method()->is_native(), "should not reach here");

  if (BailoutOnExceptionHandlers) {
    if (method()->has_exception_handlers()) {
      bailout("linear scan can't handle exception handlers");
    }
  }

  CHECK_BAILOUT_(no_frame_size);

  if (is_profiling() && !method()->ensure_method_data()) {
    BAILOUT_("mdo allocation failed", no_frame_size);
  }

  {
    PhaseTraceTime timeit(_t_buildIR);
    build_hir();
  }
  if (BailoutAfterHIR) {
    BAILOUT_("Bailing out because of -XX:+BailoutAfterHIR", no_frame_size);
  }


  {
    PhaseTraceTime timeit(_t_emit_lir);

    _frame_map = new FrameMap(method(), hir()->number_of_locks(), MAX2(4, hir()->max_stack()));
    emit_lir();
  }
  CHECK_BAILOUT_(no_frame_size);

  {
    PhaseTraceTime timeit(_t_codeemit);
    return emit_code_body();
  }
}

void Compilation::install_code(int frame_size) {
  // frame_size is in 32-bit words so adjust it intptr_t words
  assert(frame_size == frame_map()->framesize(), "must match");
  assert(in_bytes(frame_map()->framesize_in_bytes()) % sizeof(intptr_t) == 0, "must be at least pointer aligned");
  _env->register_method(
    method(),
    osr_bci(),
    &_offsets,
    in_bytes(_frame_map->sp_offset_for_orig_pc()),
    code(),
    in_bytes(frame_map()->framesize_in_bytes()) / sizeof(intptr_t),
    debug_info_recorder()->_oopmaps,
    exception_handler_table(),
    implicit_exception_table(),
    compiler(),
    _env->comp_level(),
    has_unsafe_access(),
    SharedRuntime::is_wide_vector(max_vector_size())
  );
}


void Compilation::compile_method() {
  // setup compilation
  initialize();

  if (!method()->can_be_compiled()) {
    // Prevent race condition 6328518.
    // This can happen if the method is obsolete or breakpointed.
    bailout("Bailing out because method is not compilable");
    return;
  }

  if (_env->jvmti_can_hotswap_or_post_breakpoint()) {
    // We can assert evol_method because method->can_be_compiled is true.
    dependency_recorder()->assert_evol_method(method());
  }

  if (method()->break_at_execute()) {
    BREAKPOINT;
  }

#ifndef PRODUCT
  if (PrintCFGToFile) {
    CFGPrinter::print_compilation(this);
  }
#endif

  // compile method
  int frame_size = compile_java_method();

  // bailout if method couldn't be compiled
  // Note: make sure we mark the method as not compilable!
  CHECK_BAILOUT();

  if (InstallMethods) {
    // install code
    PhaseTraceTime timeit(_t_codeinstall);
    install_code(frame_size);
  }

  if (log() != NULL) // Print code cache state into compiler log
    log()->code_cache_state();

  totalInstructionNodes += Instruction::number_of_instructions();
}


void Compilation::generate_exception_handler_table() {
  // Generate an ExceptionHandlerTable from the exception handler
  // information accumulated during the compilation.
  ExceptionInfoList* info_list = exception_info_list();

  if (info_list->length() == 0) {
    return;
  }

  // allocate some arrays for use by the collection code.
  const int num_handlers = 5;
  GrowableArray<intptr_t>* bcis = new GrowableArray(num_handlers);
  GrowableArray<intptr_t>* scope_depths = new GrowableArray(num_handlers);
  GrowableArray<intptr_t>* pcos = new GrowableArray(num_handlers);

  for (int i = 0; i < info_list->length(); i++) {
    ExceptionInfo* info = info_list->at(i);
    XHandlers* handlers = info->exception_handlers();

