alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (c1_Instruction.hpp)

This example Java source code file (c1_Instruction.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assert_values, base, bitmap, blockbegin, blockend, blocklist, condition, instruction, leaf, null, op2, statesplit, value, valuestack

The c1_Instruction.hpp Java example source code

/*
 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_C1_C1_INSTRUCTION_HPP
#define SHARE_VM_C1_C1_INSTRUCTION_HPP

#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIR.hpp"
#include "c1/c1_ValueType.hpp"
#include "ci/ciField.hpp"

// Predefined classes
class ciField;
class ValueStack;
class InstructionPrinter;
class IRScope;
class LIR_OprDesc;
typedef LIR_OprDesc* LIR_Opr;


// Instruction class hierarchy
//
// All leaf classes in the class hierarchy are concrete classes
// (i.e., are instantiated). All other classes are abstract and
// serve factoring.

class Instruction;
class   Phi;
class   Local;
class   Constant;
class   AccessField;
class     LoadField;
class     StoreField;
class   AccessArray;
class     ArrayLength;
class     AccessIndexed;
class       LoadIndexed;
class       StoreIndexed;
class   NegateOp;
class   Op2;
class     ArithmeticOp;
class     ShiftOp;
class     LogicOp;
class     CompareOp;
class     IfOp;
class   Convert;
class   NullCheck;
class   TypeCast;
class   OsrEntry;
class   ExceptionObject;
class   StateSplit;
class     Invoke;
class     NewInstance;
class     NewArray;
class       NewTypeArray;
class       NewObjectArray;
class       NewMultiArray;
class     TypeCheck;
class       CheckCast;
class       InstanceOf;
class     AccessMonitor;
class       MonitorEnter;
class       MonitorExit;
class     Intrinsic;
class     BlockBegin;
class     BlockEnd;
class       Goto;
class       If;
class       IfInstanceOf;
class       Switch;
class         TableSwitch;
class         LookupSwitch;
class       Return;
class       Throw;
class       Base;
class   RoundFP;
class   UnsafeOp;
class     UnsafeRawOp;
class       UnsafeGetRaw;
class       UnsafePutRaw;
class     UnsafeObjectOp;
class       UnsafeGetObject;
class       UnsafePutObject;
class         UnsafeGetAndSetObject;
class       UnsafePrefetch;
class         UnsafePrefetchRead;
class         UnsafePrefetchWrite;
class   ProfileCall;
class   ProfileReturnType;
class   ProfileInvoke;
class   RuntimeCall;
class   MemBar;
class   RangeCheckPredicate;
#ifdef ASSERT
class   Assert;
#endif

// A Value is a reference to the instruction creating the value
typedef Instruction* Value;
define_array(ValueArray, Value)
define_stack(Values, ValueArray)

define_array(ValueStackArray, ValueStack*)
define_stack(ValueStackStack, ValueStackArray)

// BlockClosure is the base class for block traversal/iteration.

class BlockClosure: public CompilationResourceObj {
 public:
  virtual void block_do(BlockBegin* block)       = 0;
};


// A simple closure class for visiting the values of an Instruction
class ValueVisitor: public StackObj {
 public:
  virtual void visit(Value* v) = 0;
};


// Some array and list classes
define_array(BlockBeginArray, BlockBegin*)
define_stack(_BlockList, BlockBeginArray)

class BlockList: public _BlockList {
 public:
  BlockList(): _BlockList() {}
  BlockList(const int size): _BlockList(size) {}
  BlockList(const int size, BlockBegin* init): _BlockList(size, init) {}

  void iterate_forward(BlockClosure* closure);
  void iterate_backward(BlockClosure* closure);
  void blocks_do(void f(BlockBegin*));
  void values_do(ValueVisitor* f);
  void print(bool cfg_only = false, bool live_only = false) PRODUCT_RETURN;
};


// InstructionVisitors provide type-based dispatch for instructions.
// For each concrete Instruction class X, a virtual function do_X is
// provided. Functionality that needs to be implemented for all classes
// (e.g., printing, code generation) is factored out into a specialised
// visitor instead of added to the Instruction classes itself.

class InstructionVisitor: public StackObj {
 public:
  virtual void do_Phi            (Phi*             x) = 0;
  virtual void do_Local          (Local*           x) = 0;
  virtual void do_Constant       (Constant*        x) = 0;
  virtual void do_LoadField      (LoadField*       x) = 0;
  virtual void do_StoreField     (StoreField*      x) = 0;
  virtual void do_ArrayLength    (ArrayLength*     x) = 0;
  virtual void do_LoadIndexed    (LoadIndexed*     x) = 0;
  virtual void do_StoreIndexed   (StoreIndexed*    x) = 0;
  virtual void do_NegateOp       (NegateOp*        x) = 0;
  virtual void do_ArithmeticOp   (ArithmeticOp*    x) = 0;
  virtual void do_ShiftOp        (ShiftOp*         x) = 0;
  virtual void do_LogicOp        (LogicOp*         x) = 0;
  virtual void do_CompareOp      (CompareOp*       x) = 0;
  virtual void do_IfOp           (IfOp*            x) = 0;
  virtual void do_Convert        (Convert*         x) = 0;
  virtual void do_NullCheck      (NullCheck*       x) = 0;
  virtual void do_TypeCast       (TypeCast*        x) = 0;
  virtual void do_Invoke         (Invoke*          x) = 0;
  virtual void do_NewInstance    (NewInstance*     x) = 0;
  virtual void do_NewTypeArray   (NewTypeArray*    x) = 0;
  virtual void do_NewObjectArray (NewObjectArray*  x) = 0;
  virtual void do_NewMultiArray  (NewMultiArray*   x) = 0;
  virtual void do_CheckCast      (CheckCast*       x) = 0;
  virtual void do_InstanceOf     (InstanceOf*      x) = 0;
  virtual void do_MonitorEnter   (MonitorEnter*    x) = 0;
  virtual void do_MonitorExit    (MonitorExit*     x) = 0;
  virtual void do_Intrinsic      (Intrinsic*       x) = 0;
  virtual void do_BlockBegin     (BlockBegin*      x) = 0;
  virtual void do_Goto           (Goto*            x) = 0;
  virtual void do_If             (If*              x) = 0;
  virtual void do_IfInstanceOf   (IfInstanceOf*    x) = 0;
  virtual void do_TableSwitch    (TableSwitch*     x) = 0;
  virtual void do_LookupSwitch   (LookupSwitch*    x) = 0;
  virtual void do_Return         (Return*          x) = 0;
  virtual void do_Throw          (Throw*           x) = 0;
  virtual void do_Base           (Base*            x) = 0;
  virtual void do_OsrEntry       (OsrEntry*        x) = 0;
  virtual void do_ExceptionObject(ExceptionObject* x) = 0;
  virtual void do_RoundFP        (RoundFP*         x) = 0;
  virtual void do_UnsafeGetRaw   (UnsafeGetRaw*    x) = 0;
  virtual void do_UnsafePutRaw   (UnsafePutRaw*    x) = 0;
  virtual void do_UnsafeGetObject(UnsafeGetObject* x) = 0;
  virtual void do_UnsafePutObject(UnsafePutObject* x) = 0;
  virtual void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) = 0;
  virtual void do_UnsafePrefetchRead (UnsafePrefetchRead*  x) = 0;
  virtual void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) = 0;
  virtual void do_ProfileCall    (ProfileCall*     x) = 0;
  virtual void do_ProfileReturnType (ProfileReturnType*  x) = 0;
  virtual void do_ProfileInvoke  (ProfileInvoke*   x) = 0;
  virtual void do_RuntimeCall    (RuntimeCall*     x) = 0;
  virtual void do_MemBar         (MemBar*          x) = 0;
  virtual void do_RangeCheckPredicate(RangeCheckPredicate* x) = 0;
#ifdef ASSERT
  virtual void do_Assert         (Assert*          x) = 0;
#endif
};


// Hashing support
//
// Note: This hash functions affect the performance
//       of ValueMap - make changes carefully!

#define HASH1(x1            )                    ((intx)(x1))
#define HASH2(x1, x2        )                    ((HASH1(x1        ) << 7) ^ HASH1(x2))
#define HASH3(x1, x2, x3    )                    ((HASH2(x1, x2    ) << 7) ^ HASH1(x3))
#define HASH4(x1, x2, x3, x4)                    ((HASH3(x1, x2, x3) << 7) ^ HASH1(x4))


// The following macros are used to implement instruction-specific hashing.
// By default, each instruction implements hash() and is_equal(Value), used
// for value numbering/common subexpression elimination. The default imple-
// mentation disables value numbering. Each instruction which can be value-
// numbered, should define corresponding hash() and is_equal(Value) functions
// via the macros below. The f arguments specify all the values/op codes, etc.
// that need to be identical for two instructions to be identical.
//
// Note: The default implementation of hash() returns 0 in order to indicate
//       that the instruction should not be considered for value numbering.
//       The currently used hash functions do not guarantee that never a 0
//       is produced. While this is still correct, it may be a performance
//       bug (no value numbering for that node). However, this situation is
//       so unlikely, that we are not going to handle it specially.

#define HASHING1(class_name, enabled, f1)             \
  virtual intx hash() const {                         \
    return (enabled) ? HASH2(name(), f1) : 0;         \
  }                                                   \
  virtual bool is_equal(Value v) const {              \
    if (!(enabled)  ) return false;                   \
    class_name* _v = v->as_##class_name();            \
    if (_v == NULL  ) return false;                   \
    if (f1 != _v->f1) return false;                   \
    return true;                                      \
  }                                                   \


#define HASHING2(class_name, enabled, f1, f2)         \
  virtual intx hash() const {                         \
    return (enabled) ? HASH3(name(), f1, f2) : 0;     \
  }                                                   \
  virtual bool is_equal(Value v) const {              \
    if (!(enabled)  ) return false;                   \
    class_name* _v = v->as_##class_name();            \
    if (_v == NULL  ) return false;                   \
    if (f1 != _v->f1) return false;                   \
    if (f2 != _v->f2) return false;                   \
    return true;                                      \
  }                                                   \


#define HASHING3(class_name, enabled, f1, f2, f3)     \
  virtual intx hash() const {                          \
    return (enabled) ? HASH4(name(), f1, f2, f3) : 0; \
  }                                                   \
  virtual bool is_equal(Value v) const {              \
    if (!(enabled)  ) return false;                   \
    class_name* _v = v->as_##class_name();            \
    if (_v == NULL  ) return false;                   \
    if (f1 != _v->f1) return false;                   \
    if (f2 != _v->f2) return false;                   \
    if (f3 != _v->f3) return false;                   \
    return true;                                      \
  }                                                   \


// The mother of all instructions...

