alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (relocInfo.hpp)

This example Java source code file (relocInfo.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

apply_to_relocations, callrelocation, codebuffer, codesection, datarelocation, each_case, null, raw_bits, rawbitstoken, relocationholder, relociterator, share_vm_code_relocinfo_hpp, still, value_obj_class_spec

The relocInfo.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_CODE_RELOCINFO_HPP
#define SHARE_VM_CODE_RELOCINFO_HPP

#include "memory/allocation.hpp"
#include "utilities/top.hpp"

class NativeMovConstReg;

// Types in this file:
//    relocInfo
//      One element of an array of halfwords encoding compressed relocations.
//      Also, the source of relocation types (relocInfo::oop_type, ...).
//    Relocation
//      A flyweight object representing a single relocation.
//      It is fully unpacked from the compressed relocation array.
//    metadata_Relocation, ... (subclasses of Relocation)
//      The location of some type-specific operations (metadata_addr, ...).
//      Also, the source of relocation specs (metadata_Relocation::spec, ...).
//    oop_Relocation, ... (subclasses of Relocation)
//      oops in the code stream (strings, class loaders)
//      Also, the source of relocation specs (oop_Relocation::spec, ...).
//    RelocationHolder
//      A ValueObj type which acts as a union holding a Relocation object.
//      Represents a relocation spec passed into a CodeBuffer during assembly.
//    RelocIterator
//      A StackObj which iterates over the relocations associated with
//      a range of code addresses.  Can be used to operate a copy of code.
//    BoundRelocation
//      An _internal_ type shared by packers and unpackers of relocations.
//      It pastes together a RelocationHolder with some pointers into
//      code and relocInfo streams.