    // empty the arrays
    bcis->trunc_to(0);
    scope_depths->trunc_to(0);
    pcos->trunc_to(0);

    for (int i = 0; i < handlers->length(); i++) {
      XHandler* handler = handlers->handler_at(i);
      assert(handler->entry_pco() != -1, "must have been generated");

      int e = bcis->find(handler->handler_bci());
      if (e >= 0 && scope_depths->at(e) == handler->scope_count()) {
        // two different handlers are declared to dispatch to the same
        // catch bci.  During parsing we created edges for each
        // handler but we really only need one.  The exception handler
        // table will also get unhappy if we try to declare both since
        // it's nonsensical.  Just skip this handler.
        continue;
      }

      bcis->append(handler->handler_bci());
      if (handler->handler_bci() == -1) {
        // insert a wildcard handler at scope depth 0 so that the
        // exception lookup logic with find it.
        scope_depths->append(0);
      } else {
        scope_depths->append(handler->scope_count());
    }
      pcos->append(handler->entry_pco());

      // stop processing once we hit a catch any
      if (handler->is_catch_all()) {
        assert(i == handlers->length() - 1, "catch all must be last handler");
  }
    }
    exception_handler_table()->add_subtable(info->pco(), bcis, scope_depths, pcos);
  }
}


Compilation::Compilation(AbstractCompiler* compiler, ciEnv* env, ciMethod* method,
                         int osr_bci, BufferBlob* buffer_blob)
: _compiler(compiler)
, _env(env)
, _log(env->log())
, _method(method)
, _osr_bci(osr_bci)
, _hir(NULL)
, _max_spills(-1)
, _frame_map(NULL)
, _masm(NULL)
, _has_exception_handlers(false)
, _has_fpu_code(true)   // pessimistic assumption
, _would_profile(false)
, _has_unsafe_access(false)
, _has_method_handle_invokes(false)
, _bailout_msg(NULL)
, _exception_info_list(NULL)
, _allocator(NULL)
, _next_id(0)
, _next_block_id(0)
, _code(buffer_blob)
, _has_access_indexed(false)
, _current_instruction(NULL)
#ifndef PRODUCT
, _last_instruction_printed(NULL)
#endif // PRODUCT
{
  PhaseTraceTime timeit(_t_compile);
  _arena = Thread::current()->resource_area();
  _env->set_compiler_data(this);
  _exception_info_list = new ExceptionInfoList();
  _implicit_exception_table.set_size(0);
  compile_method();
  if (bailed_out()) {
    _env->record_method_not_compilable(bailout_msg(), !TieredCompilation);
    if (is_profiling()) {
      // Compilation failed, create MDO, which would signal the interpreter
      // to start profiling on its own.
      _method->ensure_method_data();
    }
  } else if (is_profiling()) {
    ciMethodData *md = method->method_data_or_null();
    if (md != NULL) {
      md->set_would_profile(_would_profile);
    }
  }
}

Compilation::~Compilation() {
  _env->set_compiler_data(NULL);
}


void Compilation::add_exception_handlers_for_pco(int pco, XHandlers* exception_handlers) {
#ifndef PRODUCT
  if (PrintExceptionHandlers && Verbose) {
    tty->print_cr("  added exception scope for pco %d", pco);
  }
#endif
  // Note: we do not have program counters for these exception handlers yet
  exception_info_list()->push(new ExceptionInfo(pco, exception_handlers));
}


void Compilation::notice_inlined_method(ciMethod* method) {
  _env->notice_inlined_method(method);
}


void Compilation::bailout(const char* msg) {
  assert(msg != NULL, "bailout message must exist");
  if (!bailed_out()) {
    // keep first bailout message
    if (PrintCompilation || PrintBailouts) tty->print_cr("compilation bailout: %s", msg);
    _bailout_msg = msg;
  }
}

ciKlass* Compilation::cha_exact_type(ciType* type) {
  if (type != NULL && type->is_loaded() && type->is_instance_klass()) {
    ciInstanceKlass* ik = type->as_instance_klass();
    assert(ik->exact_klass() == NULL, "no cha for final klass");
    if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
      dependency_recorder()->assert_leaf_type(ik);
      return ik;
    }
  }
  return NULL;
}