class Instruction: public CompilationResourceObj {
 private:
  int          _id;                              // the unique instruction id
#ifndef PRODUCT
  int          _printable_bci;                   // the bci of the instruction for printing
#endif
  int          _use_count;                       // the number of instructions refering to this value (w/o prev/next); only roots can have use count = 0 or > 1
  int          _pin_state;                       // set of PinReason describing the reason for pinning
  ValueType*   _type;                            // the instruction value type
  Instruction* _next;                            // the next instruction if any (NULL for BlockEnd instructions)
  Instruction* _subst;                           // the substitution instruction if any
  LIR_Opr      _operand;                         // LIR specific information
  unsigned int _flags;                           // Flag bits

  ValueStack*  _state_before;                    // Copy of state with input operands still on stack (or NULL)
  ValueStack*  _exception_state;                 // Copy of state for exception handling
  XHandlers*   _exception_handlers;              // Flat list of exception handlers covering this instruction

  friend class UseCountComputer;
  friend class BlockBegin;

  void update_exception_state(ValueStack* state);

 protected:
  BlockBegin*  _block;                           // Block that contains this instruction

  void set_type(ValueType* type) {
    assert(type != NULL, "type must exist");
    _type = type;
  }

  // Helper class to keep track of which arguments need a null check
  class ArgsNonNullState {
  private:
    int _nonnull_state; // mask identifying which args are nonnull
  public:
    ArgsNonNullState()
      : _nonnull_state(AllBits) {}

    // Does argument number i needs a null check?
    bool arg_needs_null_check(int i) const {
      // No data is kept for arguments starting at position 33 so
      // conservatively assume that they need a null check.
      if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
        return is_set_nth_bit(_nonnull_state, i);
      }
      return true;
    }

    // Set whether argument number i needs a null check or not
    void set_arg_needs_null_check(int i, bool check) {
      if (i >= 0 && i < (int)sizeof(_nonnull_state) * BitsPerByte) {
        if (check) {
          _nonnull_state |= nth_bit(i);
        } else {
          _nonnull_state &= ~(nth_bit(i));
        }
      }
    }
  };

 public:
  void* operator new(size_t size) throw() {
    Compilation* c = Compilation::current();
    void* res = c->arena()->Amalloc(size);
    ((Instruction*)res)->_id = c->get_next_id();
    return res;
  }

  static const int no_bci = -99;

  enum InstructionFlag {
    NeedsNullCheckFlag = 0,
    CanTrapFlag,
    DirectCompareFlag,
    IsEliminatedFlag,
    IsSafepointFlag,
    IsStaticFlag,
    IsStrictfpFlag,
    NeedsStoreCheckFlag,
    NeedsWriteBarrierFlag,
    PreservesStateFlag,
    TargetIsFinalFlag,
    TargetIsLoadedFlag,
    TargetIsStrictfpFlag,
    UnorderedIsTrueFlag,
    NeedsPatchingFlag,
    ThrowIncompatibleClassChangeErrorFlag,
    ProfileMDOFlag,
    IsLinkedInBlockFlag,
    NeedsRangeCheckFlag,
    InWorkListFlag,
    DeoptimizeOnException,
    InstructionLastFlag
  };

 public:
  bool check_flag(InstructionFlag id) const      { return (_flags & (1 << id)) != 0;    }
  void set_flag(InstructionFlag id, bool f)      { _flags = f ? (_flags | (1 << id)) : (_flags & ~(1 << id)); };

  // 'globally' used condition values
  enum Condition {
    eql, neq, lss, leq, gtr, geq, aeq, beq
  };

  // Instructions may be pinned for many reasons and under certain conditions
  // with enough knowledge it's possible to safely unpin them.
  enum PinReason {
      PinUnknown           = 1 << 0
    , PinExplicitNullCheck = 1 << 3
    , PinStackForStateSplit= 1 << 12
    , PinStateSplitConstructor= 1 << 13
    , PinGlobalValueNumbering= 1 << 14
  };

  static Condition mirror(Condition cond);
  static Condition negate(Condition cond);

  // initialization
  static int number_of_instructions() {
    return Compilation::current()->number_of_instructions();
  }

  // creation
  Instruction(ValueType* type, ValueStack* state_before = NULL, bool type_is_constant = false)
  : _use_count(0)
#ifndef PRODUCT
  , _printable_bci(-99)
#endif
  , _pin_state(0)
  , _type(type)
  , _next(NULL)
  , _block(NULL)
  , _subst(NULL)
  , _flags(0)
  , _operand(LIR_OprFact::illegalOpr)
  , _state_before(state_before)
  , _exception_handlers(NULL)
  {
    check_state(state_before);
    assert(type != NULL && (!type->is_constant() || type_is_constant), "type must exist");
    update_exception_state(_state_before);
  }

  // accessors
  int id() const                                 { return _id; }
#ifndef PRODUCT
  bool has_printable_bci() const                 { return _printable_bci != -99; }
  int printable_bci() const                      { assert(has_printable_bci(), "_printable_bci should have been set"); return _printable_bci; }
  void set_printable_bci(int bci)                { _printable_bci = bci; }
#endif
  int dominator_depth();
  int use_count() const                          { return _use_count; }
  int pin_state() const                          { return _pin_state; }
  bool is_pinned() const                         { return _pin_state != 0 || PinAllInstructions; }
  ValueType* type() const                        { return _type; }
  BlockBegin *block() const                      { return _block; }
  Instruction* prev();                           // use carefully, expensive operation
  Instruction* next() const                      { return _next; }
  bool has_subst() const                         { return _subst != NULL; }
  Instruction* subst()                           { return _subst == NULL ? this : _subst->subst(); }
  LIR_Opr operand() const                        { return _operand; }

  void set_needs_null_check(bool f)              { set_flag(NeedsNullCheckFlag, f); }
  bool needs_null_check() const                  { return check_flag(NeedsNullCheckFlag); }
  bool is_linked() const                         { return check_flag(IsLinkedInBlockFlag); }
  bool can_be_linked()                           { return as_Local() == NULL && as_Phi() == NULL; }

  bool has_uses() const                          { return use_count() > 0; }
  ValueStack* state_before() const               { return _state_before; }
  ValueStack* exception_state() const            { return _exception_state; }
  virtual bool needs_exception_state() const     { return true; }
  XHandlers* exception_handlers() const          { return _exception_handlers; }

  // manipulation
  void pin(PinReason reason)                     { _pin_state |= reason; }
  void pin()                                     { _pin_state |= PinUnknown; }
  // DANGEROUS: only used by EliminateStores
  void unpin(PinReason reason)                   { assert((reason & PinUnknown) == 0, "can't unpin unknown state"); _pin_state &= ~reason; }

  Instruction* set_next(Instruction* next) {
    assert(next->has_printable_bci(), "_printable_bci should have been set");
    assert(next != NULL, "must not be NULL");
    assert(as_BlockEnd() == NULL, "BlockEnd instructions must have no next");
    assert(next->can_be_linked(), "shouldn't link these instructions into list");

    BlockBegin *block = this->block();
    next->_block = block;

    next->set_flag(Instruction::IsLinkedInBlockFlag, true);
    _next = next;
    return next;
  }

  Instruction* set_next(Instruction* next, int bci) {
#ifndef PRODUCT
    next->set_printable_bci(bci);
#endif
    return set_next(next);
  }

  // when blocks are merged
  void fixup_block_pointers() {
    Instruction *cur = next()->next(); // next()'s block is set in set_next
    while (cur && cur->_block != block()) {
      cur->_block = block();
      cur = cur->next();
    }
  }

  Instruction *insert_after(Instruction *i) {
    Instruction* n = _next;
    set_next(i);
    i->set_next(n);
    return _next;
  }

  Instruction *insert_after_same_bci(Instruction *i) {
#ifndef PRODUCT
    i->set_printable_bci(printable_bci());
#endif
    return insert_after(i);
  }

  void set_subst(Instruction* subst)             {
    assert(subst == NULL ||
           type()->base() == subst->type()->base() ||
           subst->type()->base() == illegalType, "type can't change");
    _subst = subst;
  }
  void set_exception_handlers(XHandlers *xhandlers) { _exception_handlers = xhandlers; }
  void set_exception_state(ValueStack* s)        { check_state(s); _exception_state = s; }
  void set_state_before(ValueStack* s)           { check_state(s); _state_before = s; }

  // machine-specifics
  void set_operand(LIR_Opr operand)              { assert(operand != LIR_OprFact::illegalOpr, "operand must exist"); _operand = operand; }
  void clear_operand()                           { _operand = LIR_OprFact::illegalOpr; }

  // generic
  virtual Instruction*      as_Instruction()     { return this; } // to satisfy HASHING1 macro
  virtual Phi*              as_Phi()             { return NULL; }
  virtual Local*            as_Local()           { return NULL; }
  virtual Constant*         as_Constant()        { return NULL; }
  virtual AccessField*      as_AccessField()     { return NULL; }
  virtual LoadField*        as_LoadField()       { return NULL; }
  virtual StoreField*       as_StoreField()      { return NULL; }
  virtual AccessArray*      as_AccessArray()     { return NULL; }
  virtual ArrayLength*      as_ArrayLength()     { return NULL; }
  virtual AccessIndexed*    as_AccessIndexed()   { return NULL; }
  virtual LoadIndexed*      as_LoadIndexed()     { return NULL; }
  virtual StoreIndexed*     as_StoreIndexed()    { return NULL; }
  virtual NegateOp*         as_NegateOp()        { return NULL; }
  virtual Op2*              as_Op2()             { return NULL; }
  virtual ArithmeticOp*     as_ArithmeticOp()    { return NULL; }
  virtual ShiftOp*          as_ShiftOp()         { return NULL; }
  virtual LogicOp*          as_LogicOp()         { return NULL; }
  virtual CompareOp*        as_CompareOp()       { return NULL; }
  virtual IfOp*             as_IfOp()            { return NULL; }
  virtual Convert*          as_Convert()         { return NULL; }
  virtual NullCheck*        as_NullCheck()       { return NULL; }
  virtual OsrEntry*         as_OsrEntry()        { return NULL; }
  virtual StateSplit*       as_StateSplit()      { return NULL; }
  virtual Invoke*           as_Invoke()          { return NULL; }
  virtual NewInstance*      as_NewInstance()     { return NULL; }
  virtual NewArray*         as_NewArray()        { return NULL; }
  virtual NewTypeArray*     as_NewTypeArray()    { return NULL; }
  virtual NewObjectArray*   as_NewObjectArray()  { return NULL; }
  virtual NewMultiArray*    as_NewMultiArray()   { return NULL; }
  virtual TypeCheck*        as_TypeCheck()       { return NULL; }
  virtual CheckCast*        as_CheckCast()       { return NULL; }
  virtual InstanceOf*       as_InstanceOf()      { return NULL; }
  virtual TypeCast*         as_TypeCast()        { return NULL; }
  virtual AccessMonitor*    as_AccessMonitor()   { return NULL; }
  virtual MonitorEnter*     as_MonitorEnter()    { return NULL; }
  virtual MonitorExit*      as_MonitorExit()     { return NULL; }
  virtual Intrinsic*        as_Intrinsic()       { return NULL; }
  virtual BlockBegin*       as_BlockBegin()      { return NULL; }
  virtual BlockEnd*         as_BlockEnd()        { return NULL; }
  virtual Goto*             as_Goto()            { return NULL; }
  virtual If*               as_If()              { return NULL; }
  virtual IfInstanceOf*     as_IfInstanceOf()    { return NULL; }
  virtual TableSwitch*      as_TableSwitch()     { return NULL; }
  virtual LookupSwitch*     as_LookupSwitch()    { return NULL; }
  virtual Return*           as_Return()          { return NULL; }
  virtual Throw*            as_Throw()           { return NULL; }
  virtual Base*             as_Base()            { return NULL; }
  virtual RoundFP*          as_RoundFP()         { return NULL; }
  virtual ExceptionObject*  as_ExceptionObject() { return NULL; }
  virtual UnsafeOp*         as_UnsafeOp()        { return NULL; }
  virtual ProfileInvoke*    as_ProfileInvoke()   { return NULL; }
  virtual RangeCheckPredicate* as_RangeCheckPredicate() { return NULL; }

