|
Java example source code file (compactibleFreeListSpace.cpp)
The compactibleFreeListSpace.cpp Java example source code/* * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp" #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" #include "gc_implementation/shared/liveRange.hpp" #include "gc_implementation/shared/spaceDecorator.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "memory/allocation.inline.hpp" #include "memory/blockOffsetTable.inline.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/globals.hpp" #include "runtime/handles.inline.hpp" #include "runtime/init.hpp" #include "runtime/java.hpp" #include "runtime/vmThread.hpp" #include "utilities/copy.hpp" ///////////////////////////////////////////////////////////////////////// //// CompactibleFreeListSpace ///////////////////////////////////////////////////////////////////////// // highest ranked free list lock rank int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3; // Defaults are 0 so things will break badly if incorrectly initialized. size_t CompactibleFreeListSpace::IndexSetStart = 0; size_t CompactibleFreeListSpace::IndexSetStride = 0; size_t MinChunkSize = 0; void CompactibleFreeListSpace::set_cms_values() { // Set CMS global values assert(MinChunkSize == 0, "already set"); // MinChunkSize should be a multiple of MinObjAlignment and be large enough // for chunks to contain a FreeChunk. size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes); MinChunkSize = min_chunk_size_in_bytes / BytesPerWord; assert(IndexSetStart == 0 && IndexSetStride == 0, "already set"); IndexSetStart = MinChunkSize; IndexSetStride = MinObjAlignment; } // Constructor CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr, bool use_adaptive_freelists, FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : _dictionaryChoice(dictionaryChoice), _adaptive_freelists(use_adaptive_freelists), _bt(bs, mr), // free list locks are in the range of values taken by _lockRank // This range currently is [_leaf+2, _leaf+3] // Note: this requires that CFLspace c'tors // are called serially in the order in which the locks are // are acquired in the program text. This is true today. _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true), _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1 "CompactibleFreeListSpace._dict_par_lock", true), _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord * CMSRescanMultiple), _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord * CMSConcMarkMultiple), _collector(NULL) { assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize, "FreeChunk is larger than expected"); _bt.set_space(this); initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle); // We have all of "mr", all of which we place in the dictionary // as one big chunk. We'll need to decide here which of several // possible alternative dictionary implementations to use. For // now the choice is easy, since we have only one working // implementation, namely, the simple binary tree (splaying // temporarily disabled). switch (dictionaryChoice) { case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree: _dictionary = new AFLBinaryTreeDictionary(mr); break; case FreeBlockDictionary<FreeChunk>::dictionarySplayTree: case FreeBlockDictionary<FreeChunk>::dictionarySkipList: default: warning("dictionaryChoice: selected option not understood; using" " default BinaryTreeDictionary implementation instead."); } assert(_dictionary != NULL, "CMS dictionary initialization"); // The indexed free lists are initially all empty and are lazily // filled in on demand. Initialize the array elements to NULL. initializeIndexedFreeListArray(); // Not using adaptive free lists assumes that allocation is first // from the linAB's. Also a cms perm gen which can be compacted // has to have the klass's klassKlass allocated at a lower // address in the heap than the klass so that the klassKlass is // moved to its new location before the klass is moved. // Set the _refillSize for the linear allocation blocks if (!use_adaptive_freelists) { FreeChunk* fc = _dictionary->get_chunk(mr.word_size(), FreeBlockDictionary<FreeChunk>::atLeast); // The small linAB initially has all the space and will allocate // a chunk of any size. HeapWord* addr = (HeapWord*) fc; _smallLinearAllocBlock.set(addr, fc->size() , 1024*SmallForLinearAlloc, fc->size()); // Note that _unallocated_block is not updated here. // Allocations from the linear allocation block should // update it. } else { _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc); } // CMSIndexedFreeListReplenish should be at least 1 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish); _promoInfo.setSpace(this); if (UseCMSBestFit) { _fitStrategy = FreeBlockBestFitFirst; } else { _fitStrategy = FreeBlockStrategyNone; } check_free_list_consistency(); // Initialize locks for parallel case. if (CollectedHeap::use_parallel_gc_threads()) { for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1 "a freelist par lock", true); DEBUG_ONLY( _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]); ) } _dictionary->set_par_lock(&_parDictionaryAllocLock); } } // Like CompactibleSpace forward() but always calls cross_threshold() to // update the block offset table. Removed initialize_threshold call because // CFLS does not use a block offset array for contiguous spaces. HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top) { // q is alive // First check if we should switch compaction space assert(this == cp->space, "'this' should be current compaction space."); size_t compaction_max_size = pointer_delta(end(), compact_top); assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size), "virtual adjustObjectSize_v() method is not correct"); size_t adjusted_size = adjustObjectSize(size); assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0, "no small fragments allowed"); assert(minimum_free_block_size() == MinChunkSize, "for de-virtualized reference below"); // Can't leave a nonzero size, residual fragment smaller than MinChunkSize if (adjusted_size + MinChunkSize > compaction_max_size && adjusted_size != compaction_max_size) { do { // switch to next compaction space cp->space->set_compaction_top(compact_top); cp->space = cp->space->next_compaction_space(); if (cp->space == NULL) { cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen); assert(cp->gen != NULL, "compaction must succeed"); cp->space = cp->gen->first_compaction_space(); assert(cp->space != NULL, "generation must have a first compaction space"); } compact_top = cp->space->bottom(); cp->space->set_compaction_top(compact_top); // The correct adjusted_size may not be the same as that for this method // (i.e., cp->space may no longer be "this" so adjust the size again. // Use the virtual method which is not used above to save the virtual // dispatch. adjusted_size = cp->space->adjust_object_size_v(size); compaction_max_size = pointer_delta(cp->space->end(), compact_top); assert(cp->space->minimum_free_block_size() == 0, "just checking"); } while (adjusted_size > compaction_max_size); } // store the forwarding pointer into the mark word if ((HeapWord*)q != compact_top) { q->forward_to(oop(compact_top)); assert(q->is_gc_marked(), "encoding the pointer should preserve the mark"); } else { // if the object isn't moving we can just set the mark to the default // mark and handle it specially later on. q->init_mark(); assert(q->forwardee() == NULL, "should be forwarded to NULL"); } compact_top += adjusted_size; // we need to update the offset table so that the beginnings of objects can be // found during scavenge. Note that we are updating the offset table based on // where the object will be once the compaction phase finishes. // Always call cross_threshold(). A contiguous space can only call it when // the compaction_top exceeds the current threshold but not for an // non-contiguous space. cp->threshold = cp->space->cross_threshold(compact_top - adjusted_size, compact_top); return compact_top; } // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt // and use of single_block instead of alloc_block. The name here is not really // appropriate - maybe a more general name could be invented for both the // contiguous and noncontiguous spaces. HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) { _bt.single_block(start, the_end); return end(); } // Initialize them to NULL. void CompactibleFreeListSpace::initializeIndexedFreeListArray() { for (size_t i = 0; i < IndexSetSize; i++) { // Note that on platforms where objects are double word aligned, // the odd array elements are not used. It is convenient, however, // to map directly from the object size to the array element. _indexedFreeList[i].reset(IndexSetSize); _indexedFreeList[i].set_size(i); assert(_indexedFreeList[i].count() == 0, "reset check failed"); assert(_indexedFreeList[i].head() == NULL, "reset check failed"); assert(_indexedFreeList[i].tail() == NULL, "reset check failed"); assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed"); } } void CompactibleFreeListSpace::resetIndexedFreeListArray() { for (size_t i = 1; i < IndexSetSize; i++) { assert(_indexedFreeList[i].size() == (size_t) i, "Indexed free list sizes are incorrect"); _indexedFreeList[i].reset(IndexSetSize); assert(_indexedFreeList[i].count() == 0, "reset check failed"); assert(_indexedFreeList[i].head() == NULL, "reset check failed"); assert(_indexedFreeList[i].tail() == NULL, "reset check failed"); assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed"); } } void CompactibleFreeListSpace::reset(MemRegion mr) { resetIndexedFreeListArray(); dictionary()->reset(); if (BlockOffsetArrayUseUnallocatedBlock) { assert(end() == mr.end(), "We are compacting to the bottom of CMS gen"); // Everything's allocated until proven otherwise. _bt.set_unallocated_block(end()); } if (!mr.is_empty()) { assert(mr.word_size() >= MinChunkSize, "Chunk size is too small"); _bt.single_block(mr.start(), mr.word_size()); FreeChunk* fc = (FreeChunk*) mr.start(); fc->set_size(mr.word_size()); if (mr.word_size() >= IndexSetSize ) { returnChunkToDictionary(fc); } else { _bt.verify_not_unallocated((HeapWord*)fc, fc->size()); _indexedFreeList[mr.word_size()].return_chunk_at_head(fc); } coalBirth(mr.word_size()); } _promoInfo.reset(); _smallLinearAllocBlock._ptr = NULL; _smallLinearAllocBlock._word_size = 0; } void CompactibleFreeListSpace::reset_after_compaction() { // Reset the space to the new reality - one free chunk. MemRegion mr(compaction_top(), end()); reset(mr); // Now refill the linear allocation block(s) if possible. if (_adaptive_freelists) { refillLinearAllocBlocksIfNeeded(); } else { // Place as much of mr in the linAB as we can get, // provided it was big enough to go into the dictionary. FreeChunk* fc = dictionary()->find_largest_dict(); if (fc != NULL) { assert(fc->size() == mr.word_size(), "Why was the chunk broken up?"); removeChunkFromDictionary(fc); HeapWord* addr = (HeapWord*) fc; _smallLinearAllocBlock.set(addr, fc->size() , 1024*SmallForLinearAlloc, fc->size()); // Note that _unallocated_block is not updated here. } } } // Walks the entire dictionary, returning a coterminal // chunk, if it exists. Use with caution since it involves // a potentially complete walk of a potentially large tree. FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() { assert_lock_strong(&_freelistLock); return dictionary()->find_chunk_ends_at(end()); } #ifndef PRODUCT void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() { for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { _indexedFreeList[i].allocation_stats()->set_returned_bytes(0); } } size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() { size_t sum = 0; for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { sum += _indexedFreeList[i].allocation_stats()->returned_bytes(); } return sum; } size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const { size_t count = 0; for (size_t i = IndexSetStart; i < IndexSetSize; i++) { debug_only( ssize_t total_list_count = 0; for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; fc = fc->next()) { total_list_count++; } assert(total_list_count == _indexedFreeList[i].count(), "Count in list is incorrect"); ) count += _indexedFreeList[i].count(); } return count; } size_t CompactibleFreeListSpace::totalCount() { size_t num = totalCountInIndexedFreeLists(); num += dictionary()->total_count(); if (_smallLinearAllocBlock._word_size != 0) { num++; } return num; } #endif bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const { FreeChunk* fc = (FreeChunk*) p; return fc->is_free(); } size_t CompactibleFreeListSpace::used() const { return capacity() - free(); } size_t CompactibleFreeListSpace::free() const { // "MT-safe, but not MT-precise"(TM), if you will: i.e. // if you do this while the structures are in flux you // may get an approximate answer only; for instance // because there