|
Java example source code file (relocInfo.cpp)
The relocInfo.cpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/codeCache.hpp" #include "code/compiledIC.hpp" #include "code/nmethod.hpp" #include "code/relocInfo.hpp" #include "memory/resourceArea.hpp" #include "runtime/stubCodeGenerator.hpp" #include "utilities/copy.hpp" const RelocationHolder RelocationHolder::none; // its type is relocInfo::none // Implementation of relocInfo #ifdef ASSERT relocInfo::relocInfo(relocType t, int off, int f) { assert(t != data_prefix_tag, "cannot build a prefix this way"); assert((t & type_mask) == t, "wrong type"); assert((f & format_mask) == f, "wrong format"); assert(off >= 0 && off < offset_limit(), "offset out off bounds"); assert((off & (offset_unit-1)) == 0, "misaligned offset"); (*this) = relocInfo(t, RAW_BITS, off, f); } #endif void relocInfo::initialize(CodeSection* dest, Relocation* reloc) { relocInfo* data = this+1; // here's where the data might go dest->set_locs_end(data); // sync end: the next call may read dest.locs_end reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end relocInfo* data_limit = dest->locs_end(); if (data_limit > data) { relocInfo suffix = (*this); data_limit = this->finish_prefix((short*) data_limit); // Finish up with the suffix. (Hack note: pack_data_to might edit this.) *data_limit = suffix; dest->set_locs_end(data_limit+1); } } relocInfo* relocInfo::finish_prefix(short* prefix_limit) { assert(sizeof(relocInfo) == sizeof(short), "change this code"); short* p = (short*)(this+1); assert(prefix_limit >= p, "must be a valid span of data"); int plen = prefix_limit - p; if (plen == 0) { debug_only(_value = 0xFFFF); return this; // no data: remove self completely } if (plen == 1 && fits_into_immediate(p[0])) { (*this) = immediate_relocInfo(p[0]); // move data inside self return this+1; } // cannot compact, so just update the count and return the limit pointer (*this) = prefix_relocInfo(plen); // write new datalen assert(data() + datalen() == prefix_limit, "pointers must line up"); return (relocInfo*)prefix_limit; } void relocInfo::set_type(relocType t) { int old_offset = addr_offset(); int old_format = format(); (*this) = relocInfo(t, old_offset, old_format); assert(type()==(int)t, "sanity check"); assert(addr_offset()==old_offset, "sanity check"); assert(format()==old_format, "sanity check"); } void relocInfo::set_format(int f) { int old_offset = addr_offset(); assert((f & format_mask) == f, "wrong format"); _value = (_value & ~(format_mask << offset_width)) | (f << offset_width); assert(addr_offset()==old_offset, "sanity check"); } void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) { bool found = false; while (itr->next() && !found) { if (itr->addr() == pc) { assert(itr->type()==old_type, "wrong relocInfo type found"); itr->current()->set_type(new_type); found=true; } } assert(found, "no relocInfo found for pc"); } void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) { change_reloc_info_for_address(itr, pc, old_type, none); } // ---------------------------------------------------------------------------------------------------- // Implementation of RelocIterator void RelocIterator::initialize(nmethod* nm, address begin, address limit) { initialize_misc(); if (nm == NULL && begin != NULL) { // allow nmethod to be deduced from beginning address CodeBlob* cb = CodeCache::find_blob(begin); nm = cb->as_nmethod_or_null(); } assert(nm != NULL, "must be able to deduce nmethod from other arguments"); _code = nm; _current = nm->relocation_begin() - 1; _end = nm->relocation_end(); _addr = nm->content_begin(); // Initialize code sections. _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin(); _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ; _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin() ; _section_end [CodeBuffer::SECT_CONSTS] = nm->consts_end() ; _section_end [CodeBuffer::SECT_INSTS ] = nm->insts_end() ; _section_end [CodeBuffer::SECT_STUBS ] = nm->stub_end() ; assert(!has_current(), "just checking"); assert(begin == NULL || begin >= nm->code_begin(), "in bounds"); assert(limit == NULL || limit <= nm->code_end(), "in bounds"); set_limits(begin, limit); } RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) { initialize_misc(); _current = cs->locs_start()-1; _end = cs->locs_end(); _addr = cs->start(); _code = NULL; // Not cb->blob(); CodeBuffer* cb = cs->outer(); assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal"); for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) { CodeSection* cs = cb->code_section(n); _section_start[n] = cs->start(); _section_end [n] = cs->end(); } assert(!has_current(), "just checking"); assert(begin == NULL || begin >= cs->start(), "in bounds"); assert(limit == NULL || limit <= cs->end(), "in bounds"); set_limits(begin, limit); } enum { indexCardSize = 128 }; struct RelocIndexEntry { jint addr_offset; // offset from header_end of an addr() jint reloc_offset; // offset from header_end of a relocInfo (prefix) }; bool RelocIterator::addr_in_const() const { const int n = CodeBuffer::SECT_CONSTS; return section_start(n) <= addr() && addr() < section_end(n); } static inline int num_cards(int code_size) { return (code_size-1) / indexCardSize; } int RelocIterator::locs_and_index_size(int code_size, int locs_size) { if (!UseRelocIndex) return locs_size; // no index code_size = round_to(code_size, oopSize); locs_size = round_to(locs_size, oopSize); int index_size = num_cards(code_size) * sizeof(RelocIndexEntry); // format of indexed relocs: // relocation_begin: relocInfo ... // index: (addr,reloc#) ... // indexSize :relocation_end return locs_size + index_size + BytesPerInt; } void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) { address relocation_begin = (address)dest_begin; address relocation_end = (address)dest_end; int total_size = relocation_end - relocation_begin; int locs_size = dest_count * sizeof(relocInfo); if (!UseRelocIndex) { Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0); return; } int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left int ncards = index_size / sizeof(RelocIndexEntry); assert(total_size == locs_size + index_size + BytesPerInt, "checkin'"); assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'"); jint* index_size_addr = (jint*)relocation_end - 1; assert(sizeof(jint) == BytesPerInt, "change this code"); *index_size_addr = index_size; if (index_size != 0) { assert(index_size > 0, "checkin'"); RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size); assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'"); // walk over the relocations, and fill in index entries as we go RelocIterator iter; const address initial_addr = NULL; relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere iter._code = NULL; iter._addr = initial_addr; iter._limit = (address)(intptr_t)(ncards * indexCardSize); iter._current = initial_current; iter._end = dest_begin + dest_count; int i = 0; address next_card_addr = (address)indexCardSize; int addr_offset = 0; int reloc_offset = 0; while (true) { // Checkpoint the iterator before advancing it. addr_offset = iter._addr - initial_addr; reloc_offset = iter._current - initial_current; if (!iter.next()) break; while (iter.addr() >= next_card_addr) { index[i].addr_offset = addr_offset; index[i].reloc_offset = reloc_offset; i++; next_card_addr += indexCardSize; } } while (i < ncards) { index[i].addr_offset = addr_offset; index[i].reloc_offset = reloc_offset; i++; } } } void RelocIterator::set_limits(address begin, address limit) { int index_size = 0; if (UseRelocIndex && _code != NULL) { index_size = ((jint*)_end)[-1]; _end = (relocInfo*)( (address)_end - index_size - BytesPerInt ); } _limit = limit; // the limit affects this next stuff: if (begin != NULL) { #ifdef ASSERT // In ASSERT mode we do not actually use the index, but simply // check that its contents would have led us to the right answer. address addrCheck = _addr; relocInfo* infoCheck = _current; #endif // ASSERT if (index_size > 0) { // skip ahead RelocIndexEntry* index = (RelocIndexEntry*)_end; RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size); assert(_addr == _code->code_begin(), "_addr must be unadjusted"); int card = (begin - _addr) / indexCardSize; if (card > 0) { if (index+card-1 < index_limit) index += card-1; else index = index_limit - 1; #ifdef ASSERT addrCheck = _addr + index->addr_offset; infoCheck = _current + index->reloc_offset; #else // Advance the iterator immediately to the last valid state // for the previous card. Calling "next" will then advance // it to the first item on the required card. _addr += index->addr_offset; _current += index->reloc_offset; #endif // ASSERT } } relocInfo* backup; address backup_addr; while (true) { backup = _current; backup_addr = _addr; #ifdef ASSERT if (backup == infoCheck) { assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL; } else { assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck"); } #endif // ASSERT if (!next() || addr() >= begin) break; } assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck"); assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck"); // At this point, either we are at the first matching record, // or else there is no such record, and !has_current(). // In either case, revert to the immediatly preceding state. _current = backup; _addr = backup_addr; set_has_current(false); } } void RelocIterator::set_limit(address limit) { address code_end = (address)code() + code()->size(); assert(limit == NULL || limit <= code_end, "in bounds"); _limit = limit; } // All the strange bit-encodings are in here. // The idea is to encode relocation data which are small integers // very efficiently (a single extra halfword). Larger chunks of // relocation data need a halfword header to hold their size. void RelocIterator::advance_over_prefix() { if (_current->is_datalen()) { _data = (short*) _current->data(); _datalen = _current->datalen(); _current += _datalen + 1; // skip the embedded data & header } else { _databuf = _current->immediate(); _data = &_databuf; _datalen = 1; _current++; // skip the header } // The client will see the following relocInfo, whatever that is. // It is the reloc to which the preceding data applies. } void RelocIterator::initialize_misc() { set_has_current(false); for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) { _section_start[i] = NULL; // these will be lazily computed, if needed _section_end [i] = NULL; } } Relocation* RelocIterator::reloc() { // (take the "switch" out-of-line) relocInfo::relocType t = type(); if (false) {} #define EACH_TYPE(name) \ else if (t == relocInfo::name##_type) { \ return name##_reloc(); \ } APPLY_TO_RELOCATIONS(EACH_TYPE); #undef EACH_TYPE assert(t == relocInfo::none, "must be padding"); return new(_rh) Relocation(); } //////// Methods for flyweight Relocation types RelocationHolder RelocationHolder::plus(int offset) const { if (offset != 0) { switch (type()) { case relocInfo::none: break; case relocInfo::oop_type: { oop_Relocation* r = (oop_Relocation*)reloc(); return oop_Relocation::spec(r->oop_index(), r->offset() + offset); } case relocInfo::metadata_type: { metadata_Relocation* r = (metadata_Relocation*)reloc(); return metadata_Relocation::spec(r->metadata_index(), r->offset() + offset); } default: ShouldNotReachHere(); } } return (*this); } void Relocation::guarantee_size() { guarantee(false, "Make _relocbuf bigger!"); } // some relocations can compute their own values address Relocation::value() { ShouldNotReachHere(); return NULL; } void Relocation::set_value(address x) { ShouldNotReachHere(); } RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) { if (rtype == relocInfo::none) return RelocationHolder::none; relocInfo ri = relocInfo(rtype, 0); RelocIterator itr; itr.set_current(ri); itr.reloc(); return itr._rh; } int32_t Relocation::runtime_address_to_index(address runtime_address) { assert(!is_reloc_index((intptr_t)runtime_address), "must not look like an index"); if (runtime_address == NULL) return 0; StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address); if (p != NULL && p->begin() == runtime_address) { assert(is_reloc_index(p->index()), "there must not be too many stubs"); return (int32_t)p->index(); } else { // Known "miscellaneous" non-stub pointers: // os::get_polling_page(), SafepointSynchronize::address_of_state() if (PrintRelocations) { tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address); } #ifndef _LP64 return (int32_t) (intptr_t)runtime_address; #else // didn't fit return non-index return -1; #endif /* _LP64 */ } } address Relocation::index_to_runtime_address(int32_t index) { if (index == 0) return NULL; if (is_reloc_index(index)) { StubCodeDesc* p = StubCodeDesc::desc_for_index(index); assert(p != NULL, "there must be a stub for this index"); return p->begin(); } else { #ifndef _LP64 // this only works on 32bit machines return (address) ((intptr_t) index); #else fatal("Relocation::index_to_runtime_address, int32_t not pointer sized"); return NULL; #endif /* _LP64 */ } } address Relocation::old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest) { int sect = dest->section_index_of(newa); guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return ostart + (newa - nstart); } address Relocation::new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest) { debug_only(const CodeBuffer* src0 = src); int sect = CodeBuffer::SECT_NONE; // Look for olda in the source buffer, and all previous incarnations // if the source buffer has been expanded. for (; src != NULL; src = src->before_expand()) { sect = src->section_index_of(olda); if (sect != CodeBuffer::SECT_NONE) break; } guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return nstart + (olda - ostart); } void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) { address addr0 = addr; if (addr0 == NULL || dest->allocates2(addr0)) return; CodeBuffer* cb = dest->outer(); addr = new_addr_for(addr0, cb, cb); assert(allow_other_sections || dest->contains2(addr), "addr must be in required section"); } void CallRelocation::set_destination(address x) { pd_set_call_destination(x); } void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { // Usually a self-relative