// Notes on relocType:
//
// These hold enough information to read or write a value embedded in
// the instructions of an CodeBlob.  They're used to update:
//
//   1) embedded oops     (isOop()          == true)
//   2) inline caches     (isIC()           == true)
//   3) runtime calls     (isRuntimeCall()  == true)
//   4) internal word ref (isInternalWord() == true)
//   5) external word ref (isExternalWord() == true)
//
// when objects move (GC) or if code moves (compacting the code heap).
// They are also used to patch the code (if a call site must change)
//
// A relocInfo is represented in 16 bits:
//   4 bits indicating the relocation type
//  12 bits indicating the offset from the previous relocInfo address
//
// The offsets accumulate along the relocInfo stream to encode the
// address within the CodeBlob, which is named RelocIterator::addr().
// The address of a particular relocInfo always points to the first
// byte of the relevant instruction (and not to any of its subfields
// or embedded immediate constants).
//
// The offset value is scaled appropriately for the target machine.
// (See relocInfo_<arch>.hpp for the offset scaling.)
//
// On some machines, there may also be a "format" field which may provide
// additional information about the format of the instruction stream
// at the corresponding code address.  The format value is usually zero.
// Any machine (such as Intel) whose instructions can sometimes contain
// more than one relocatable constant needs format codes to distinguish
// which operand goes with a given relocation.
//
// If the target machine needs N format bits, the offset has 12-N bits,
// the format is encoded between the offset and the type, and the
// relocInfo_<arch>.hpp file has manifest constants for the format codes.
//
// If the type is "data_prefix_tag" then the offset bits are further encoded,
// and in fact represent not a code-stream offset but some inline data.
// The data takes the form of a counted sequence of halfwords, which
// precedes the actual relocation record.  (Clients never see it directly.)
// The interpetation of this extra data depends on the relocation type.
//
// On machines that have 32-bit immediate fields, there is usually
// little need for relocation "prefix" data, because the instruction stream
// is a perfectly reasonable place to store the value.  On machines in
// which 32-bit values must be "split" across instructions, the relocation
// data is the "true" specification of the value, which is then applied
// to some field of the instruction (22 or 13 bits, on SPARC).
//
// Whenever the location of the CodeBlob changes, any PC-relative
// relocations, and any internal_word_type relocations, must be reapplied.
// After the GC runs, oop_type relocations must be reapplied.
//
//
// Here are meanings of the types:
//
// relocInfo::none -- a filler record
//   Value:  none
//   Instruction: The corresponding code address is ignored
//   Data:  Any data prefix and format code are ignored
//   (This means that any relocInfo can be disabled by setting
//   its type to none.  See relocInfo::remove.)
//
// relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
//   Value:  an oop, or else the address (handle) of an oop
//   Instruction types: memory (load), set (load address)
//   Data:  []       an oop stored in 4 bytes of instruction
//          [n]      n is the index of an oop in the CodeBlob's oop pool
//          [[N]n l] and l is a byte offset to be applied to the oop
//          [Nn Ll]  both index and offset may be 32 bits if necessary
//   Here is a special hack, used only by the old compiler:
//          [[N]n 00] the value is the __address__ of the nth oop in the pool
//   (Note that the offset allows optimal references to class variables.)
//
// relocInfo::internal_word_type -- an address within the same CodeBlob
// relocInfo::section_word_type -- same, but can refer to another section
//   Value:  an address in the CodeBlob's code or constants section
//   Instruction types: memory (load), set (load address)
//   Data:  []     stored in 4 bytes of instruction
//          [[L]l] a relative offset (see [About Offsets] below)
//   In the case of section_word_type, the offset is relative to a section
//   base address, and the section number (e.g., SECT_INSTS) is encoded
//   into the low two bits of the offset L.
//
// relocInfo::external_word_type -- a fixed address in the runtime system
//   Value:  an address
//   Instruction types: memory (load), set (load address)
//   Data:  []   stored in 4 bytes of instruction
//          [n]  the index of a "well-known" stub (usual case on RISC)
//          [Ll] a 32-bit address
//
// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
//   Value:  an address
//   Instruction types: PC-relative call (or a PC-relative branch)
//   Data:  []   stored in 4 bytes of instruction
//
// relocInfo::static_call_type -- a static call
//   Value:  an CodeBlob, a stub, or a fixup routine
//   Instruction types: a call
//   Data:  []
//   The identity of the callee is extracted from debugging information.
//   //%note reloc_3
//
// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
//                                 cache)
//   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
//   Instruction types: a call, plus some associated set-oop instructions
//   Data:  []       the associated set-oops are adjacent to the call
//          [n]      n is a relative offset to the first set-oop
//          [[N]n l] and l is a limit within which the set-oops occur
//          [Nn Ll]  both n and l may be 32 bits if necessary
//   The identity of the callee is extracted from debugging information.
//
// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
//
//    Same info as a static_call_type. We use a special type, so the handling of
//    virtuals and statics are separated.
//
//
//   The offset n points to the first set-oop.  (See [About Offsets] below.)
//   In turn, the set-oop instruction specifies or contains an oop cell devoted
//   exclusively to the IC call, which can be patched along with the call.
//
//   The locations of any other set-oops are found by searching the relocation
//   information starting at the first set-oop, and continuing until all
//   relocations up through l have been inspected.  The value l is another
//   relative offset.  (Both n and l are relative to the call's first byte.)
//
//   The limit l of the search is exclusive.  However, if it points within
//   the call (e.g., offset zero), it is adjusted to point after the call and
//   any associated machine-specific delay slot.
//
//   Since the offsets could be as wide as 32-bits, these conventions
//   put no restrictions whatever upon code reorganization.
//
//   The compiler is responsible for ensuring that transition from a clean
//   state to a monomorphic compiled state is MP-safe.  This implies that
//   the system must respond well to intermediate states where a random
//   subset of the set-oops has been correctly from the clean state
//   upon entry to the VEP of the compiled method.  In the case of a
//   machine (Intel) with a single set-oop instruction, the 32-bit
//   immediate field must not straddle a unit of memory coherence.
//   //%note reloc_3
//
// relocInfo::static_stub_type -- an extra stub for each static_call_type
//   Value:  none
//   Instruction types: a virtual call:  { set_oop; jump; }
//   Data:  [[N]n]  the offset of the associated static_call reloc
//   This stub becomes the target of a static call which must be upgraded
//   to a virtual call (because the callee is interpreted).
//   See [About Offsets] below.
//   //%note reloc_2
//
// For example:
//
//   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
//   ------------                               ----    -----------
// sethi      %hi(myObject),  R               oop_type [n(myObject)]
// ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
// add R2, 1, R2
// st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
//%note reloc_1
//
// This uses 4 instruction words, 8 relocation halfwords,
// and an entry (which is sharable) in the CodeBlob's oop pool,
// for a total of 36 bytes.
//
// Note that the compiler is responsible for ensuring the "fldOffset" when
// added to "%lo(myObject)" does not overflow the immediate fields of the
// memory instructions.
//
//
// [About Offsets] Relative offsets are supplied to this module as
// positive byte offsets, but they may be internally stored scaled
// and/or negated, depending on what is most compact for the target
// system.  Since the object pointed to by the offset typically
// precedes the relocation address, it is profitable to store
// these negative offsets as positive numbers, but this decision
// is internal to the relocation information abstractions.
//