is concurrent allocation either // directly by mutators or for promotion during a GC. // It's "MT-safe", however, in the sense that you are guaranteed // not to crash and burn, for instance, because of walking // pointers that could disappear as you were walking them. // The approximation is because the various components // that are read below are not read atomically (and // further the computation of totalSizeInIndexedFreeLists() // is itself a non-atomic computation. The normal use of // this is during a resize operation at the end of GC // and at that time you are guaranteed to get the // correct actual value. However, for instance, this is // also read completely asynchronously by the "perf-sampler" // that supports jvmstat, and you are apt to see the values // flicker in such cases. assert(_dictionary != NULL, "No _dictionary?"); return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) + totalSizeInIndexedFreeLists() + _smallLinearAllocBlock._word_size) * HeapWordSize; } size_t CompactibleFreeListSpace::max_alloc_in_words() const { assert(_dictionary != NULL, "No _dictionary?"); assert_locked(); size_t res = _dictionary->max_chunk_size(); res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size, (size_t) SmallForLinearAlloc - 1)); // XXX the following could potentially be pretty slow; // should one, pesimally for the rare cases when res // caclulated above is less than IndexSetSize, // just return res calculated above? My reasoning was that // those cases will be so rare that the extra time spent doesn't // really matter.... // Note: do not change the loop test i >= res + IndexSetStride // to i > res below, because i is unsigned and res may be zero. for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride; i -= IndexSetStride) { if (_indexedFreeList[i].head() != NULL) { assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList"); return i; } } return res; } void LinearAllocBlock::print_on(outputStream* st) const { st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT, _ptr, _word_size, _refillSize, _allocation_size_limit); } void CompactibleFreeListSpace::print_on(outputStream* st) const { st->print_cr("COMPACTIBLE FREELIST SPACE"); st->print_cr(" Space:"); Space::print_on(st); st->print_cr("promoInfo:"); _promoInfo.print_on(st); st->print_cr("_smallLinearAllocBlock"); _smallLinearAllocBlock.print_on(st); // dump_memory_block(_smallLinearAllocBlock->_ptr, 128); st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s", _fitStrategy?"true":"false", _adaptive_freelists?"true":"false"); } void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st) const { reportIndexedFreeListStatistics(); gclog_or_tty->print_cr("Layout of Indexed Freelists"); gclog_or_tty->print_cr("---------------------------"); AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size"); for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { _indexedFreeList[i].print_on(gclog_or_tty); for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; fc = fc->next()) { gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s", fc, (HeapWord*)fc + i, fc->cantCoalesce() ? "\t CC" : ""); } } } void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st) const { _promoInfo.print_on(st); } void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st) const { _dictionary->report_statistics(); st->print_cr("Layout of Freelists in Tree"); st->print_cr("---------------------------"); _dictionary->print_free_lists(st); } class BlkPrintingClosure: public BlkClosure { const CMSCollector* _collector; const CompactibleFreeListSpace* _sp; const CMSBitMap* _live_bit_map; const bool _post_remark; outputStream* _st; public: BlkPrintingClosure(const CMSCollector* collector, const CompactibleFreeListSpace* sp, const CMSBitMap* live_bit_map, outputStream* st): _collector(collector), _sp(sp), _live_bit_map(live_bit_map), _post_remark(collector->abstract_state() > CMSCollector::FinalMarking), _st(st) { } size_t do_blk(HeapWord* addr); }; size_t BlkPrintingClosure::do_blk(HeapWord* addr) { size_t sz = _sp->block_size_no_stall(addr, _collector); assert(sz != 0, "Should always be able to compute a size"); if (_sp->block_is_obj(addr)) { const bool dead = _post_remark && !_live_bit_map->isMarked(addr); _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s", addr, dead ? "dead" : "live", sz, (!dead && CMSPrintObjectsInDump) ? ":" : "."); if (CMSPrintObjectsInDump && !dead) { oop(addr)->print_on(_st); _st->print_cr("--------------------------------------"); } } else { // free block _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s", addr, sz, CMSPrintChunksInDump ? ":" : "."); if (CMSPrintChunksInDump) { ((FreeChunk*)addr)->print_on(_st); _st->print_cr("--------------------------------------"); } } return sz; } void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st) { st->print_cr("\n========================="); st->print_cr("Block layout in CMS Heap:"); st->print_cr("========================="); BlkPrintingClosure bpcl(c, this, c->markBitMap(), st); blk_iterate(&bpcl); st->print_cr("\n======================================="); st->print_cr("Order & Layout of Promotion Info Blocks"); st->print_cr("======================================="); print_promo_info_blocks(st); st->print_cr("\n==========================="); st->print_cr("Order of Indexed Free Lists"); st->print_cr("========================="); print_indexed_free_lists(st); st->print_cr("\n================================="); st->print_cr("Order of Free Lists in Dictionary"); st->print_cr("================================="); print_dictionary_free_lists(st); } void CompactibleFreeListSpace::reportFreeListStatistics() const { assert_lock_strong(&_freelistLock); assert(PrintFLSStatistics != 0, "Reporting error"); _dictionary->report_statistics(); if (PrintFLSStatistics > 1) { reportIndexedFreeListStatistics(); size_t total_size = totalSizeInIndexedFreeLists() + _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())); gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag()); } } void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const { assert_lock_strong(&_freelistLock); gclog_or_tty->print("Statistics for IndexedFreeLists:\n" "--------------------------------\n"); size_t total_size = totalSizeInIndexedFreeLists(); size_t free_blocks = numFreeBlocksInIndexedFreeLists(); gclog_or_tty->print("Total Free Space: %d\n", total_size); gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSizeInIndexedFreeLists()); gclog_or_tty->print("Number