#ifdef ASSERT
  virtual Assert*           as_Assert()          { return NULL; }
#endif

  virtual void visit(InstructionVisitor* v)      = 0;

  virtual bool can_trap() const                  { return false; }

  virtual void input_values_do(ValueVisitor* f)   = 0;
  virtual void state_values_do(ValueVisitor* f);
  virtual void other_values_do(ValueVisitor* f)   { /* usually no other - override on demand */ }
          void       values_do(ValueVisitor* f)   { input_values_do(f); state_values_do(f); other_values_do(f); }

  virtual ciType* exact_type() const;
  virtual ciType* declared_type() const          { return NULL; }

  // hashing
  virtual const char* name() const               = 0;
  HASHING1(Instruction, false, id())             // hashing disabled by default

  // debugging
  static void check_state(ValueStack* state)     PRODUCT_RETURN;
  void print()                                   PRODUCT_RETURN;
  void print_line()                              PRODUCT_RETURN;
  void print(InstructionPrinter& ip)             PRODUCT_RETURN;
};


// The following macros are used to define base (i.e., non-leaf)
// and leaf instruction classes. They define class-name related
// generic functionality in one place.

#define BASE(class_name, super_class_name)       \
  class class_name: public super_class_name {    \
   public:                                       \
    virtual class_name* as_##class_name()        { return this; }              \


#define LEAF(class_name, super_class_name)       \
  BASE(class_name, super_class_name)             \
   public:                                       \
    virtual const char* name() const             { return #class_name; }       \
    virtual void visit(InstructionVisitor* v)    { v->do_##class_name(this); } \


// Debugging support


#ifdef ASSERT
class AssertValues: public ValueVisitor {
  void visit(Value* x)             { assert((*x) != NULL, "value must exist"); }
};
  #define ASSERT_VALUES                          { AssertValues assert_value; values_do(&assert_value); }
#else
  #define ASSERT_VALUES
#endif // ASSERT


// A Phi is a phi function in the sense of SSA form. It stands for
// the value of a local variable at the beginning of a join block.
// A Phi consists of n operands, one for every incoming branch.

LEAF(Phi, Instruction)
 private:
  int         _pf_flags; // the flags of the phi function
  int         _index;    // to value on operand stack (index < 0) or to local
 public:
  // creation
  Phi(ValueType* type, BlockBegin* b, int index)
  : Instruction(type->base())
  , _pf_flags(0)
  , _index(index)
  {
    _block = b;
    NOT_PRODUCT(set_printable_bci(Value(b)->printable_bci()));
    if (type->is_illegal()) {
      make_illegal();
    }
  }

  // flags
  enum Flag {
    no_flag         = 0,
    visited         = 1 << 0,
    cannot_simplify = 1 << 1
  };

  // accessors
  bool  is_local() const          { return _index >= 0; }
  bool  is_on_stack() const       { return !is_local(); }
  int   local_index() const       { assert(is_local(), ""); return _index; }
  int   stack_index() const       { assert(is_on_stack(), ""); return -(_index+1); }

  Value operand_at(int i) const;
  int   operand_count() const;

  void   set(Flag f)              { _pf_flags |=  f; }
  void   clear(Flag f)            { _pf_flags &= ~f; }
  bool   is_set(Flag f) const     { return (_pf_flags & f) != 0; }

  // Invalidates phis corresponding to merges of locals of two different types
  // (these should never be referenced, otherwise the bytecodes are illegal)
  void   make_illegal() {
    set(cannot_simplify);
    set_type(illegalType);
  }

  bool is_illegal() const {
    return type()->is_illegal();
  }

  // generic
  virtual void input_values_do(ValueVisitor* f) {
  }
};


// A local is a placeholder for an incoming argument to a function call.
LEAF(Local, Instruction)
 private:
  int      _java_index;                          // the local index within the method to which the local belongs
  ciType*  _declared_type;
 public:
  // creation
  Local(ciType* declared, ValueType* type, int index)
    : Instruction(type)
    , _java_index(index)
    , _declared_type(declared)
  {
    NOT_PRODUCT(set_printable_bci(-1));
  }

  // accessors
  int java_index() const                         { return _java_index; }

  virtual ciType* declared_type() const          { return _declared_type; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
};


LEAF(Constant, Instruction)
 public:
  // creation
  Constant(ValueType* type):
      Instruction(type, NULL, /*type_is_constant*/ true)
  {
    assert(type->is_constant(), "must be a constant");
  }

  Constant(ValueType* type, ValueStack* state_before):
    Instruction(type, state_before, /*type_is_constant*/ true)
  {
    assert(state_before != NULL, "only used for constants which need patching");
    assert(type->is_constant(), "must be a constant");
    // since it's patching it needs to be pinned
    pin();
  }

  // generic
  virtual bool can_trap() const                  { return state_before() != NULL; }
  virtual void input_values_do(ValueVisitor* f)   { /* no values */ }

  virtual intx hash() const;
  virtual bool is_equal(Value v) const;

  virtual ciType* exact_type() const;

  enum CompareResult { not_comparable = -1, cond_false, cond_true };

  virtual CompareResult compare(Instruction::Condition condition, Value right) const;
  BlockBegin* compare(Instruction::Condition cond, Value right,
                      BlockBegin* true_sux, BlockBegin* false_sux) const {
    switch (compare(cond, right)) {
    case not_comparable:
      return NULL;
    case cond_false:
      return false_sux;
    case cond_true:
      return true_sux;
    default:
      ShouldNotReachHere();
      return NULL;
    }
  }
};


BASE(AccessField, Instruction)
 private:
  Value       _obj;
  int         _offset;
  ciField*    _field;
  NullCheck*  _explicit_null_check;              // For explicit null check elimination

 public:
  // creation
  AccessField(Value obj, int offset, ciField* field, bool is_static,
              ValueStack* state_before, bool needs_patching)
  : Instruction(as_ValueType(field->type()->basic_type()), state_before)
  , _obj(obj)
  , _offset(offset)
  , _field(field)
  , _explicit_null_check(NULL)
  {
    set_needs_null_check(!is_static);
    set_flag(IsStaticFlag, is_static);
    set_flag(NeedsPatchingFlag, needs_patching);
    ASSERT_VALUES
    // pin of all instructions with memory access
    pin();
  }

  // accessors
  Value obj() const                              { return _obj; }
  int offset() const                             { return _offset; }
  ciField* field() const                         { return _field; }
  BasicType field_type() const                   { return _field->type()->basic_type(); }
  bool is_static() const                         { return check_flag(IsStaticFlag); }
  NullCheck* explicit_null_check() const         { return _explicit_null_check; }
  bool needs_patching() const                    { return check_flag(NeedsPatchingFlag); }

  // Unresolved getstatic and putstatic can cause initialization.
  // Technically it occurs at the Constant that materializes the base
  // of the static fields but it's simpler to model it here.
  bool is_init_point() const                     { return is_static() && (needs_patching() || !_field->holder()->is_initialized()); }

  // manipulation

  // Under certain circumstances, if a previous NullCheck instruction
  // proved the target object non-null, we can eliminate the explicit
  // null check and do an implicit one, simply specifying the debug
  // information from the NullCheck. This field should only be consulted
  // if needs_null_check() is true.
  void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }

  // generic
  virtual bool can_trap() const                  { return needs_null_check() || needs_patching(); }
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
};


LEAF(LoadField, AccessField)
 public:
  // creation
  LoadField(Value obj, int offset, ciField* field, bool is_static,
            ValueStack* state_before, bool needs_patching)
  : AccessField(obj, offset, field, is_static, state_before, needs_patching)
  {}

  ciType* declared_type() const;

  // generic
  HASHING2(LoadField, !needs_patching() && !field()->is_volatile(), obj()->subst(), offset())  // cannot be eliminated if needs patching or if volatile
};


LEAF(StoreField, AccessField)
 private:
  Value _value;

 public:
  // creation
  StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
             ValueStack* state_before, bool needs_patching)
  : AccessField(obj, offset, field, is_static, state_before, needs_patching)
  , _value(value)
  {
    set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
    ASSERT_VALUES
    pin();
  }

  // accessors
  Value value() const                            { return _value; }
  bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { AccessField::input_values_do(f); f->visit(&_value); }
};


BASE(AccessArray, Instruction)
 private:
  Value       _array;

 public:
  // creation
  AccessArray(ValueType* type, Value array, ValueStack* state_before)
  : Instruction(type, state_before)
  , _array(array)
  {
    set_needs_null_check(true);
    ASSERT_VALUES
    pin(); // instruction with side effect (null exception or range check throwing)
  }

  Value array() const                            { return _array; }

  // generic
  virtual bool can_trap() const                  { return needs_null_check(); }
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_array); }
};


LEAF(ArrayLength, AccessArray)
 private:
  NullCheck*  _explicit_null_check;              // For explicit null check elimination

 public:
  // creation
  ArrayLength(Value array, ValueStack* state_before)
  : AccessArray(intType, array, state_before)
  , _explicit_null_check(NULL) {}

  // accessors
  NullCheck* explicit_null_check() const         { return _explicit_null_check; }

  // setters
  // See LoadField::set_explicit_null_check for documentation
  void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }

  // generic
  HASHING1(ArrayLength, true, array()->subst())
};


BASE(AccessIndexed, AccessArray)
 private:
  Value     _index;
  Value     _length;
  BasicType _elt_type;

 public:
  // creation
  AccessIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
  : AccessArray(as_ValueType(elt_type), array, state_before)
  , _index(index)
  , _length(length)
  , _elt_type(elt_type)
  {
    set_flag(Instruction::NeedsRangeCheckFlag, true);
    ASSERT_VALUES
  }

  // accessors
  Value index() const                            { return _index; }
  Value length() const                           { return _length; }
  BasicType elt_type() const                     { return _elt_type; }

  void clear_length()                            { _length = NULL; }
  // perform elimination of range checks involving constants
  bool compute_needs_range_check();

