|
Java example source code file (relocInfo.hpp)
The relocInfo.hpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_CODE_RELOCINFO_HPP #define SHARE_VM_CODE_RELOCINFO_HPP #include "memory/allocation.hpp" #include "utilities/top.hpp" class NativeMovConstReg; // Types in this file: // relocInfo // One element of an array of halfwords encoding compressed relocations. // Also, the source of relocation types (relocInfo::oop_type, ...). // Relocation // A flyweight object representing a single relocation. // It is fully unpacked from the compressed relocation array. // metadata_Relocation, ... (subclasses of Relocation) // The location of some type-specific operations (metadata_addr, ...). // Also, the source of relocation specs (metadata_Relocation::spec, ...). // oop_Relocation, ... (subclasses of Relocation) // oops in the code stream (strings, class loaders) // Also, the source of relocation specs (oop_Relocation::spec, ...). // RelocationHolder // A ValueObj type which acts as a union holding a Relocation object. // Represents a relocation spec passed into a CodeBuffer during assembly. // RelocIterator // A StackObj which iterates over the relocations associated with // a range of code addresses. Can be used to operate a copy of code. // BoundRelocation // An _internal_ type shared by packers and unpackers of relocations. // It pastes together a RelocationHolder with some pointers into // code and relocInfo streams. // Notes on relocType: // // These hold enough information to read or write a value embedded in // the instructions of an CodeBlob. They're used to update: // // 1) embedded oops (isOop() == true) // 2) inline caches (isIC() == true) // 3) runtime calls (isRuntimeCall() == true) // 4) internal word ref (isInternalWord() == true) // 5) external word ref (isExternalWord() == true) // // when objects move (GC) or if code moves (compacting the code heap). // They are also used to patch the code (if a call site must change) // // A relocInfo is represented in 16 bits: // 4 bits indicating the relocation type // 12 bits indicating the offset from the previous relocInfo address // // The offsets accumulate along the relocInfo stream to encode the // address within the CodeBlob, which is named RelocIterator::addr(). // The address of a particular relocInfo always points to the first // byte of the relevant instruction (and not to any of its subfields // or embedded immediate constants). // // The offset value is scaled appropriately for the target machine. // (See relocInfo_<arch>.hpp for the offset scaling.) // // On some machines, there may also be a "format" field which may provide // additional information about the format of the instruction stream // at the corresponding code address. The format value is usually zero. // Any machine (such as Intel) whose instructions can sometimes contain // more than one relocatable constant needs format codes to distinguish // which operand goes with a given relocation. // // If the target machine needs N format bits, the offset has 12-N bits, // the format is encoded between the offset and the type, and the // relocInfo_<arch>.hpp file has manifest constants for the format codes. // // If the type is "data_prefix_tag" then the offset bits are further encoded, // and in fact represent not a code-stream offset but some inline data. // The data takes the form of a counted sequence of halfwords, which // precedes the actual relocation record. (Clients never see it directly.) // The interpetation of this extra data depends on the relocation type. // // On machines that have 32-bit immediate fields, there is usually // little need for relocation "prefix" data, because the instruction stream // is a perfectly reasonable place to store the value. On machines in // which 32-bit values must be "split" across instructions, the relocation // data is the "true" specification of the value, which is then applied // to some field of the instruction (22 or 13 bits, on SPARC). // // Whenever the location of the CodeBlob changes, any PC-relative // relocations, and any internal_word_type relocations, must be reapplied. // After the GC runs, oop_type relocations must be reapplied. // // // Here are meanings of the types: // // relocInfo::none -- a filler record // Value: none // Instruction: The corresponding code address is ignored // Data: Any data prefix and format code are ignored // (This means that any relocInfo can be disabled by setting // its type to none. See relocInfo::remove.) // // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data // Value: an oop, or else the address (handle) of an oop // Instruction types: memory (load), set (load address) // Data: [] an oop stored in 4 bytes of instruction // [n] n is the index of an oop in the CodeBlob's oop pool // [[N]n l] and l is a byte offset to be applied to the oop // [Nn Ll] both index and offset may be 32 bits if necessary // Here is a special hack, used only by the old compiler: // [[N]n 00] the value is the __address__ of the nth oop in the pool // (Note that the offset allows optimal references to class variables.) // // relocInfo::internal_word_type -- an address within the same CodeBlob // relocInfo::section_word_type -- same, but can refer to another section // Value: an address in the CodeBlob's code or constants section // Instruction types: memory (load), set (load address) // Data: [] stored in 4 bytes of instruction // [[L]l] a relative offset (see [About Offsets] below) // In the case of section_word_type, the offset is relative to a section // base address, and the section