of Blocks: %d\n", free_blocks); if (free_blocks != 0) { gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks); } } size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const { size_t res = 0; for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { debug_only( ssize_t recount = 0; for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; fc = fc->next()) { recount += 1; } assert(recount == _indexedFreeList[i].count(), "Incorrect count in list"); ) res += _indexedFreeList[i].count(); } return res; } size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const { for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) { if (_indexedFreeList[i].head() != NULL) { assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList"); return (size_t)i; } } return 0; } void CompactibleFreeListSpace::set_end(HeapWord* value) { HeapWord* prevEnd = end(); assert(prevEnd != value, "unnecessary set_end call"); assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(), "New end is below unallocated block"); _end = value; if (prevEnd != NULL) { // Resize the underlying block offset table. _bt.resize(pointer_delta(value, bottom())); if (value <= prevEnd) { assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(), "New end is below unallocated block"); } else { // Now, take this new chunk and add it to the free blocks. // Note that the BOT has not yet been updated for this block. size_t newFcSize = pointer_delta(value, prevEnd); // XXX This is REALLY UGLY and should be fixed up. XXX if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) { // Mark the boundary of the new block in BOT _bt.mark_block(prevEnd, value); // put it all in the linAB if (ParallelGCThreads == 0) { _smallLinearAllocBlock._ptr = prevEnd; _smallLinearAllocBlock._word_size = newFcSize; repairLinearAllocBlock(&_smallLinearAllocBlock); } else { // ParallelGCThreads > 0 MutexLockerEx x(parDictionaryAllocLock(), Mutex::_no_safepoint_check_flag); _smallLinearAllocBlock._ptr = prevEnd; _smallLinearAllocBlock._word_size = newFcSize; repairLinearAllocBlock(&_smallLinearAllocBlock); } // Births of chunks put into a LinAB are not recorded. Births // of chunks as they are allocated out of a LinAB are. } else { // Add the block to the free lists, if possible coalescing it // with the last free block, and update the BOT and census data. addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize); } } } } class FreeListSpace_DCTOC : public Filtering_DCTOC { CompactibleFreeListSpace* _cfls; CMSCollector* _collector; protected: // Override. #define walk_mem_region_with_cl_DECL(ClosureType) \ virtual void walk_mem_region_with_cl(MemRegion mr, \ HeapWord* bottom, HeapWord* top, \ ClosureType* cl); \ void walk_mem_region_with_cl_par(MemRegion mr, \ HeapWord* bottom, HeapWord* top, \ ClosureType* cl); \ void walk_mem_region_with_cl_nopar(MemRegion mr, \ HeapWord* bottom, HeapWord* top, \ ClosureType* cl) walk_mem_region_with_cl_DECL(ExtendedOopClosure); walk_mem_region_with_cl_DECL(FilteringClosure); public: FreeListSpace_DCTOC(CompactibleFreeListSpace* sp, CMSCollector* collector, ExtendedOopClosure* cl, CardTableModRefBS::PrecisionStyle precision, HeapWord* boundary) : Filtering_DCTOC(sp, cl, precision, boundary), _cfls(sp), _collector(collector) {} }; // We de-virtualize the block-related calls below, since we know that our // space is a CompactibleFreeListSpace. #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \ void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \ HeapWord* bottom, \ HeapWord* top, \ ClosureType* cl) { \ bool is_par = SharedHeap::heap()->n_par_threads() > 0; \ if (is_par) { \ assert(SharedHeap::heap()->n_par_threads() == \ SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \ walk_mem_region_with_cl_par(mr, bottom, top, cl); \ } else { \ walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \ } \ } \ void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \ HeapWord* bottom, \ HeapWord* top, \ ClosureType* cl) { \ /* Skip parts that are before "mr", in case "block_start" sent us \ back too far. */ \ HeapWord* mr_start = mr.start(); \ size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \ HeapWord* next = bottom + bot_size; \ while (next < mr_start) { \ bottom = next; \ bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \ next = bottom + bot_size; \ } \ \ while (bottom < top) { \ if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \ !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \ oop(bottom)) && \ !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \ size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \ bottom += _cfls->adjustObjectSize(word_sz); \ } else { \ bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \ } \ } \ } \ void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \ HeapWord* bottom, \ HeapWord* top, \ ClosureType* cl) { \ /* Skip parts that are before "mr", in case "block_start" sent us \ back too far. */ \ HeapWord* mr_start = mr.start(); \ size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ HeapWord* next = bottom + bot_size; \ while (next < mr_start) { \ bottom = next; \ bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ next = bottom + bot_size; \ } \ \ while (bottom < top) { \ if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \ !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \ oop(bottom)) && \ !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \ size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \ bottom += _cfls->adjustObjectSize(word_sz); \ } else { \ bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ } \ } \ } // (There are only two of these, rather than N, because the split is due // only to the introduction of the FilteringClosure, a local part of the // impl of this abstraction.) FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure) FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure) DirtyCardToOopClosure* CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl, CardTableModRefBS::PrecisionStyle precision, HeapWord* boundary) { return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary); } // Note on locking for the space iteration functions: // since the collector's iteration activities are concurrent with // allocation activities by mutators, absent a suitable mutual exclusion // mechanism the iterators may go awry. For instace a block being iterated // may suddenly be allocated