  // generic
  virtual void input_values_do(ValueVisitor* f)   { AccessArray::input_values_do(f); f->visit(&_index); if (_length != NULL) f->visit(&_length); }
};


LEAF(LoadIndexed, AccessIndexed)
 private:
  NullCheck*  _explicit_null_check;              // For explicit null check elimination

 public:
  // creation
  LoadIndexed(Value array, Value index, Value length, BasicType elt_type, ValueStack* state_before)
  : AccessIndexed(array, index, length, elt_type, state_before)
  , _explicit_null_check(NULL) {}

  // accessors
  NullCheck* explicit_null_check() const         { return _explicit_null_check; }

  // setters
  // See LoadField::set_explicit_null_check for documentation
  void set_explicit_null_check(NullCheck* check) { _explicit_null_check = check; }

  ciType* exact_type() const;
  ciType* declared_type() const;

  // generic
  HASHING2(LoadIndexed, true, array()->subst(), index()->subst())
};


LEAF(StoreIndexed, AccessIndexed)
 private:
  Value       _value;

  ciMethod* _profiled_method;
  int       _profiled_bci;
 public:
  // creation
  StoreIndexed(Value array, Value index, Value length, BasicType elt_type, Value value, ValueStack* state_before)
  : AccessIndexed(array, index, length, elt_type, state_before)
  , _value(value), _profiled_method(NULL), _profiled_bci(0)
  {
    set_flag(NeedsWriteBarrierFlag, (as_ValueType(elt_type)->is_object()));
    set_flag(NeedsStoreCheckFlag, (as_ValueType(elt_type)->is_object()));
    ASSERT_VALUES
    pin();
  }

  // accessors
  Value value() const                            { return _value; }
  bool needs_write_barrier() const               { return check_flag(NeedsWriteBarrierFlag); }
  bool needs_store_check() const                 { return check_flag(NeedsStoreCheckFlag); }
  // Helpers for MethodData* profiling
  void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
  void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
  void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
  bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
  ciMethod* profiled_method() const                  { return _profiled_method;     }
  int       profiled_bci() const                     { return _profiled_bci;        }
  // generic
  virtual void input_values_do(ValueVisitor* f)   { AccessIndexed::input_values_do(f); f->visit(&_value); }
};


LEAF(NegateOp, Instruction)
 private:
  Value _x;

 public:
  // creation
  NegateOp(Value x) : Instruction(x->type()->base()), _x(x) {
    ASSERT_VALUES
  }

  // accessors
  Value x() const                                { return _x; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); }
};


BASE(Op2, Instruction)
 private:
  Bytecodes::Code _op;
  Value           _x;
  Value           _y;

 public:
  // creation
  Op2(ValueType* type, Bytecodes::Code op, Value x, Value y, ValueStack* state_before = NULL)
  : Instruction(type, state_before)
  , _op(op)
  , _x(x)
  , _y(y)
  {
    ASSERT_VALUES
  }

  // accessors
  Bytecodes::Code op() const                     { return _op; }
  Value x() const                                { return _x; }
  Value y() const                                { return _y; }

  // manipulators
  void swap_operands() {
    assert(is_commutative(), "operation must be commutative");
    Value t = _x; _x = _y; _y = t;
  }

  // generic
  virtual bool is_commutative() const            { return false; }
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_x); f->visit(&_y); }
};


LEAF(ArithmeticOp, Op2)
 public:
  // creation
  ArithmeticOp(Bytecodes::Code op, Value x, Value y, bool is_strictfp, ValueStack* state_before)
  : Op2(x->type()->meet(y->type()), op, x, y, state_before)
  {
    set_flag(IsStrictfpFlag, is_strictfp);
    if (can_trap()) pin();
  }

  // accessors
  bool        is_strictfp() const                { return check_flag(IsStrictfpFlag); }

  // generic
  virtual bool is_commutative() const;
  virtual bool can_trap() const;
  HASHING3(Op2, true, op(), x()->subst(), y()->subst())
};


LEAF(ShiftOp, Op2)
 public:
  // creation
  ShiftOp(Bytecodes::Code op, Value x, Value s) : Op2(x->type()->base(), op, x, s) {}

  // generic
  HASHING3(Op2, true, op(), x()->subst(), y()->subst())
};


LEAF(LogicOp, Op2)
 public:
  // creation
  LogicOp(Bytecodes::Code op, Value x, Value y) : Op2(x->type()->meet(y->type()), op, x, y) {}

  // generic
  virtual bool is_commutative() const;
  HASHING3(Op2, true, op(), x()->subst(), y()->subst())
};


LEAF(CompareOp, Op2)
 public:
  // creation
  CompareOp(Bytecodes::Code op, Value x, Value y, ValueStack* state_before)
  : Op2(intType, op, x, y, state_before)
  {}

  // generic
  HASHING3(Op2, true, op(), x()->subst(), y()->subst())
};


LEAF(IfOp, Op2)
 private:
  Value _tval;
  Value _fval;

 public:
  // creation
  IfOp(Value x, Condition cond, Value y, Value tval, Value fval)
  : Op2(tval->type()->meet(fval->type()), (Bytecodes::Code)cond, x, y)
  , _tval(tval)
  , _fval(fval)
  {
    ASSERT_VALUES
    assert(tval->type()->tag() == fval->type()->tag(), "types must match");
  }

  // accessors
  virtual bool is_commutative() const;
  Bytecodes::Code op() const                     { ShouldNotCallThis(); return Bytecodes::_illegal; }
  Condition cond() const                         { return (Condition)Op2::op(); }
  Value tval() const                             { return _tval; }
  Value fval() const                             { return _fval; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { Op2::input_values_do(f); f->visit(&_tval); f->visit(&_fval); }
};


LEAF(Convert, Instruction)
 private:
  Bytecodes::Code _op;
  Value           _value;

 public:
  // creation
  Convert(Bytecodes::Code op, Value value, ValueType* to_type) : Instruction(to_type), _op(op), _value(value) {
    ASSERT_VALUES
  }

  // accessors
  Bytecodes::Code op() const                     { return _op; }
  Value value() const                            { return _value; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_value); }
  HASHING2(Convert, true, op(), value()->subst())
};


LEAF(NullCheck, Instruction)
 private:
  Value       _obj;

 public:
  // creation
  NullCheck(Value obj, ValueStack* state_before)
  : Instruction(obj->type()->base(), state_before)
  , _obj(obj)
  {
    ASSERT_VALUES
    set_can_trap(true);
    assert(_obj->type()->is_object(), "null check must be applied to objects only");
    pin(Instruction::PinExplicitNullCheck);
  }

  // accessors
  Value obj() const                              { return _obj; }

  // setters
  void set_can_trap(bool can_trap)               { set_flag(CanTrapFlag, can_trap); }

  // generic
  virtual bool can_trap() const                  { return check_flag(CanTrapFlag); /* null-check elimination sets to false */ }
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_obj); }
  HASHING1(NullCheck, true, obj()->subst())
};


// This node is supposed to cast the type of another node to a more precise
// declared type.
LEAF(TypeCast, Instruction)
 private:
  ciType* _declared_type;
  Value   _obj;

 public:
  // The type of this node is the same type as the object type (and it might be constant).
  TypeCast(ciType* type, Value obj, ValueStack* state_before)
  : Instruction(obj->type(), state_before, obj->type()->is_constant()),
    _declared_type(type),
    _obj(obj) {}

  // accessors
  ciType* declared_type() const                  { return _declared_type; }
  Value   obj() const                            { return _obj; }

  // generic
  virtual void input_values_do(ValueVisitor* f)  { f->visit(&_obj); }
};


BASE(StateSplit, Instruction)
 private:
  ValueStack* _state;

 protected:
  static void substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block);

 public:
  // creation
  StateSplit(ValueType* type, ValueStack* state_before = NULL)
  : Instruction(type, state_before)
  , _state(NULL)
  {
    pin(PinStateSplitConstructor);
  }

  // accessors
  ValueStack* state() const                      { return _state; }
  IRScope* scope() const;                        // the state's scope

  // manipulation
  void set_state(ValueStack* state)              { assert(_state == NULL, "overwriting existing state"); check_state(state); _state = state; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { /* no values */ }
  virtual void state_values_do(ValueVisitor* f);
};


LEAF(Invoke, StateSplit)
 private:
  Bytecodes::Code _code;
  Value           _recv;
  Values*         _args;
  BasicTypeList*  _signature;
  int             _vtable_index;
  ciMethod*       _target;

 public:
  // creation
  Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
         int vtable_index, ciMethod* target, ValueStack* state_before);

  // accessors
  Bytecodes::Code code() const                   { return _code; }
  Value receiver() const                         { return _recv; }
  bool has_receiver() const                      { return receiver() != NULL; }
  int number_of_arguments() const                { return _args->length(); }
  Value argument_at(int i) const                 { return _args->at(i); }
  int vtable_index() const                       { return _vtable_index; }
  BasicTypeList* signature() const               { return _signature; }
  ciMethod* target() const                       { return _target; }

  ciType* declared_type() const;

  // Returns false if target is not loaded
  bool target_is_final() const                   { return check_flag(TargetIsFinalFlag); }
  bool target_is_loaded() const                  { return check_flag(TargetIsLoadedFlag); }
  // Returns false if target is not loaded
  bool target_is_strictfp() const                { return check_flag(TargetIsStrictfpFlag); }

  // JSR 292 support
  bool is_invokedynamic() const                  { return code() == Bytecodes::_invokedynamic; }
  bool is_method_handle_intrinsic() const        { return target()->is_method_handle_intrinsic(); }

  virtual bool needs_exception_state() const     { return false; }

  // generic
  virtual bool can_trap() const                  { return true; }
  virtual void input_values_do(ValueVisitor* f) {
    StateSplit::input_values_do(f);
    if (has_receiver()) f->visit(&_recv);
    for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  }
  virtual void state_values_do(ValueVisitor *f);
};


LEAF(NewInstance, StateSplit)
 private:
  ciInstanceKlass* _klass;

 public:
  // creation
  NewInstance(ciInstanceKlass* klass, ValueStack* state_before)
  : StateSplit(instanceType, state_before)
  , _klass(klass)
  {}

  // accessors
  ciInstanceKlass* klass() const                 { return _klass; }

  virtual bool needs_exception_state() const     { return false; }

  // generic
  virtual bool can_trap() const                  { return true; }
  ciType* exact_type() const;
  ciType* declared_type() const;
};


BASE(NewArray, StateSplit)
 private:
  Value       _length;

 public:
  // creation
  NewArray(Value length, ValueStack* state_before)
  : StateSplit(objectType, state_before)
  , _length(length)
  {
    // Do not ASSERT_VALUES since length is NULL for NewMultiArray
  }