number (e.g., SECT_INSTS) is encoded // into the low two bits of the offset L. // // relocInfo::external_word_type -- a fixed address in the runtime system // Value: an address // Instruction types: memory (load), set (load address) // Data: [] stored in 4 bytes of instruction // [n] the index of a "well-known" stub (usual case on RISC) // [Ll] a 32-bit address // // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system // Value: an address // Instruction types: PC-relative call (or a PC-relative branch) // Data: [] stored in 4 bytes of instruction // // relocInfo::static_call_type -- a static call // Value: an CodeBlob, a stub, or a fixup routine // Instruction types: a call // Data: [] // The identity of the callee is extracted from debugging information. // //%note reloc_3 // // relocInfo::virtual_call_type -- a virtual call site (which includes an inline // cache) // Value: an CodeBlob, a stub, the interpreter, or a fixup routine // Instruction types: a call, plus some associated set-oop instructions // Data: [] the associated set-oops are adjacent to the call // [n] n is a relative offset to the first set-oop // [[N]n l] and l is a limit within which the set-oops occur // [Nn Ll] both n and l may be 32 bits if necessary // The identity of the callee is extracted from debugging information. // // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound // // Same info as a static_call_type. We use a special type, so the handling of // virtuals and statics are separated. // // // The offset n points to the first set-oop. (See [About Offsets] below.) // In turn, the set-oop instruction specifies or contains an oop cell devoted // exclusively to the IC call, which can be patched along with the call. // // The locations of any other set-oops are found by searching the relocation // information starting at the first set-oop, and continuing until all // relocations up through l have been inspected. The value l is another // relative offset. (Both n and l are relative to the call's first byte.) // // The limit l of the search is exclusive. However, if it points within // the call (e.g., offset zero), it is adjusted to point after the call and // any associated machine-specific delay slot. // // Since the offsets could be as wide as 32-bits, these conventions // put no restrictions whatever upon code reorganization. // // The compiler is responsible for ensuring that transition from a clean // state to a monomorphic compiled state is MP-safe. This implies that // the system must respond well to intermediate states where a random // subset of the set-oops has been correctly from the clean state // upon entry to the VEP of the compiled method. In the case of a // machine (Intel) with a single set-oop instruction, the 32-bit // immediate field must not straddle a unit of memory coherence. // //%note reloc_3 // // relocInfo::static_stub_type -- an extra stub for each static_call_type // Value: none // Instruction types: a virtual call: { set_oop; jump; } // Data: [[N]n] the offset of the associated static_call reloc // This stub becomes the target of a static call which must be upgraded // to a virtual call (because the callee is interpreted). // See [About Offsets] below. // //%note reloc_2 // // For example: // // INSTRUCTIONS RELOC: TYPE PREFIX DATA // ------------ ---- ----------- // sethi %hi(myObject), R oop_type [n(myObject)] // ld [R+%lo(myObject)+fldOffset], R2 oop_type [n(myObject) fldOffset] // add R2, 1, R2 // st R2, [R+%lo(myObject)+fldOffset] oop_type [n(myObject) fldOffset] //%note reloc_1 // // This uses 4 instruction words, 8 relocation halfwords, // and an entry (which is sharable) in the CodeBlob's oop pool, // for a total of 36 bytes. // // Note that the compiler is responsible for ensuring the "fldOffset" when // added to "%lo(myObject)" does not overflow the immediate fields of the // memory instructions. // // // [About Offsets] Relative offsets are supplied to this module as // positive byte offsets, but they may be internally stored scaled // and/or negated, depending on what is most compact for the target // system. Since the object pointed to by the offset typically // precedes the relocation address, it is profitable to store // these negative offsets as positive numbers, but this decision // is internal to the relocation information abstractions. // class Relocation; class CodeBuffer; class CodeSection; class RelocIterator; class relocInfo VALUE_OBJ_CLASS_SPEC { friend class RelocIterator; public: enum relocType { none = 0, // Used when no relocation should be generated oop_type = 1, // embedded oop virtual_call_type = 2, // a standard inline cache call for a virtual send opt_virtual_call_type = 3, // a virtual call that has been statically bound (i.e., no IC cache) static_call_type = 4, // a static send static_stub_type = 5, // stub-entry for static send (takes care of interpreter case) runtime_call_type = 6, // call to fixed external routine external_word_type = 7, // reference to fixed external address internal_word_type = 8, // reference within the current code blob section_word_type = 9, // internal, but a cross-section reference poll_type = 10, // polling instruction for safepoints poll_return_type = 11, // polling instruction for safepoints at return metadata_type = 12, // metadata that used to be oops yet_unused_type_1 = 13, // Still unused yet_unused_type_2 = 14, // Still unused data_prefix_tag = 15, // tag for a prefix (carries data arguments) type_mask = 15 // A mask which selects only the above values }; protected: unsigned short _value; enum