or divided up and part of it allocated and // so on. // Apply the given closure to each block in the space. void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) { assert_lock_strong(freelistLock()); HeapWord *cur, *limit; for (cur = bottom(), limit = end(); cur < limit; cur += cl->do_blk_careful(cur)); } // Apply the given closure to each block in the space. void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) { assert_lock_strong(freelistLock()); HeapWord *cur, *limit; for (cur = bottom(), limit = end(); cur < limit; cur += cl->do_blk(cur)); } // Apply the given closure to each oop in the space. void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) { assert_lock_strong(freelistLock()); HeapWord *cur, *limit; size_t curSize; for (cur = bottom(), limit = end(); cur < limit; cur += curSize) { curSize = block_size(cur); if (block_is_obj(cur)) { oop(cur)->oop_iterate(cl); } } } // Apply the given closure to each oop in the space \intersect memory region. void CompactibleFreeListSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { assert_lock_strong(freelistLock()); if (is_empty()) { return; } MemRegion cur = MemRegion(bottom(), end()); mr = mr.intersection(cur); if (mr.is_empty()) { return; } if (mr.equals(cur)) { oop_iterate(cl); return; } assert(mr.end() <= end(), "just took an intersection above"); HeapWord* obj_addr = block_start(mr.start()); HeapWord* t = mr.end(); SpaceMemRegionOopsIterClosure smr_blk(cl, mr); if (block_is_obj(obj_addr)) { // Handle first object specially. oop obj = oop(obj_addr); obj_addr += adjustObjectSize(obj->oop_iterate(&smr_blk)); } else { FreeChunk* fc = (FreeChunk*)obj_addr; obj_addr += fc->size(); } while (obj_addr < t) { HeapWord* obj = obj_addr; obj_addr += block_size(obj_addr); // If "obj_addr" is not greater than top, then the // entire object "obj" is within the region. if (obj_addr <= t) { if (block_is_obj(obj)) { oop(obj)->oop_iterate(cl); } } else { // "obj" extends beyond end of region if (block_is_obj(obj)) { oop(obj)->oop_iterate(&smr_blk); } break; } } } // NOTE: In the following methods, in order to safely be able to // apply the closure to an object, we need to be sure that the // object has been initialized. We are guaranteed that an object // is initialized if we are holding the Heap_lock with the // world stopped. void CompactibleFreeListSpace::verify_objects_initialized() const { if (is_init_completed()) { assert_locked_or_safepoint(Heap_lock); if (Universe::is_fully_initialized()) { guarantee(SafepointSynchronize::is_at_safepoint(), "Required for objects to be initialized"); } } // else make a concession at vm start-up } // Apply the given closure to each object in the space void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) { assert_lock_strong(freelistLock()); NOT_PRODUCT(verify_objects_initialized()); HeapWord *cur, *limit; size_t curSize; for (cur = bottom(), limit = end(); cur < limit; cur += curSize) { curSize = block_size(cur); if (block_is_obj(cur)) { blk->do_object(oop(cur)); } } } // Apply the given closure to each live object in the space // The usage of CompactibleFreeListSpace // by the ConcurrentMarkSweepGeneration for concurrent GC's allows // objects in the space with references to objects that are no longer // valid. For example, an object may reference another object // that has already been sweep up (collected). This method uses // obj_is_alive() to determine whether it is safe to apply the closure to // an object. See obj_is_alive() for details on how liveness of an // object is decided. void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) { assert_lock_strong(freelistLock()); NOT_PRODUCT(verify_objects_initialized()); HeapWord *cur, *limit; size_t curSize; for (cur = bottom(), limit = end(); cur < limit; cur += curSize) { curSize = block_size(cur); if (block_is_obj(cur) && obj_is_alive(cur)) { blk->do_object(oop(cur)); } } } void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) { assert_locked(freelistLock()); NOT_PRODUCT(verify_objects_initialized()); Space::object_iterate_mem(mr, cl); } // Callers of this iterator beware: The closure application should // be robust in the face of uninitialized objects and should (always) // return a correct size so that the next addr + size below gives us a // valid block boundary. [See for instance, // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful() // in ConcurrentMarkSweepGeneration.cpp.] HeapWord* CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) { assert_lock_strong(freelistLock()); HeapWord *addr, *last; size_t size; for (addr = bottom(), last = end(); addr < last; addr += size) { FreeChunk* fc = (FreeChunk*)addr; if (fc->is_free()) { // Since we hold the free list lock, which protects direct // allocation in this generation by mutators, a free object // will remain free throughout this iteration code. size = fc->size(); } else { // Note that the object need not necessarily be initialized, // because (for instance) the free list lock does NOT protect // object initialization. The closure application below must // therefore be correct in the face of uninitialized objects. size = cl->do_object_careful(oop(addr)); if (size == 0) { // An unparsable object found. Signal early termination. return addr; } } } return NULL; } // Callers of this iterator beware: The closure application should // be robust in the face of uninitialized objects and should (always) // return a correct size so that the next addr + size below gives us a // valid block boundary. [See for instance, // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful() // in ConcurrentMarkSweepGeneration.cpp.] HeapWord* CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr, ObjectClosureCareful* cl) { assert_lock_strong(freelistLock()); // Can't use used_region() below because it may not necessarily // be the same as [bottom(),end()); although we could // use [used_region().start(),round_to(used_region().end(),CardSize)), // that appears too cumbersome, so we just do the simpler check // in the assertion below. assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr), "mr should be non-empty and within used space"); HeapWord *addr, *end; size_t size; for (addr = block_start_careful(mr.start()), end = mr.end(); addr < end; addr += size) { FreeChunk* fc = (FreeChunk*)addr; if (fc->is_free()) { // Since we hold the free list lock, which protects direct // allocation in this generation by