  // accessors
  Value length() const                           { return _length; }

  virtual bool needs_exception_state() const     { return false; }

  ciType* exact_type() const                     { return NULL; }
  ciType* declared_type() const;

  // generic
  virtual bool can_trap() const                  { return true; }
  virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_length); }
};


LEAF(NewTypeArray, NewArray)
 private:
  BasicType _elt_type;

 public:
  // creation
  NewTypeArray(Value length, BasicType elt_type, ValueStack* state_before)
  : NewArray(length, state_before)
  , _elt_type(elt_type)
  {}

  // accessors
  BasicType elt_type() const                     { return _elt_type; }
  ciType* exact_type() const;
};


LEAF(NewObjectArray, NewArray)
 private:
  ciKlass* _klass;

 public:
  // creation
  NewObjectArray(ciKlass* klass, Value length, ValueStack* state_before) : NewArray(length, state_before), _klass(klass) {}

  // accessors
  ciKlass* klass() const                         { return _klass; }
  ciType* exact_type() const;
};


LEAF(NewMultiArray, NewArray)
 private:
  ciKlass* _klass;
  Values*  _dims;

 public:
  // creation
  NewMultiArray(ciKlass* klass, Values* dims, ValueStack* state_before) : NewArray(NULL, state_before), _klass(klass), _dims(dims) {
    ASSERT_VALUES
  }

  // accessors
  ciKlass* klass() const                         { return _klass; }
  Values* dims() const                           { return _dims; }
  int rank() const                               { return dims()->length(); }

  // generic
  virtual void input_values_do(ValueVisitor* f) {
    // NOTE: we do not call NewArray::input_values_do since "length"
    // is meaningless for a multi-dimensional array; passing the
    // zeroth element down to NewArray as its length is a bad idea
    // since there will be a copy in the "dims" array which doesn't
    // get updated, and the value must not be traversed twice. Was bug
    // - kbr 4/10/2001
    StateSplit::input_values_do(f);
    for (int i = 0; i < _dims->length(); i++) f->visit(_dims->adr_at(i));
  }
};


BASE(TypeCheck, StateSplit)
 private:
  ciKlass*    _klass;
  Value       _obj;

  ciMethod* _profiled_method;
  int       _profiled_bci;

 public:
  // creation
  TypeCheck(ciKlass* klass, Value obj, ValueType* type, ValueStack* state_before)
  : StateSplit(type, state_before), _klass(klass), _obj(obj),
    _profiled_method(NULL), _profiled_bci(0) {
    ASSERT_VALUES
    set_direct_compare(false);
  }

  // accessors
  ciKlass* klass() const                         { return _klass; }
  Value obj() const                              { return _obj; }
  bool is_loaded() const                         { return klass() != NULL; }
  bool direct_compare() const                    { return check_flag(DirectCompareFlag); }

  // manipulation
  void set_direct_compare(bool flag)             { set_flag(DirectCompareFlag, flag); }

  // generic
  virtual bool can_trap() const                  { return true; }
  virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }

  // Helpers for MethodData* profiling
  void set_should_profile(bool value)                { set_flag(ProfileMDOFlag, value); }
  void set_profiled_method(ciMethod* method)         { _profiled_method = method;   }
  void set_profiled_bci(int bci)                     { _profiled_bci = bci;         }
  bool      should_profile() const                   { return check_flag(ProfileMDOFlag); }
  ciMethod* profiled_method() const                  { return _profiled_method;     }
  int       profiled_bci() const                     { return _profiled_bci;        }
};


LEAF(CheckCast, TypeCheck)
 public:
  // creation
  CheckCast(ciKlass* klass, Value obj, ValueStack* state_before)
  : TypeCheck(klass, obj, objectType, state_before) {}

  void set_incompatible_class_change_check() {
    set_flag(ThrowIncompatibleClassChangeErrorFlag, true);
  }
  bool is_incompatible_class_change_check() const {
    return check_flag(ThrowIncompatibleClassChangeErrorFlag);
  }

  ciType* declared_type() const;
};


LEAF(InstanceOf, TypeCheck)
 public:
  // creation
  InstanceOf(ciKlass* klass, Value obj, ValueStack* state_before) : TypeCheck(klass, obj, intType, state_before) {}

  virtual bool needs_exception_state() const     { return false; }
};


BASE(AccessMonitor, StateSplit)
 private:
  Value       _obj;
  int         _monitor_no;

 public:
  // creation
  AccessMonitor(Value obj, int monitor_no, ValueStack* state_before = NULL)
  : StateSplit(illegalType, state_before)
  , _obj(obj)
  , _monitor_no(monitor_no)
  {
    set_needs_null_check(true);
    ASSERT_VALUES
  }

  // accessors
  Value obj() const                              { return _obj; }
  int monitor_no() const                         { return _monitor_no; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { StateSplit::input_values_do(f); f->visit(&_obj); }
};


LEAF(MonitorEnter, AccessMonitor)
 public:
  // creation
  MonitorEnter(Value obj, int monitor_no, ValueStack* state_before)
  : AccessMonitor(obj, monitor_no, state_before)
  {
    ASSERT_VALUES
  }

  // generic
  virtual bool can_trap() const                  { return true; }
};


LEAF(MonitorExit, AccessMonitor)
 public:
  // creation
  MonitorExit(Value obj, int monitor_no)
  : AccessMonitor(obj, monitor_no, NULL)
  {
    ASSERT_VALUES
  }
};


LEAF(Intrinsic, StateSplit)
 private:
  vmIntrinsics::ID _id;
  Values*          _args;
  Value            _recv;
  ArgsNonNullState _nonnull_state;

 public:
  // preserves_state can be set to true for Intrinsics
  // which are guaranteed to preserve register state across any slow
  // cases; setting it to true does not mean that the Intrinsic can
  // not trap, only that if we continue execution in the same basic
  // block after the Intrinsic, all of the registers are intact. This
  // allows load elimination and common expression elimination to be
  // performed across the Intrinsic.  The default value is false.
  Intrinsic(ValueType* type,
            vmIntrinsics::ID id,
            Values* args,
            bool has_receiver,
            ValueStack* state_before,
            bool preserves_state,
            bool cantrap = true)
  : StateSplit(type, state_before)
  , _id(id)
  , _args(args)
  , _recv(NULL)
  {
    assert(args != NULL, "args must exist");
    ASSERT_VALUES
    set_flag(PreservesStateFlag, preserves_state);
    set_flag(CanTrapFlag,        cantrap);
    if (has_receiver) {
      _recv = argument_at(0);
    }
    set_needs_null_check(has_receiver);

    // some intrinsics can't trap, so don't force them to be pinned
    if (!can_trap()) {
      unpin(PinStateSplitConstructor);
    }
  }

  // accessors
  vmIntrinsics::ID id() const                    { return _id; }
  int number_of_arguments() const                { return _args->length(); }
  Value argument_at(int i) const                 { return _args->at(i); }

  bool has_receiver() const                      { return (_recv != NULL); }
  Value receiver() const                         { assert(has_receiver(), "must have receiver"); return _recv; }
  bool preserves_state() const                   { return check_flag(PreservesStateFlag); }

  bool arg_needs_null_check(int i) const {
    return _nonnull_state.arg_needs_null_check(i);
  }

  void set_arg_needs_null_check(int i, bool check) {
    _nonnull_state.set_arg_needs_null_check(i, check);
  }

  // generic
  virtual bool can_trap() const                  { return check_flag(CanTrapFlag); }
  virtual void input_values_do(ValueVisitor* f) {
    StateSplit::input_values_do(f);
    for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  }
};


class LIR_List;

LEAF(BlockBegin, StateSplit)
 private:
  int        _block_id;                          // the unique block id
  int        _bci;                               // start-bci of block
  int        _depth_first_number;                // number of this block in a depth-first ordering
  int        _linear_scan_number;                // number of this block in linear-scan ordering
  int        _dominator_depth;
  int        _loop_depth;                        // the loop nesting level of this block
  int        _loop_index;                        // number of the innermost loop of this block
  int        _flags;                             // the flags associated with this block

  // fields used by BlockListBuilder
  int        _total_preds;                       // number of predecessors found by BlockListBuilder
  BitMap     _stores_to_locals;                  // bit is set when a local variable is stored in the block

  // SSA specific fields: (factor out later)
  BlockList   _successors;                       // the successors of this block
  BlockList   _predecessors;                     // the predecessors of this block
  BlockList   _dominates;                        // list of blocks that are dominated by this block
  BlockBegin* _dominator;                        // the dominator of this block
  // SSA specific ends
  BlockEnd*  _end;                               // the last instruction of this block
  BlockList  _exception_handlers;                // the exception handlers potentially invoked by this block
  ValueStackStack* _exception_states;            // only for xhandler entries: states of all instructions that have an edge to this xhandler
  int        _exception_handler_pco;             // if this block is the start of an exception handler,
                                                 // this records the PC offset in the assembly code of the
                                                 // first instruction in this block
  Label      _label;                             // the label associated with this block
  LIR_List*  _lir;                               // the low level intermediate representation for this block

  BitMap      _live_in;                          // set of live LIR_Opr registers at entry to this block
  BitMap      _live_out;                         // set of live LIR_Opr registers at exit from this block
  BitMap      _live_gen;                         // set of registers used before any redefinition in this block
  BitMap      _live_kill;                        // set of registers defined in this block

  BitMap      _fpu_register_usage;
  intArray*   _fpu_stack_state;                  // For x86 FPU code generation with UseLinearScan
  int         _first_lir_instruction_id;         // ID of first LIR instruction in this block
  int         _last_lir_instruction_id;          // ID of last LIR instruction in this block

  void iterate_preorder (boolArray& mark, BlockClosure* closure);
  void iterate_postorder(boolArray& mark, BlockClosure* closure);

  friend class SuxAndWeightAdjuster;

 public:
   void* operator new(size_t size) throw() {
    Compilation* c = Compilation::current();
    void* res = c->arena()->Amalloc(size);
    ((BlockBegin*)res)->_id = c->get_next_id();
    ((BlockBegin*)res)->_block_id = c->get_next_block_id();
    return res;
  }

  // initialization/counting
  static int  number_of_blocks() {
    return Compilation::current()->number_of_blocks();
  }

  // creation
  BlockBegin(int bci)
  : StateSplit(illegalType)
  , _bci(bci)
  , _depth_first_number(-1)
  , _linear_scan_number(-1)
  , _loop_depth(0)
  , _flags(0)
  , _dominator_depth(-1)
  , _dominator(NULL)
  , _end(NULL)
  , _predecessors(2)
  , _successors(2)
  , _dominates(2)
  , _exception_handlers(1)
  , _exception_states(NULL)
  , _exception_handler_pco(-1)
  , _lir(NULL)
  , _loop_index(-1)
  , _live_in()
  , _live_out()
  , _live_gen()
  , _live_kill()
  , _fpu_register_usage()
  , _fpu_stack_state(NULL)
  , _first_lir_instruction_id(-1)
  , _last_lir_instruction_id(-1)
  , _total_preds(0)
  , _stores_to_locals()
  {
    _block = this;
#ifndef PRODUCT
    set_printable_bci(bci);
#endif
  }

