|
Java example source code file (dependencies.hpp)
The dependencies.hpp Java example source code
/*
* Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
#define SHARE_VM_CODE_DEPENDENCIES_HPP
#include "ci/ciCallSite.hpp"
#include "ci/ciKlass.hpp"
#include "ci/ciMethodHandle.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/compressedStream.hpp"
#include "code/nmethod.hpp"
#include "utilities/growableArray.hpp"
//** Dependencies represent assertions (approximate invariants) within
// the runtime system, e.g. class hierarchy changes. An example is an
// assertion that a given method is not overridden; another example is
// that a type has only one concrete subtype. Compiled code which
// relies on such assertions must be discarded if they are overturned
// by changes in the runtime system. We can think of these assertions
// as approximate invariants, because we expect them to be overturned
// very infrequently. We are willing to perform expensive recovery
// operations when they are overturned. The benefit, of course, is
// performing optimistic optimizations (!) on the object code.
//
// Changes in the class hierarchy due to dynamic linking or
// class evolution can violate dependencies. There is enough
// indexing between classes and nmethods to make dependency
// checking reasonably efficient.
class ciEnv;
class nmethod;
class OopRecorder;
class xmlStream;
class CompileLog;
class DepChange;
class KlassDepChange;
class CallSiteDepChange;
class No_Safepoint_Verifier;
class Dependencies: public ResourceObj {
public:
// Note: In the comments on dependency types, most uses of the terms
// subtype and supertype are used in a "non-strict" or "inclusive"
// sense, and are starred to remind the reader of this fact.
// Strict uses of the terms use the word "proper".
//
// Specifically, every class is its own subtype* and supertype*.
// (This trick is easier than continually saying things like "Y is a
// subtype of X or X itself".)
//
// Sometimes we write X > Y to mean X is a proper supertype of Y.
// The notation X > {Y, Z} means X has proper subtypes Y, Z.
// The notation X.m > Y means that Y inherits m from X, while
// X.m > Y.m means Y overrides X.m. A star denotes abstractness,
// as *I > A, meaning (abstract) interface I is a super type of A,
// or A.*m > B.m, meaning B.m implements abstract method A.m.
//
// In this module, the terms "subtype" and "supertype" refer to
// Java-level reference type conversions, as detected by
// "instanceof" and performed by "checkcast" operations. The method
// Klass::is_subtype_of tests these relations. Note that "subtype"
// is richer than "subclass" (as tested by Klass::is_subclass_of),
// since it takes account of relations involving interface and array
// types.
//
// To avoid needless complexity, dependencies involving array types
// are not accepted. If you need to make an assertion about an
// array type, make the assertion about its corresponding element
// types. Any assertion that might change about an array type can
// be converted to an assertion about its element type.
//
// Most dependencies are evaluated over a "context type" CX, which
// stands for the set Subtypes(CX) of every Java type that is a subtype*
// of CX. When the system loads a new class or interface N, it is
// responsible for re-evaluating changed dependencies whose context
// type now includes N, that is, all super types of N.
//
enum DepType {
end_marker = 0,
// An 'evol' dependency simply notes that the contents of the
// method were used. If it evolves (is replaced), the nmethod
// must be recompiled. No other dependencies are implied.
evol_method,
FIRST_TYPE = evol_method,
// A context type CX is a leaf it if has no proper subtype.
leaf_type,
// An abstract class CX has exactly one concrete subtype CC.
abstract_with_unique_concrete_subtype,
// The type CX is purely abstract, with no concrete subtype* at all.
abstract_with_no_concrete_subtype,
// The concrete CX is free of concrete proper subtypes.
concrete_with_no_concrete_subtype,
// Given a method M1 and a context class CX, the set MM(CX, M1) of
// "concrete matching methods" in CX of M1 is the set of every
// concrete M2 for which it is possible to create an invokevirtual
// or invokeinterface call site that can reach either M1 or M2.
// That is, M1 and M2 share a name, signature, and vtable index.
// We wish to notice when the set MM(CX, M1) is just {M1}, or
// perhaps a set of two {M1,M2}, and issue dependencies on this.
// The set MM(CX, M1) can be computed by starting with any matching
// concrete M2 that is inherited into CX, and then walking the
// subtypes* of CX looking for concrete definitions.
// The parameters to this dependency are the method M1 and the
// context class CX. M1 must be either inherited in CX or defined
// in a subtype* of CX. It asserts that MM(CX, M1) is no greater
// than {M1}.
unique_concrete_method, // one unique concrete method under CX
// An "exclusive" assertion concerns two methods or subtypes, and
// declares that there are at most two (or perhaps later N>2)
// specific items that jointly satisfy the restriction.
// We list all items explicitly rather than just giving their
// count, for robustness in the face of complex schema changes.
// A context class CX (which may be either abstract or concrete)
// has two exclusive concrete subtypes* C1, C2 if every concrete
// subtype* of CX is either C1 or C2. Note that if neither C1 or C2
// are equal to CX, then CX itself must be abstract. But it is
// also possible (for example) that C1 is CX (a concrete class)
// and C2 is a proper subtype of C1.
abstract_with_exclusive_concrete_subtypes_2,
// This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
exclusive_concrete_methods_2,
// This dependency asserts that no instances of class or it's
// subclasses require finalization registration.
no_finalizable_subclasses,
// This dependency asserts when the CallSite.target value changed.
call_site_target_value,
TYPE_LIMIT
};
enum {
LG2_TYPE_LIMIT = 4, // assert(TYPE_LIMIT <= (1< |
| ... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.