mutators, a free object // will remain free throughout this iteration code. size = fc->size(); } else { // Note that the object need not necessarily be initialized, // because (for instance) the free list lock does NOT protect // object initialization. The closure application below must // therefore be correct in the face of uninitialized objects. size = cl->do_object_careful_m(oop(addr), mr); if (size == 0) { // An unparsable object found. Signal early termination. return addr; } } } return NULL; } HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const { NOT_PRODUCT(verify_objects_initialized()); return _bt.block_start(p); } HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const { return _bt.block_start_careful(p); } size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const { NOT_PRODUCT(verify_objects_initialized()); // This must be volatile, or else there is a danger that the compiler // will compile the code below into a sometimes-infinite loop, by keeping // the value read the first time in a register. while (true) { // We must do this until we get a consistent view of the object. if (FreeChunk::indicatesFreeChunk(p)) { volatile FreeChunk* fc = (volatile FreeChunk*)p; size_t res = fc->size(); // If the object is still a free chunk, return the size, else it // has been allocated so try again. if (FreeChunk::indicatesFreeChunk(p)) { assert(res != 0, "Block size should not be 0"); return res; } } else { // must read from what 'p' points to in each loop. Klass* k = ((volatile oopDesc*)p)->klass_or_null(); if (k != NULL) { assert(k->is_klass(), "Should really be klass oop."); oop o = (oop)p; assert(o->is_oop(true /* ignore mark word */), "Should be an oop."); size_t res = o->size_given_klass(k); res = adjustObjectSize(res); assert(res != 0, "Block size should not be 0"); return res; } } } } // TODO: Now that is_parsable is gone, we should combine these two functions. // A variant of the above that uses the Printezis bits for // unparsable but allocated objects. This avoids any possible // stalls waiting for mutators to initialize objects, and is // thus potentially faster than the variant above. However, // this variant may return a zero size for a block that is // under mutation and for which a consistent size cannot be // inferred without stalling; see CMSCollector::block_size_if_printezis_bits(). size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p, const CMSCollector* c) const { assert(MemRegion(bottom(), end()).contains(p), "p not in space"); // This must be volatile, or else there is a danger that the compiler // will compile the code below into a sometimes-infinite loop, by keeping // the value read the first time in a register. DEBUG_ONLY(uint loops = 0;) while (true) { // We must do this until we get a consistent view of the object. if (FreeChunk::indicatesFreeChunk(p)) { volatile FreeChunk* fc = (volatile FreeChunk*)p; size_t res = fc->size(); if (FreeChunk::indicatesFreeChunk(p)) { assert(res != 0, "Block size should not be 0"); assert(loops == 0, "Should be 0"); return res; } } else { // must read from what 'p' points to in each loop. Klass* k = ((volatile oopDesc*)p)->klass_or_null(); // We trust the size of any object that has a non-NULL // klass and (for those in the perm gen) is parsable // -- irrespective of its conc_safe-ty. if (k != NULL) { assert(k->is_klass(), "Should really be klass oop."); oop o = (oop)p; assert(o->is_oop(), "Should be an oop"); size_t res = o->size_given_klass(k); res = adjustObjectSize(res); assert(res != 0, "Block size should not be 0"); return res; } else { // May return 0 if P-bits not present. return c->block_size_if_printezis_bits(p); } } assert(loops == 0, "Can loop at most once"); DEBUG_ONLY(loops++;) } } size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const { NOT_PRODUCT(verify_objects_initialized()); assert(MemRegion(bottom(), end()).contains(p), "p not in space"); FreeChunk* fc = (FreeChunk*)p; if (fc->is_free()) { return fc->size(); } else { // Ignore mark word because this may be a recently promoted // object whose mark word is used to chain together grey // objects (the last one would have a null value). assert(oop(p)->is_oop(true), "Should be an oop"); return adjustObjectSize(oop(p)->size()); } } // This implementation assumes that the property of "being an object" is // stable. But being a free chunk may not be (because of parallel // promotion.) bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const { FreeChunk* fc = (FreeChunk*)p; assert(is_in_reserved(p), "Should be in space"); // When doing a mark-sweep-compact of the CMS generation, this // assertion may fail because prepare_for_compaction() uses // space that is garbage to maintain information on ranges of // live objects so that these live ranges can be moved as a whole. // Comment out this assertion until that problem can be solved // (i.e., that the block start calculation may look at objects // at address below "p" in finding the object that contains "p" // and those objects (if garbage) may have been modified to hold // live range information. // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p, // "Should be a block boundary"); if (FreeChunk::indicatesFreeChunk(p)) return false; Klass* k = oop(p)->klass_or_null(); if (k != NULL) { // Ignore mark word because it may have been used to // chain together promoted objects (the last one // would have a null value). assert(oop(p)->is_oop(true), "Should be an oop"); return true; } else { return false; // Was not an object at the start of collection. } } // Check if the object is alive. This fact is checked either by consulting // the main marking bitmap in the sweeping phase or, if it's a permanent // generation and we're not in the sweeping phase, by checking the // perm_gen_verify_bit_map where we store the "deadness" information if // we did not sweep the perm gen in the most recent previous GC cycle. bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const { assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), "Else races are possible"); assert(block_is_obj(p), "The address should point to an object"); // If we're sweeping, we use object liveness information from the main bit map // for both perm gen and old gen. // We don't need to lock the bitmap (live_map or dead_map below), because // EITHER we are in the middle of the sweeping phase, and the // main marking bit map (live_map below) is locked, // OR we're