  // accessors
  int block_id() const                           { return _block_id; }
  int bci() const                                { return _bci; }
  BlockList* successors()                        { return &_successors; }
  BlockList* dominates()                         { return &_dominates; }
  BlockBegin* dominator() const                  { return _dominator; }
  int loop_depth() const                         { return _loop_depth; }
  int dominator_depth() const                    { return _dominator_depth; }
  int depth_first_number() const                 { return _depth_first_number; }
  int linear_scan_number() const                 { return _linear_scan_number; }
  BlockEnd* end() const                          { return _end; }
  Label* label()                                 { return &_label; }
  LIR_List* lir() const                          { return _lir; }
  int exception_handler_pco() const              { return _exception_handler_pco; }
  BitMap& live_in()                              { return _live_in;        }
  BitMap& live_out()                             { return _live_out;       }
  BitMap& live_gen()                             { return _live_gen;       }
  BitMap& live_kill()                            { return _live_kill;      }
  BitMap& fpu_register_usage()                   { return _fpu_register_usage; }
  intArray* fpu_stack_state() const              { return _fpu_stack_state;    }
  int first_lir_instruction_id() const           { return _first_lir_instruction_id; }
  int last_lir_instruction_id() const            { return _last_lir_instruction_id; }
  int total_preds() const                        { return _total_preds; }
  BitMap& stores_to_locals()                     { return _stores_to_locals; }

  // manipulation
  void set_dominator(BlockBegin* dom)            { _dominator = dom; }
  void set_loop_depth(int d)                     { _loop_depth = d; }
  void set_dominator_depth(int d)                { _dominator_depth = d; }
  void set_depth_first_number(int dfn)           { _depth_first_number = dfn; }
  void set_linear_scan_number(int lsn)           { _linear_scan_number = lsn; }
  void set_end(BlockEnd* end);
  void clear_end();
  void disconnect_from_graph();
  static void disconnect_edge(BlockBegin* from, BlockBegin* to);
  BlockBegin* insert_block_between(BlockBegin* sux);
  void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
  void set_lir(LIR_List* lir)                    { _lir = lir; }
  void set_exception_handler_pco(int pco)        { _exception_handler_pco = pco; }
  void set_live_in       (BitMap map)            { _live_in = map;        }
  void set_live_out      (BitMap map)            { _live_out = map;       }
  void set_live_gen      (BitMap map)            { _live_gen = map;       }
  void set_live_kill     (BitMap map)            { _live_kill = map;      }
  void set_fpu_register_usage(BitMap map)        { _fpu_register_usage = map; }
  void set_fpu_stack_state(intArray* state)      { _fpu_stack_state = state;  }
  void set_first_lir_instruction_id(int id)      { _first_lir_instruction_id = id;  }
  void set_last_lir_instruction_id(int id)       { _last_lir_instruction_id = id;  }
  void increment_total_preds(int n = 1)          { _total_preds += n; }
  void init_stores_to_locals(int locals_count)   { _stores_to_locals = BitMap(locals_count); _stores_to_locals.clear(); }

  // generic
  virtual void state_values_do(ValueVisitor* f);

  // successors and predecessors
  int number_of_sux() const;
  BlockBegin* sux_at(int i) const;
  void add_successor(BlockBegin* sux);
  void remove_successor(BlockBegin* pred);
  bool is_successor(BlockBegin* sux) const       { return _successors.contains(sux); }

  void add_predecessor(BlockBegin* pred);
  void remove_predecessor(BlockBegin* pred);
  bool is_predecessor(BlockBegin* pred) const    { return _predecessors.contains(pred); }
  int number_of_preds() const                    { return _predecessors.length(); }
  BlockBegin* pred_at(int i) const               { return _predecessors[i]; }

  // exception handlers potentially invoked by this block
  void add_exception_handler(BlockBegin* b);
  bool is_exception_handler(BlockBegin* b) const { return _exception_handlers.contains(b); }
  int  number_of_exception_handlers() const      { return _exception_handlers.length(); }
  BlockBegin* exception_handler_at(int i) const  { return _exception_handlers.at(i); }

  // states of the instructions that have an edge to this exception handler
  int number_of_exception_states()               { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states == NULL ? 0 : _exception_states->length(); }
  ValueStack* exception_state_at(int idx) const  { assert(is_set(exception_entry_flag), "only for xhandlers"); return _exception_states->at(idx); }
  int add_exception_state(ValueStack* state);

  // flags
  enum Flag {
    no_flag                       = 0,
    std_entry_flag                = 1 << 0,
    osr_entry_flag                = 1 << 1,
    exception_entry_flag          = 1 << 2,
    subroutine_entry_flag         = 1 << 3,
    backward_branch_target_flag   = 1 << 4,
    is_on_work_list_flag          = 1 << 5,
    was_visited_flag              = 1 << 6,
    parser_loop_header_flag       = 1 << 7,  // set by parser to identify blocks where phi functions can not be created on demand
    critical_edge_split_flag      = 1 << 8, // set for all blocks that are introduced when critical edges are split
    linear_scan_loop_header_flag  = 1 << 9, // set during loop-detection for LinearScan
    linear_scan_loop_end_flag     = 1 << 10, // set during loop-detection for LinearScan
    donot_eliminate_range_checks  = 1 << 11  // Should be try to eliminate range checks in this block
  };

  void set(Flag f)                               { _flags |= f; }
  void clear(Flag f)                             { _flags &= ~f; }
  bool is_set(Flag f) const                      { return (_flags & f) != 0; }
  bool is_entry_block() const {
    const int entry_mask = std_entry_flag | osr_entry_flag | exception_entry_flag;
    return (_flags & entry_mask) != 0;
  }

  // iteration
  void iterate_preorder   (BlockClosure* closure);
  void iterate_postorder  (BlockClosure* closure);

  void block_values_do(ValueVisitor* f);

  // loops
  void set_loop_index(int ix)                    { _loop_index = ix;        }
  int  loop_index() const                        { return _loop_index;      }

  // merging
  bool try_merge(ValueStack* state);             // try to merge states at block begin
  void merge(ValueStack* state)                  { bool b = try_merge(state); assert(b, "merge failed"); }

  // debugging
  void print_block()                             PRODUCT_RETURN;
  void print_block(InstructionPrinter& ip, bool live_only = false) PRODUCT_RETURN;
};


BASE(BlockEnd, StateSplit)
 private:
  BlockList*  _sux;

 protected:
  BlockList* sux() const                         { return _sux; }

  void set_sux(BlockList* sux) {
#ifdef ASSERT
    assert(sux != NULL, "sux must exist");
    for (int i = sux->length() - 1; i >= 0; i--) assert(sux->at(i) != NULL, "sux must exist");
#endif
    _sux = sux;
  }

 public:
  // creation
  BlockEnd(ValueType* type, ValueStack* state_before, bool is_safepoint)
  : StateSplit(type, state_before)
  , _sux(NULL)
  {
    set_flag(IsSafepointFlag, is_safepoint);
  }

  // accessors
  bool is_safepoint() const                      { return check_flag(IsSafepointFlag); }
  // For compatibility with old code, for new code use block()
  BlockBegin* begin() const                      { return _block; }

  // manipulation
  void set_begin(BlockBegin* begin);

  // successors
  int number_of_sux() const                      { return _sux != NULL ? _sux->length() : 0; }
  BlockBegin* sux_at(int i) const                { return _sux->at(i); }
  BlockBegin* default_sux() const                { return sux_at(number_of_sux() - 1); }
  BlockBegin** addr_sux_at(int i) const          { return _sux->adr_at(i); }
  int sux_index(BlockBegin* sux) const           { return _sux->find(sux); }
  void substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux);
};


LEAF(Goto, BlockEnd)
 public:
  enum Direction {
    none,            // Just a regular goto
    taken, not_taken // Goto produced from If
  };
 private:
  ciMethod*   _profiled_method;
  int         _profiled_bci;
  Direction   _direction;
 public:
  // creation
  Goto(BlockBegin* sux, ValueStack* state_before, bool is_safepoint = false)
    : BlockEnd(illegalType, state_before, is_safepoint)
    , _direction(none)
    , _profiled_method(NULL)
    , _profiled_bci(0) {
    BlockList* s = new BlockList(1);
    s->append(sux);
    set_sux(s);
  }

  Goto(BlockBegin* sux, bool is_safepoint) : BlockEnd(illegalType, NULL, is_safepoint)
                                           , _direction(none)
                                           , _profiled_method(NULL)
                                           , _profiled_bci(0) {
    BlockList* s = new BlockList(1);
    s->append(sux);
    set_sux(s);
  }

  bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  int profiled_bci() const                       { return _profiled_bci; }
  Direction direction() const                    { return _direction; }

  void set_should_profile(bool value)            { set_flag(ProfileMDOFlag, value); }
  void set_profiled_method(ciMethod* method)     { _profiled_method = method; }
  void set_profiled_bci(int bci)                 { _profiled_bci = bci; }
  void set_direction(Direction d)                { _direction = d; }
};

#ifdef ASSERT
LEAF(Assert, Instruction)
  private:
  Value       _x;
  Condition   _cond;
  Value       _y;
  char        *_message;

 public:
  // creation
  // unordered_is_true is valid for float/double compares only
   Assert(Value x, Condition cond, bool unordered_is_true, Value y);

  // accessors
  Value x() const                                { return _x; }
  Condition cond() const                         { return _cond; }
  bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  Value y() const                                { return _y; }
  const char *message() const                    { return _message; }

  // generic
  virtual void input_values_do(ValueVisitor* f)  { f->visit(&_x); f->visit(&_y); }
};
#endif

LEAF(RangeCheckPredicate, StateSplit)
 private:
  Value       _x;
  Condition   _cond;
  Value       _y;

  void check_state();

 public:
  // creation
  // unordered_is_true is valid for float/double compares only
   RangeCheckPredicate(Value x, Condition cond, bool unordered_is_true, Value y, ValueStack* state) : StateSplit(illegalType)
  , _x(x)
  , _cond(cond)
  , _y(y)
  {
    ASSERT_VALUES
    set_flag(UnorderedIsTrueFlag, unordered_is_true);
    assert(x->type()->tag() == y->type()->tag(), "types must match");
    this->set_state(state);
    check_state();
  }

  // Always deoptimize
  RangeCheckPredicate(ValueStack* state) : StateSplit(illegalType)
  {
    this->set_state(state);
    _x = _y = NULL;
    check_state();
  }

  // accessors
  Value x() const                                { return _x; }
  Condition cond() const                         { return _cond; }
  bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  Value y() const                                { return _y; }

  void always_fail()                             { _x = _y = NULL; }

  // generic
  virtual void input_values_do(ValueVisitor* f)  { StateSplit::input_values_do(f); f->visit(&_x); f->visit(&_y); }
  HASHING3(RangeCheckPredicate, true, x()->subst(), y()->subst(), cond())
};