reference to an external routine. // On some platforms, the reference is absolute (not self-relative). // The enhanced use of pd_call_destination sorts this all out. address orig_addr = old_addr_for(addr(), src, dest); address callee = pd_call_destination(orig_addr); // Reassert the callee address, this time in the new copy of the code. pd_set_call_destination(callee); } //// pack/unpack methods void oop_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_2_ints_to(p, _oop_index, _offset); dest->set_locs_end((relocInfo*) p); } void oop_Relocation::unpack_data() { unpack_2_ints(_oop_index, _offset); } void metadata_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_2_ints_to(p, _metadata_index, _offset); dest->set_locs_end((relocInfo*) p); } void metadata_Relocation::unpack_data() { unpack_2_ints(_metadata_index, _offset); } void virtual_call_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); address point = dest->locs_point(); normalize_address(_cached_value, dest); jint x0 = scaled_offset_null_special(_cached_value, point); p = pack_1_int_to(p, x0); dest->set_locs_end((relocInfo*) p); } void virtual_call_Relocation::unpack_data() { jint x0 = unpack_1_int(); address point = addr(); _cached_value = x0==0? NULL: address_from_scaled_offset(x0, point); } void static_stub_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); CodeSection* insts = dest->outer()->insts(); normalize_address(_static_call, insts); p = pack_1_int_to(p, scaled_offset(_static_call, insts->start())); dest->set_locs_end((relocInfo*) p); } void static_stub_Relocation::unpack_data() { address base = binding()->section_start(CodeBuffer::SECT_INSTS); _static_call = address_from_scaled_offset(unpack_1_int(), base); } void external_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); int32_t index = runtime_address_to_index(_target); #ifndef _LP64 p = pack_1_int_to(p, index); #else if (is_reloc_index(index)) { p = pack_2_ints_to(p, index, 0); } else { jlong t = (jlong) _target; int32_t lo = low(t); int32_t hi = high(t); p = pack_2_ints_to(p, lo, hi); DEBUG_ONLY(jlong t1 = jlong_from(hi, lo)); assert(!is_reloc_index(t1) && (address) t1 == _target, "not symmetric"); } #endif /* _LP64 */ dest->set_locs_end((relocInfo*) p); } void external_word_Relocation::unpack_data() { #ifndef _LP64 _target = index_to_runtime_address(unpack_1_int()); #else int32_t lo, hi; unpack_2_ints(lo, hi); jlong t = jlong_from(hi, lo);; if (is_reloc_index(t)) { _target = index_to_runtime_address(t); } else { _target = (address) t; } #endif /* _LP64 */ } void internal_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); normalize_address(_target, dest, true); // Check whether my target address is valid within this section. // If not, strengthen the relocation type to point to another section. int sindex = _section; if (sindex == CodeBuffer::SECT_NONE && _target != NULL && (!dest->allocates(_target) || _target == dest->locs_point())) { sindex = dest->outer()->section_index_of(_target); guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere"); relocInfo* base = dest->locs_end() - 1; assert(base->type() == this->type(), "sanity"); // Change the written type, to be section_word_type instead. base->set_type(relocInfo::section_word_type); } // Note: An internal_word relocation cannot refer to its own instruction, // because we reserve "0" to mean that the pointer itself is embedded // in the code stream. We use a section_word relocation for such cases. if (sindex == CodeBuffer::SECT_NONE) { assert(type() == relocInfo::internal_word_type, "must be base class"); guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section"); jint x0 = scaled_offset_null_special(_target, dest->locs_point()); assert(!(x0 == 0 && _target != NULL), "correct encoding of null target"); p = pack_1_int_to(p, x0); } else { assert(_target != NULL, "sanity"); CodeSection* sect = dest->outer()->code_section(sindex); guarantee(sect->allocates2(_target), "must be in correct section"); address base = sect->start(); jint offset = scaled_offset(_target, base); assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity"); assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++"); p = pack_1_int_to(p, (offset << section_width) | sindex); } dest->set_locs_end((relocInfo*) p); } void internal_word_Relocation::unpack_data() { jint x0 = unpack_1_int(); _target = x0==0? NULL: address_from_scaled_offset(x0, addr()); _section = CodeBuffer::SECT_NONE; } void section_word_Relocation::unpack_data() { jint x = unpack_1_int(); jint offset = (x >> section_width); int sindex = (x & ((1< Other Java examples (source code examples)Here is a short list of links related to this Java relocInfo.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.