in other phases and perm_gen_verify_bit_map (dead_map below) // is stable, because it's mutated only in the sweeping phase. // NOTE: This method is also used by jmap where, if class unloading is // off, the results can return "false" for legitimate perm objects, // when we are not in the midst of a sweeping phase, which can result // in jmap not reporting certain perm gen objects. This will be moot // if/when the perm gen goes away in the future. if (_collector->abstract_state() == CMSCollector::Sweeping) { CMSBitMap* live_map = _collector->markBitMap(); return live_map->par_isMarked((HeapWord*) p); } return true; } bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const { FreeChunk* fc = (FreeChunk*)p; assert(is_in_reserved(p), "Should be in space"); assert(_bt.block_start(p) == p, "Should be a block boundary"); if (!fc->is_free()) { // Ignore mark word because it may have been used to // chain together promoted objects (the last one // would have a null value). assert(oop(p)->is_oop(true), "Should be an oop"); return true; } return false; } // "MT-safe but not guaranteed MT-precise" (TM); you may get an // approximate answer if you don't hold the freelistlock when you call this. size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const { size_t size = 0; for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { debug_only( // We may be calling here without the lock in which case we // won't do this modest sanity check. if (freelistLock()->owned_by_self()) { size_t total_list_size = 0; for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; fc = fc->next()) { total_list_size += i; } assert(total_list_size == i * _indexedFreeList[i].count(), "Count in list is incorrect"); } ) size += i * _indexedFreeList[i].count(); } return size; } HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) { MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); return allocate(size); } HeapWord* CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) { return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size); } HeapWord* CompactibleFreeListSpace::allocate(size_t size) { assert_lock_strong(freelistLock()); HeapWord* res = NULL; assert(size == adjustObjectSize(size), "use adjustObjectSize() before calling into allocate()"); if (_adaptive_freelists) { res = allocate_adaptive_freelists(size); } else { // non-adaptive free lists res = allocate_non_adaptive_freelists(size); } if (res != NULL) { // check that res does lie in this space! assert(is_in_reserved(res), "Not in this space!"); assert(is_aligned((void*)res), "alignment check"); FreeChunk* fc = (FreeChunk*)res; fc->markNotFree(); assert(!fc->is_free(), "shouldn't be marked free"); assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized"); // Verify that the block offset table shows this to // be a single block, but not one which is unallocated. _bt.verify_single_block(res, size); _bt.verify_not_unallocated(res, size); // mangle a just allocated object with a distinct pattern. debug_only(fc->mangleAllocated(size)); } return res; } HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) { HeapWord* res = NULL; // try and use linear allocation for smaller blocks if (size < _smallLinearAllocBlock._allocation_size_limit) { // if successful, the following also adjusts block offset table res = getChunkFromSmallLinearAllocBlock(size); } // Else triage to indexed lists for smaller sizes if (res == NULL) { if (size < SmallForDictionary) { res = (HeapWord*) getChunkFromIndexedFreeList(size); } else { // else get it from the big dictionary; if even this doesn't // work we are out of luck. res = (HeapWord*)getChunkFromDictionaryExact(size); } } return res; } HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) { assert_lock_strong(freelistLock()); HeapWord* res = NULL; assert(size == adjustObjectSize(size), "use adjustObjectSize() before calling into allocate()"); // Strategy // if small // exact size from small object indexed list if small // small or large linear allocation block (linAB) as appropriate // take from lists of greater sized chunks // else // dictionary // small or large linear allocation block if it has the space // Try allocating exact size from indexTable first if (size < IndexSetSize) { res = (HeapWord*) getChunkFromIndexedFreeList(size); if(res != NULL) { assert(res != (HeapWord*)_indexedFreeList[size].head(), "Not removed from free list"); // no block offset table adjustment is necessary on blocks in // the indexed lists. // Try allocating from the small LinAB } else if (size < _smallLinearAllocBlock._allocation_size_limit && (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) { // if successful, the above also adjusts block offset table // Note that this call will refill the LinAB to // satisfy the request. This is different that // evm. // Don't record chunk off a LinAB? smallSplitBirth(size); } else { // Raid the exact free lists larger than size, even if they are not // overpopulated. res = (HeapWord*) getChunkFromGreater(size); } } else { // Big objects get allocated directly from the dictionary. res = (HeapWord*) getChunkFromDictionaryExact(size); if (res == NULL) { // Try hard not to fail since an allocation failure will likely // trigger a synchronous GC. Try to get the space from the // allocation blocks. res = getChunkFromSmallLinearAllocBlockRemainder(size); } } return res; } // A worst-case estimate of the space required (in HeapWords) to expand the heap // when promoting obj. size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const { // Depending on the object size, expansion may require refilling either a // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize // is added because the dictionary may over-allocate to avoid fragmentation. size_t space = obj_size; if (!