LEAF(If, BlockEnd)
 private:
  Value       _x;
  Condition   _cond;
  Value       _y;
  ciMethod*   _profiled_method;
  int         _profiled_bci; // Canonicalizer may alter bci of If node
  bool        _swapped;      // Is the order reversed with respect to the original If in the
                             // bytecode stream?
 public:
  // creation
  // unordered_is_true is valid for float/double compares only
  If(Value x, Condition cond, bool unordered_is_true, Value y, BlockBegin* tsux, BlockBegin* fsux, ValueStack* state_before, bool is_safepoint)
    : BlockEnd(illegalType, state_before, is_safepoint)
  , _x(x)
  , _cond(cond)
  , _y(y)
  , _profiled_method(NULL)
  , _profiled_bci(0)
  , _swapped(false)
  {
    ASSERT_VALUES
    set_flag(UnorderedIsTrueFlag, unordered_is_true);
    assert(x->type()->tag() == y->type()->tag(), "types must match");
    BlockList* s = new BlockList(2);
    s->append(tsux);
    s->append(fsux);
    set_sux(s);
  }

  // accessors
  Value x() const                                { return _x; }
  Condition cond() const                         { return _cond; }
  bool unordered_is_true() const                 { return check_flag(UnorderedIsTrueFlag); }
  Value y() const                                { return _y; }
  BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  BlockBegin* tsux() const                       { return sux_for(true); }
  BlockBegin* fsux() const                       { return sux_for(false); }
  BlockBegin* usux() const                       { return sux_for(unordered_is_true()); }
  bool should_profile() const                    { return check_flag(ProfileMDOFlag); }
  ciMethod* profiled_method() const              { return _profiled_method; } // set only for profiled branches
  int profiled_bci() const                       { return _profiled_bci; }    // set for profiled branches and tiered
  bool is_swapped() const                        { return _swapped; }

  // manipulation
  void swap_operands() {
    Value t = _x; _x = _y; _y = t;
    _cond = mirror(_cond);
  }

  void swap_sux() {
    assert(number_of_sux() == 2, "wrong number of successors");
    BlockList* s = sux();
    BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
    _cond = negate(_cond);
    set_flag(UnorderedIsTrueFlag, !check_flag(UnorderedIsTrueFlag));
  }

  void set_should_profile(bool value)             { set_flag(ProfileMDOFlag, value); }
  void set_profiled_method(ciMethod* method)      { _profiled_method = method; }
  void set_profiled_bci(int bci)                  { _profiled_bci = bci;       }
  void set_swapped(bool value)                    { _swapped = value;         }
  // generic
  virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_x); f->visit(&_y); }
};


LEAF(IfInstanceOf, BlockEnd)
 private:
  ciKlass* _klass;
  Value    _obj;
  bool     _test_is_instance;                    // jump if instance
  int      _instanceof_bci;

 public:
  IfInstanceOf(ciKlass* klass, Value obj, bool test_is_instance, int instanceof_bci, BlockBegin* tsux, BlockBegin* fsux)
  : BlockEnd(illegalType, NULL, false) // temporary set to false
  , _klass(klass)
  , _obj(obj)
  , _test_is_instance(test_is_instance)
  , _instanceof_bci(instanceof_bci)
  {
    ASSERT_VALUES
    assert(instanceof_bci >= 0, "illegal bci");
    BlockList* s = new BlockList(2);
    s->append(tsux);
    s->append(fsux);
    set_sux(s);
  }

  // accessors
  //
  // Note 1: If test_is_instance() is true, IfInstanceOf tests if obj *is* an
  //         instance of klass; otherwise it tests if it is *not* and instance
  //         of klass.
  //
  // Note 2: IfInstanceOf instructions are created by combining an InstanceOf
  //         and an If instruction. The IfInstanceOf bci() corresponds to the
  //         bci that the If would have had; the (this->) instanceof_bci() is
  //         the bci of the original InstanceOf instruction.
  ciKlass* klass() const                         { return _klass; }
  Value obj() const                              { return _obj; }
  int instanceof_bci() const                     { return _instanceof_bci; }
  bool test_is_instance() const                  { return _test_is_instance; }
  BlockBegin* sux_for(bool is_true) const        { return sux_at(is_true ? 0 : 1); }
  BlockBegin* tsux() const                       { return sux_for(true); }
  BlockBegin* fsux() const                       { return sux_for(false); }

  // manipulation
  void swap_sux() {
    assert(number_of_sux() == 2, "wrong number of successors");
    BlockList* s = sux();
    BlockBegin* t = s->at(0); s->at_put(0, s->at(1)); s->at_put(1, t);
    _test_is_instance = !_test_is_instance;
  }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_obj); }
};


BASE(Switch, BlockEnd)
 private:
  Value       _tag;

 public:
  // creation
  Switch(Value tag, BlockList* sux, ValueStack* state_before, bool is_safepoint)
  : BlockEnd(illegalType, state_before, is_safepoint)
  , _tag(tag) {
    ASSERT_VALUES
    set_sux(sux);
  }

  // accessors
  Value tag() const                              { return _tag; }
  int length() const                             { return number_of_sux() - 1; }

  virtual bool needs_exception_state() const     { return false; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_tag); }
};


LEAF(TableSwitch, Switch)
 private:
  int _lo_key;

 public:
  // creation
  TableSwitch(Value tag, BlockList* sux, int lo_key, ValueStack* state_before, bool is_safepoint)
    : Switch(tag, sux, state_before, is_safepoint)
  , _lo_key(lo_key) {}

  // accessors
  int lo_key() const                             { return _lo_key; }
  int hi_key() const                             { return _lo_key + length() - 1; }
};


LEAF(LookupSwitch, Switch)
 private:
  intArray* _keys;

 public:
  // creation
  LookupSwitch(Value tag, BlockList* sux, intArray* keys, ValueStack* state_before, bool is_safepoint)
  : Switch(tag, sux, state_before, is_safepoint)
  , _keys(keys) {
    assert(keys != NULL, "keys must exist");
    assert(keys->length() == length(), "sux & keys have incompatible lengths");
  }

  // accessors
  int key_at(int i) const                        { return _keys->at(i); }
};


LEAF(Return, BlockEnd)
 private:
  Value _result;

 public:
  // creation
  Return(Value result) :
    BlockEnd(result == NULL ? voidType : result->type()->base(), NULL, true),
    _result(result) {}

  // accessors
  Value result() const                           { return _result; }
  bool has_result() const                        { return result() != NULL; }

  // generic
  virtual void input_values_do(ValueVisitor* f) {
    BlockEnd::input_values_do(f);
    if (has_result()) f->visit(&_result);
  }
};


LEAF(Throw, BlockEnd)
 private:
  Value _exception;

 public:
  // creation
  Throw(Value exception, ValueStack* state_before) : BlockEnd(illegalType, state_before, true), _exception(exception) {
    ASSERT_VALUES
  }

  // accessors
  Value exception() const                        { return _exception; }

  // generic
  virtual bool can_trap() const                  { return true; }
  virtual void input_values_do(ValueVisitor* f)   { BlockEnd::input_values_do(f); f->visit(&_exception); }
};


LEAF(Base, BlockEnd)
 public:
  // creation
  Base(BlockBegin* std_entry, BlockBegin* osr_entry) : BlockEnd(illegalType, NULL, false) {
    assert(std_entry->is_set(BlockBegin::std_entry_flag), "std entry must be flagged");
    assert(osr_entry == NULL || osr_entry->is_set(BlockBegin::osr_entry_flag), "osr entry must be flagged");
    BlockList* s = new BlockList(2);
    if (osr_entry != NULL) s->append(osr_entry);
    s->append(std_entry); // must be default sux!
    set_sux(s);
  }

  // accessors
  BlockBegin* std_entry() const                  { return default_sux(); }
  BlockBegin* osr_entry() const                  { return number_of_sux() < 2 ? NULL : sux_at(0); }
};


LEAF(OsrEntry, Instruction)
 public:
  // creation
#ifdef _LP64
  OsrEntry() : Instruction(longType) { pin(); }
#else
  OsrEntry() : Instruction(intType)  { pin(); }
#endif

  // generic
  virtual void input_values_do(ValueVisitor* f)   { }
};


// Models the incoming exception at a catch site
LEAF(ExceptionObject, Instruction)
 public:
  // creation
  ExceptionObject() : Instruction(objectType) {
    pin();
  }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { }
};


// Models needed rounding for floating-point values on Intel.
// Currently only used to represent rounding of double-precision
// values stored into local variables, but could be used to model
// intermediate rounding of single-precision values as well.
LEAF(RoundFP, Instruction)
 private:
  Value _input;             // floating-point value to be rounded

 public:
  RoundFP(Value input)
  : Instruction(input->type()) // Note: should not be used for constants
  , _input(input)
  {
    ASSERT_VALUES
  }

  // accessors
  Value input() const                            { return _input; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { f->visit(&_input); }
};


BASE(UnsafeOp, Instruction)
 private:
  BasicType _basic_type;    // ValueType can not express byte-sized integers

 protected:
  // creation
  UnsafeOp(BasicType basic_type, bool is_put)
  : Instruction(is_put ? voidType : as_ValueType(basic_type))
  , _basic_type(basic_type)
  {
    //Note:  Unsafe ops are not not guaranteed to throw NPE.
    // Convservatively, Unsafe operations must be pinned though we could be
    // looser about this if we wanted to..
    pin();
  }

 public:
  // accessors
  BasicType basic_type()                         { return _basic_type; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { }
};


BASE(UnsafeRawOp, UnsafeOp)
 private:
  Value _base;                                   // Base address (a Java long)
  Value _index;                                  // Index if computed by optimizer; initialized to NULL
  int   _log2_scale;                             // Scale factor: 0, 1, 2, or 3.
                                                 // Indicates log2 of number of bytes (1, 2, 4, or 8)
                                                 // to scale index by.

 protected:
  UnsafeRawOp(BasicType basic_type, Value addr, bool is_put)
  : UnsafeOp(basic_type, is_put)
  , _base(addr)
  , _index(NULL)
  , _log2_scale(0)
  {
    // Can not use ASSERT_VALUES because index may be NULL
    assert(addr != NULL && addr->type()->is_long(), "just checking");
  }

  UnsafeRawOp(BasicType basic_type, Value base, Value index, int log2_scale, bool is_put)
  : UnsafeOp(basic_type, is_put)
  , _base(base)
  , _index(index)
  , _log2_scale(log2_scale)
  {
  }

 public:
  // accessors
  Value base()                                   { return _base; }
  Value index()                                  { return _index; }
  bool  has_index()                              { return (_index != NULL); }
  int   log2_scale()                             { return _log2_scale; }