class Relocation;
class CodeBuffer;
class CodeSection;
class RelocIterator;

class relocInfo VALUE_OBJ_CLASS_SPEC {
  friend class RelocIterator;
 public:
  enum relocType {
    none                    =  0, // Used when no relocation should be generated
    oop_type                =  1, // embedded oop
    virtual_call_type       =  2, // a standard inline cache call for a virtual send
    opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
    static_call_type        =  4, // a static send
    static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
    runtime_call_type       =  6, // call to fixed external routine
    external_word_type      =  7, // reference to fixed external address
    internal_word_type      =  8, // reference within the current code blob
    section_word_type       =  9, // internal, but a cross-section reference
    poll_type               = 10, // polling instruction for safepoints
    poll_return_type        = 11, // polling instruction for safepoints at return
    metadata_type           = 12, // metadata that used to be oops
    yet_unused_type_1       = 13, // Still unused
    yet_unused_type_2       = 14, // Still unused
    data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
    type_mask               = 15  // A mask which selects only the above values
  };

 protected:
  unsigned short _value;

  enum RawBitsToken { RAW_BITS };
  relocInfo(relocType type, RawBitsToken ignore, int bits)
    : _value((type << nontype_width) + bits) { }

  relocInfo(relocType type, RawBitsToken ignore, int off, int f)
    : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }

 public:
  // constructor
  relocInfo(relocType type, int offset, int format = 0)
#ifndef ASSERT
  {
    (*this) = relocInfo(type, RAW_BITS, offset, format);
  }
#else
  // Put a bunch of assertions out-of-line.
  ;
#endif

  #define APPLY_TO_RELOCATIONS(visitor) \
    visitor(oop) \
    visitor(metadata) \
    visitor(virtual_call) \
    visitor(opt_virtual_call) \
    visitor(static_call) \
    visitor(static_stub) \
    visitor(runtime_call) \
    visitor(external_word) \
    visitor(internal_word) \
    visitor(poll) \
    visitor(poll_return) \
    visitor(section_word) \


 public:
  enum {
    value_width             = sizeof(unsigned short) * BitsPerByte,
    type_width              = 4,   // == log2(type_mask+1)
    nontype_width           = value_width - type_width,
    datalen_width           = nontype_width-1,
    datalen_tag             = 1 << datalen_width,  // or-ed into _value
    datalen_limit           = 1 << datalen_width,
    datalen_mask            = (1 << datalen_width)-1
  };