void Compilation::print_timers() {
  // tty->print_cr("    Native methods         : %6.3f s, Average : %2.3f", CompileBroker::_t_native_compilation.seconds(), CompileBroker::_t_native_compilation.seconds() / CompileBroker::_total_native_compile_count);
  float total = timers[_t_setup].seconds() + timers[_t_buildIR].seconds() + timers[_t_emit_lir].seconds() + timers[_t_lir_schedule].seconds() + timers[_t_codeemit].seconds() + timers[_t_codeinstall].seconds();


  tty->print_cr("    Detailed C1 Timings");
  tty->print_cr("       Setup time:        %6.3f s (%4.1f%%)",    timers[_t_setup].seconds(),           (timers[_t_setup].seconds() / total) * 100.0);
  tty->print_cr("       Build IR:          %6.3f s (%4.1f%%)",    timers[_t_buildIR].seconds(),         (timers[_t_buildIR].seconds() / total) * 100.0);
  float t_optimizeIR = timers[_t_optimize_blocks].seconds() + timers[_t_optimize_null_checks].seconds();
  tty->print_cr("         Optimize:           %6.3f s (%4.1f%%)", t_optimizeIR,                         (t_optimizeIR / total) * 100.0);
  tty->print_cr("         RCE:                %6.3f s (%4.1f%%)", timers[_t_rangeCheckElimination].seconds(),      (timers[_t_rangeCheckElimination].seconds() / total) * 100.0);
  tty->print_cr("       Emit LIR:          %6.3f s (%4.1f%%)",    timers[_t_emit_lir].seconds(),        (timers[_t_emit_lir].seconds() / total) * 100.0);
  tty->print_cr("         LIR Gen:          %6.3f s (%4.1f%%)",   timers[_t_lirGeneration].seconds(), (timers[_t_lirGeneration].seconds() / total) * 100.0);
  tty->print_cr("         Linear Scan:      %6.3f s (%4.1f%%)",   timers[_t_linearScan].seconds(),    (timers[_t_linearScan].seconds() / total) * 100.0);
  NOT_PRODUCT(LinearScan::print_timers(timers[_t_linearScan].seconds()));
  tty->print_cr("       LIR Schedule:      %6.3f s (%4.1f%%)",    timers[_t_lir_schedule].seconds(),  (timers[_t_lir_schedule].seconds() / total) * 100.0);
  tty->print_cr("       Code Emission:     %6.3f s (%4.1f%%)",    timers[_t_codeemit].seconds(),        (timers[_t_codeemit].seconds() / total) * 100.0);
  tty->print_cr("       Code Installation: %6.3f s (%4.1f%%)",    timers[_t_codeinstall].seconds(),     (timers[_t_codeinstall].seconds() / total) * 100.0);
  tty->print_cr("       Instruction Nodes: %6d nodes",    totalInstructionNodes);

  NOT_PRODUCT(LinearScan::print_statistics());
}


#ifndef PRODUCT
void Compilation::compile_only_this_method() {
  ResourceMark rm;
  fileStream stream(fopen("c1_compile_only", "wt"));
  stream.print_cr("# c1 compile only directives");
  compile_only_this_scope(&stream, hir()->top_scope());
}


void Compilation::compile_only_this_scope(outputStream* st, IRScope* scope) {
  st->print("CompileOnly=");
  scope->method()->holder()->name()->print_symbol_on(st);
  st->print(".");
  scope->method()->name()->print_symbol_on(st);
  st->cr();
}


void Compilation::exclude_this_method() {
  fileStream stream(fopen(".hotspot_compiler", "at"));
  stream.print("exclude ");
  method()->holder()->name()->print_symbol_on(&stream);
  stream.print(" ");
  method()->name()->print_symbol_on(&stream);
  stream.cr();
  stream.cr();
}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java c1_Compilation.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.