  // setters
  void set_base (Value base)                     { _base  = base; }
  void set_index(Value index)                    { _index = index; }
  void set_log2_scale(int log2_scale)            { _log2_scale = log2_scale; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
                                                   f->visit(&_base);
                                                   if (has_index()) f->visit(&_index); }
};


LEAF(UnsafeGetRaw, UnsafeRawOp)
 private:
 bool _may_be_unaligned, _is_wide;  // For OSREntry

 public:
 UnsafeGetRaw(BasicType basic_type, Value addr, bool may_be_unaligned, bool is_wide = false)
  : UnsafeRawOp(basic_type, addr, false) {
    _may_be_unaligned = may_be_unaligned;
    _is_wide = is_wide;
  }

 UnsafeGetRaw(BasicType basic_type, Value base, Value index, int log2_scale, bool may_be_unaligned, bool is_wide = false)
  : UnsafeRawOp(basic_type, base, index, log2_scale, false) {
    _may_be_unaligned = may_be_unaligned;
    _is_wide = is_wide;
  }

  bool may_be_unaligned()                         { return _may_be_unaligned; }
  bool is_wide()                                  { return _is_wide; }
};


LEAF(UnsafePutRaw, UnsafeRawOp)
 private:
  Value _value;                                  // Value to be stored

 public:
  UnsafePutRaw(BasicType basic_type, Value addr, Value value)
  : UnsafeRawOp(basic_type, addr, true)
  , _value(value)
  {
    assert(value != NULL, "just checking");
    ASSERT_VALUES
  }

  UnsafePutRaw(BasicType basic_type, Value base, Value index, int log2_scale, Value value)
  : UnsafeRawOp(basic_type, base, index, log2_scale, true)
  , _value(value)
  {
    assert(value != NULL, "just checking");
    ASSERT_VALUES
  }

  // accessors
  Value value()                                  { return _value; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { UnsafeRawOp::input_values_do(f);
                                                   f->visit(&_value); }
};


BASE(UnsafeObjectOp, UnsafeOp)
 private:
  Value _object;                                 // Object to be fetched from or mutated
  Value _offset;                                 // Offset within object
  bool  _is_volatile;                            // true if volatile - dl/JSR166
 public:
  UnsafeObjectOp(BasicType basic_type, Value object, Value offset, bool is_put, bool is_volatile)
    : UnsafeOp(basic_type, is_put), _object(object), _offset(offset), _is_volatile(is_volatile)
  {
  }

  // accessors
  Value object()                                 { return _object; }
  Value offset()                                 { return _offset; }
  bool  is_volatile()                            { return _is_volatile; }
  // generic
  virtual void input_values_do(ValueVisitor* f)   { UnsafeOp::input_values_do(f);
                                                   f->visit(&_object);
                                                   f->visit(&_offset); }
};


LEAF(UnsafeGetObject, UnsafeObjectOp)
 public:
  UnsafeGetObject(BasicType basic_type, Value object, Value offset, bool is_volatile)
  : UnsafeObjectOp(basic_type, object, offset, false, is_volatile)
  {
    ASSERT_VALUES
  }
};


LEAF(UnsafePutObject, UnsafeObjectOp)
 private:
  Value _value;                                  // Value to be stored
 public:
  UnsafePutObject(BasicType basic_type, Value object, Value offset, Value value, bool is_volatile)
  : UnsafeObjectOp(basic_type, object, offset, true, is_volatile)
    , _value(value)
  {
    ASSERT_VALUES
  }

  // accessors
  Value value()                                  { return _value; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
                                                   f->visit(&_value); }
};

LEAF(UnsafeGetAndSetObject, UnsafeObjectOp)
 private:
  Value _value;                                  // Value to be stored
  bool  _is_add;
 public:
  UnsafeGetAndSetObject(BasicType basic_type, Value object, Value offset, Value value, bool is_add)
  : UnsafeObjectOp(basic_type, object, offset, false, false)
    , _value(value)
    , _is_add(is_add)
  {
    ASSERT_VALUES
  }

  // accessors
  bool is_add() const                            { return _is_add; }
  Value value()                                  { return _value; }

  // generic
  virtual void input_values_do(ValueVisitor* f)   { UnsafeObjectOp::input_values_do(f);
                                                   f->visit(&_value); }
};

BASE(UnsafePrefetch, UnsafeObjectOp)
 public:
  UnsafePrefetch(Value object, Value offset)
  : UnsafeObjectOp(T_VOID, object, offset, false, false)
  {
  }
};


LEAF(UnsafePrefetchRead, UnsafePrefetch)
 public:
  UnsafePrefetchRead(Value object, Value offset)
  : UnsafePrefetch(object, offset)
  {
    ASSERT_VALUES
  }
};


LEAF(UnsafePrefetchWrite, UnsafePrefetch)
 public:
  UnsafePrefetchWrite(Value object, Value offset)
  : UnsafePrefetch(object, offset)
  {
    ASSERT_VALUES
  }
};

LEAF(ProfileCall, Instruction)
 private:
  ciMethod*        _method;
  int              _bci_of_invoke;
  ciMethod*        _callee;         // the method that is called at the given bci
  Value            _recv;
  ciKlass*         _known_holder;
  Values*          _obj_args;       // arguments for type profiling
  ArgsNonNullState _nonnull_state;  // Do we know whether some arguments are never null?
  bool             _inlined;        // Are we profiling a call that is inlined

 public:
  ProfileCall(ciMethod* method, int bci, ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined)
    : Instruction(voidType)
    , _method(method)
    , _bci_of_invoke(bci)
    , _callee(callee)
    , _recv(recv)
    , _known_holder(known_holder)
    , _obj_args(obj_args)
    , _inlined(inlined)
  {
    // The ProfileCall has side-effects and must occur precisely where located
    pin();
  }

  ciMethod* method()             const { return _method; }
  int bci_of_invoke()            const { return _bci_of_invoke; }
  ciMethod* callee()             const { return _callee; }
  Value recv()                   const { return _recv; }
  ciKlass* known_holder()        const { return _known_holder; }
  int nb_profiled_args()         const { return _obj_args == NULL ? 0 : _obj_args->length(); }
  Value profiled_arg_at(int i)   const { return _obj_args->at(i); }
  bool arg_needs_null_check(int i) const {
    return _nonnull_state.arg_needs_null_check(i);
  }
  bool inlined()                 const { return _inlined; }

  void set_arg_needs_null_check(int i, bool check) {
    _nonnull_state.set_arg_needs_null_check(i, check);
  }

  virtual void input_values_do(ValueVisitor* f)   {
    if (_recv != NULL) {
      f->visit(&_recv);
    }
    for (int i = 0; i < nb_profiled_args(); i++) {
      f->visit(_obj_args->adr_at(i));
    }
  }
};

LEAF(ProfileReturnType, Instruction)
 private:
  ciMethod*        _method;
  ciMethod*        _callee;
  int              _bci_of_invoke;
  Value            _ret;

 public:
  ProfileReturnType(ciMethod* method, int bci, ciMethod* callee, Value ret)
    : Instruction(voidType)
    , _method(method)
    , _callee(callee)
    , _bci_of_invoke(bci)
    , _ret(ret)
  {
    set_needs_null_check(true);
    // The ProfileType has side-effects and must occur precisely where located
    pin();
  }

  ciMethod* method()             const { return _method; }
  ciMethod* callee()             const { return _callee; }
  int bci_of_invoke()            const { return _bci_of_invoke; }
  Value ret()                    const { return _ret; }

  virtual void input_values_do(ValueVisitor* f)   {
    if (_ret != NULL) {
      f->visit(&_ret);
    }
  }
};

// Call some C runtime function that doesn't safepoint,
// optionally passing the current thread as the first argument.
LEAF(RuntimeCall, Instruction)
 private:
  const char* _entry_name;
  address     _entry;
  Values*     _args;
  bool        _pass_thread;  // Pass the JavaThread* as an implicit first argument

 public:
  RuntimeCall(ValueType* type, const char* entry_name, address entry, Values* args, bool pass_thread = true)
    : Instruction(type)
    , _entry(entry)
    , _args(args)
    , _entry_name(entry_name)
    , _pass_thread(pass_thread) {
    ASSERT_VALUES
    pin();
  }

  const char* entry_name() const  { return _entry_name; }
  address entry() const           { return _entry; }
  int number_of_arguments() const { return _args->length(); }
  Value argument_at(int i) const  { return _args->at(i); }
  bool pass_thread() const        { return _pass_thread; }

  virtual void input_values_do(ValueVisitor* f)   {
    for (int i = 0; i < _args->length(); i++) f->visit(_args->adr_at(i));
  }
};

// Use to trip invocation counter of an inlined method

LEAF(ProfileInvoke, Instruction)
 private:
  ciMethod*   _inlinee;
  ValueStack* _state;

 public:
  ProfileInvoke(ciMethod* inlinee,  ValueStack* state)
    : Instruction(voidType)
    , _inlinee(inlinee)
    , _state(state)
  {
    // The ProfileInvoke has side-effects and must occur precisely where located QQQ???
    pin();
  }

  ciMethod* inlinee()      { return _inlinee; }
  ValueStack* state()      { return _state; }
  virtual void input_values_do(ValueVisitor*)   {}
  virtual void state_values_do(ValueVisitor*);
};

LEAF(MemBar, Instruction)
 private:
  LIR_Code _code;

 public:
  MemBar(LIR_Code code)
    : Instruction(voidType)
    , _code(code)
  {
    pin();
  }

  LIR_Code code()           { return _code; }

  virtual void input_values_do(ValueVisitor*)   {}
};

class BlockPair: public CompilationResourceObj {
 private:
  BlockBegin* _from;
  BlockBegin* _to;
 public:
  BlockPair(BlockBegin* from, BlockBegin* to): _from(from), _to(to) {}
  BlockBegin* from() const { return _from; }
  BlockBegin* to() const   { return _to;   }
  bool is_same(BlockBegin* from, BlockBegin* to) const { return  _from == from && _to == to; }
  bool is_same(BlockPair* p) const { return  _from == p->from() && _to == p->to(); }
  void set_to(BlockBegin* b)   { _to = b; }
  void set_from(BlockBegin* b) { _from = b; }
};


define_array(BlockPairArray, BlockPair*)
define_stack(BlockPairList, BlockPairArray)


inline int         BlockBegin::number_of_sux() const            { assert(_end == NULL || _end->number_of_sux() == _successors.length(), "mismatch"); return _successors.length(); }
inline BlockBegin* BlockBegin::sux_at(int i) const              { assert(_end == NULL || _end->sux_at(i) == _successors.at(i), "mismatch");          return _successors.at(i); }
inline void        BlockBegin::add_successor(BlockBegin* sux)   { assert(_end == NULL, "Would create mismatch with successors of BlockEnd");         _successors.append(sux); }

#undef ASSERT_VALUES

#endif // SHARE_VM_C1_C1_INSTRUCTION_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java c1_Instruction.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.