  // accessors
 public:
  relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
  int  format()           const { return format_mask==0? 0: format_mask &
                                         ((unsigned)_value >> offset_width); }
  int  addr_offset()      const { assert(!is_prefix(), "must have offset");
                                  return (_value & offset_mask)*offset_unit; }

 protected:
  const short* data()     const { assert(is_datalen(), "must have data");
                                  return (const short*)(this + 1); }
  int          datalen()  const { assert(is_datalen(), "must have data");
                                  return (_value & datalen_mask); }
  int         immediate() const { assert(is_immediate(), "must have immed");
                                  return (_value & datalen_mask); }
 public:
  static int addr_unit()        { return offset_unit; }
  static int offset_limit()     { return (1 << offset_width) * offset_unit; }

  void set_type(relocType type);
  void set_format(int format);

  void remove() { set_type(none); }

 protected:
  bool is_none()                const { return type() == none; }
  bool is_prefix()              const { return type() == data_prefix_tag; }
  bool is_datalen()             const { assert(is_prefix(), "must be prefix");
                                        return (_value & datalen_tag) != 0; }
  bool is_immediate()           const { assert(is_prefix(), "must be prefix");
                                        return (_value & datalen_tag) == 0; }

 public:
  // Occasionally records of type relocInfo::none will appear in the stream.
  // We do not bother to filter these out, but clients should ignore them.
  // These records serve as "filler" in three ways:
  //  - to skip large spans of unrelocated code (this is rare)
  //  - to pad out the relocInfo array to the required oop alignment
  //  - to disable old relocation information which is no longer applicable

  inline friend relocInfo filler_relocInfo();

  // Every non-prefix relocation may be preceded by at most one prefix,
  // which supplies 1 or more halfwords of associated data.  Conventionally,
  // an int is represented by 0, 1, or 2 halfwords, depending on how
  // many bits are required to represent the value.  (In addition,
  // if the sole halfword is a 10-bit unsigned number, it is made
  // "immediate" in the prefix header word itself.  This optimization
  // is invisible outside this module.)

  inline friend relocInfo prefix_relocInfo(int datalen = 0);

 protected:
  // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
  static relocInfo immediate_relocInfo(int data0) {
    assert(fits_into_immediate(data0), "data0 in limits");
    return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
  }
  static bool fits_into_immediate(int data0) {
    return (data0 >= 0 && data0 < datalen_limit);
  }

 public:
  // Support routines for compilers.

  // This routine takes an infant relocInfo (unprefixed) and
  // edits in its prefix, if any.  It also updates dest.locs_end.
  void initialize(CodeSection* dest, Relocation* reloc);

  // This routine updates a prefix and returns the limit pointer.
  // It tries to compress the prefix from 32 to 16 bits, and if
  // successful returns a reduced "prefix_limit" pointer.
  relocInfo* finish_prefix(short* prefix_limit);

  // bit-packers for the data array:

  // As it happens, the bytes within the shorts are ordered natively,
  // but the shorts within the word are ordered big-endian.
  // This is an arbitrary choice, made this way mainly to ease debugging.
  static int data0_from_int(jint x)         { return x >> value_width; }
  static int data1_from_int(jint x)         { return (short)x; }
  static jint jint_from_data(short* data) {
    return (data[0] << value_width) + (unsigned short)data[1];
  }

  static jint short_data_at(int n, short* data, int datalen) {
    return datalen > n ? data[n] : 0;
  }

  static jint jint_data_at(int n, short* data, int datalen) {
    return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
  }

  // Update methods for relocation information
  // (since code is dynamically patched, we also need to dynamically update the relocation info)
  // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
  static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
  static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);

  // Machine dependent stuff
#ifdef TARGET_ARCH_x86
# include "relocInfo_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "relocInfo_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "relocInfo_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "relocInfo_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "relocInfo_ppc.hpp"
#endif


 protected:
  // Derived constant, based on format_width which is PD:
  enum {
    offset_width       = nontype_width - format_width,
    offset_mask        = (1<

Other Java examples (source code examples)

Here is a short list of links related to this Java relocInfo.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.