RawBitsToken { RAW_BITS }; relocInfo(relocType type, RawBitsToken ignore, int bits) : _value((type << nontype_width) + bits) { } relocInfo(relocType type, RawBitsToken ignore, int off, int f) : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { } public: // constructor relocInfo(relocType type, int offset, int format = 0) #ifndef ASSERT { (*this) = relocInfo(type, RAW_BITS, offset, format); } #else // Put a bunch of assertions out-of-line. ; #endif #define APPLY_TO_RELOCATIONS(visitor) \ visitor(oop) \ visitor(metadata) \ visitor(virtual_call) \ visitor(opt_virtual_call) \ visitor(static_call) \ visitor(static_stub) \ visitor(runtime_call) \ visitor(external_word) \ visitor(internal_word) \ visitor(poll) \ visitor(poll_return) \ visitor(section_word) \ public: enum { value_width = sizeof(unsigned short) * BitsPerByte, type_width = 4, // == log2(type_mask+1) nontype_width = value_width - type_width, datalen_width = nontype_width-1, datalen_tag = 1 << datalen_width, // or-ed into _value datalen_limit = 1 << datalen_width, datalen_mask = (1 << datalen_width)-1 }; // accessors public: relocType type() const { return (relocType)((unsigned)_value >> nontype_width); } int format() const { return format_mask==0? 0: format_mask & ((unsigned)_value >> offset_width); } int addr_offset() const { assert(!is_prefix(), "must have offset"); return (_value & offset_mask)*offset_unit; } protected: const short* data() const { assert(is_datalen(), "must have data"); return (const short*)(this + 1); } int datalen() const { assert(is_datalen(), "must have data"); return (_value & datalen_mask); } int immediate() const { assert(is_immediate(), "must have immed"); return (_value & datalen_mask); } public: static int addr_unit() { return offset_unit; } static int offset_limit() { return (1 << offset_width) * offset_unit; } void set_type(relocType type); void set_format(int format); void remove() { set_type(none); } protected: bool is_none() const { return type() == none; } bool is_prefix() const { return type() == data_prefix_tag; } bool is_datalen() const { assert(is_prefix(), "must be prefix"); return (_value & datalen_tag) != 0; } bool is_immediate() const { assert(is_prefix(), "must be prefix"); return (_value & datalen_tag) == 0; } public: // Occasionally records of type relocInfo::none will appear in the stream. // We do not bother to filter these out, but clients should ignore them. // These records serve as "filler" in three ways: // - to skip large spans of unrelocated code (this is rare) // - to pad out the relocInfo array to the required oop alignment // - to disable old relocation information which is no longer applicable inline friend relocInfo filler_relocInfo(); // Every non-prefix relocation may be preceded by at most one prefix, // which supplies 1 or more halfwords of associated data. Conventionally, // an int is represented by 0, 1, or 2 halfwords, depending on how // many bits are required to represent the value. (In addition, // if the sole halfword is a 10-bit unsigned number, it is made // "immediate" in the prefix header word itself. This optimization // is invisible outside this module.) inline friend relocInfo prefix_relocInfo(int datalen = 0); protected: // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value static relocInfo immediate_relocInfo(int data0) { assert(fits_into_immediate(data0), "data0 in limits"); return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0); } static bool fits_into_immediate(int data0) { return (data0 >= 0 && data0 < datalen_limit); } public: // Support routines for compilers. // This routine takes an infant relocInfo (unprefixed) and // edits in its prefix, if any. It also updates dest.locs_end. void initialize(CodeSection* dest, Relocation* reloc); // This routine updates a prefix and returns the limit pointer. // It tries to compress the prefix from 32 to 16 bits, and if // successful returns a reduced "prefix_limit" pointer. relocInfo* finish_prefix(short* prefix_limit); // bit-packers for the data array: // As it happens, the bytes within the shorts are ordered natively, // but the shorts within the word are ordered big-endian. // This is an arbitrary choice, made this way mainly to ease debugging. static int data0_from_int(jint x) { return x >> value_width; } static int data1_from_int(jint x) { return (short)x; } static jint jint_from_data(short* data) { return (data[0] << value_width) + (unsigned short)data[1]; } static jint short_data_at(int n, short* data, int datalen) { return datalen > n ? data[n] : 0; } static jint jint_data_at(int n, short* data, int datalen) { return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen); } // Update methods for relocation information // (since code is dynamically patched, we also need to dynamically update the relocation info) // Both methods takes old_type, so it is able to performe sanity checks on the information removed. static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type); static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type); // Machine dependent stuff #ifdef TARGET_ARCH_x86 # include "relocInfo_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "relocInfo_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "relocInfo_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "relocInfo_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "relocInfo_ppc.hpp" #endif protected: // Derived constant, based on format_width which is PD: enum { offset_width = nontype_width - format_width, offset_mask = (1< |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.