_adaptive_freelists) { space = MAX2(space, _smallLinearAllocBlock._refillSize); } space += _promoInfo.refillSize() + 2 * MinChunkSize; return space; } FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) { FreeChunk* ret; assert(numWords >= MinChunkSize, "Size is less than minimum"); assert(linearAllocationWouldFail() || bestFitFirst(), "Should not be here"); size_t i; size_t currSize = numWords + MinChunkSize; assert(currSize % MinObjAlignment == 0, "currSize should be aligned"); for (i = currSize; i < IndexSetSize; i += IndexSetStride) { AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i]; if (fl->head()) { ret = getFromListGreater(fl, numWords); assert(ret == NULL || ret->is_free(), "Should be returning a free chunk"); return ret; } } currSize = MAX2((size_t)SmallForDictionary, (size_t)(numWords + MinChunkSize)); /* Try to get a chunk that satisfies request, while avoiding fragmentation that can't be handled. */ { ret = dictionary()->get_chunk(currSize); if (ret != NULL) { assert(ret->size() - numWords >= MinChunkSize, "Chunk is too small"); _bt.allocated((HeapWord*)ret, ret->size()); /* Carve returned chunk. */ (void) splitChunkAndReturnRemainder(ret, numWords); /* Label this as no longer a free chunk. */ assert(ret->is_free(), "This chunk should be free"); ret->link_prev(NULL); } assert(ret == NULL || ret->is_free(), "Should be returning a free chunk"); return ret; } ShouldNotReachHere(); } bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const { assert(fc->size() < IndexSetSize, "Size of chunk is too large"); return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc); } bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const { assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) || (_smallLinearAllocBlock._word_size == fc->size()), "Linear allocation block shows incorrect size"); return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) && (_smallLinearAllocBlock._word_size == fc->size())); } // Check if the purported free chunk is present either as a linear // allocation block, the size-indexed table of (smaller) free blocks, // or the larger free blocks kept in the binary tree dictionary. bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const { if (verify_chunk_is_linear_alloc_block(fc)) { return true; } else if (fc->size() < IndexSetSize) { return verifyChunkInIndexedFreeLists(fc); } else { return dictionary()->verify_chunk_in_free_list(fc); } } #ifndef PRODUCT void CompactibleFreeListSpace::assert_locked() const { CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock()); } void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const { CMSLockVerifier::assert_locked(lock); } #endif FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) { // In the parallel case, the main thread holds the free list lock // on behalf the parallel threads. FreeChunk* fc; { // If GC is parallel, this might be called by several threads. // This should be rare enough that the locking overhead won't affect // the sequential code. MutexLockerEx x(parDictionaryAllocLock(), Mutex::_no_safepoint_check_flag); fc = getChunkFromDictionary(size); } if (fc != NULL) { fc->dontCoalesce(); assert(fc->is_free(), "Should be free, but not coalescable"); // Verify that the block offset table shows this to // be a single block, but not one which is unallocated. _bt.verify_single_block((HeapWord*)fc, fc->size()); _bt.verify_not_unallocated((HeapWord*)fc, fc->size()); } return fc; } oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) { assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); assert_locked(); // if we are tracking promotions, then first ensure space for // promotion (including spooling space for saving header if necessary). // then allocate and copy, then track promoted info if needed. // When tracking (see PromotionInfo::track()), the mark word may // be displaced and in this case restoration of the mark word // occurs in the (oop_since_save_marks_)iterate phase. if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) { return NULL; } // Call the allocate(size_t, bool) form directly to avoid the // additional call through the allocate(size_t) form. Having // the compile inline the call is problematic because allocate(size_t) // is a virtual method. HeapWord* res = allocate(adjustObjectSize(obj_size)); if (res != NULL) { Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size); // if we should be tracking promotions, do so. if (_promoInfo.tracking()) { _promoInfo.track((PromotedObject*)res); } } return oop(res); } HeapWord* CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) { assert_locked(); assert(size >= MinChunkSize, "minimum chunk size"); assert(size < _smallLinearAllocBlock._allocation_size_limit, "maximum from smallLinearAllocBlock"); return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size); } HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk, size_t size) { assert_locked(); assert(size >= MinChunkSize, "too small"); HeapWord* res = NULL; // Try to do linear allocation from blk, making sure that if (blk->_word_size == 0) { // We have probably been unable to fill this either in the prologue or // when it was exhausted at the last linear allocation. Bail out until // next time. assert(blk->_ptr == NULL, "consistency check"); return NULL; } assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check"); res = getChunkFromLinearAllocBlockRemainder(blk, size); if (res != NULL) return res; // about to exhaust this linear allocation block if (blk->_word_size == size) { // exactly satisfied res = blk->_ptr; _bt.allocated(res, blk->_word_size); } else if (size + MinChunkSize <= blk->_refillSize) { size_t sz = blk->_word_size; // Update _unallocated_block if the size is such that chunk would be // returned to the indexed free list. All other chunks in the indexed // free lists are allocated from the dictionary so that _unallocated_block // has already been adjusted for them. Do it here so that the cost // for all chunks added back to the indexed free lists. if (sz < SmallForDictionary) { _bt.allocated(blk->_ptr, sz); } // Return the chunk that isn't big enough, and then refill below. addChunkToFreeLists(blk->_ptr, sz); split_birth(sz); // Don't keep statistics on adding back chunk from a LinAB. } else { // A refilled block would not satisfy the request. return NULL; } blk->_ptr = NULL; blk->_word_size = 0; refillLinearAllocBlock(blk); assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize, "block was replenished"); if (res != NULL) { split_birth(size); repairLinearAllocBlock(blk); } else if (blk->_ptr != NULL) { res = blk->_ptr; size_t blk_size = blk->_word_size; blk->_word_size -= size; blk->_ptr += size; split_birth(size); repairLinearAllocBlock(blk); // Update BOT last so that other (parallel) GC threads see a consistent // view of the BOT and free blocks. // Above must occur before BOT is updated below. OrderAccess::storestore(); _bt.split_block(res, blk_size, size); // adjust block offset table } return res; } HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder( LinearAllocBlock* blk, size_t size) { assert_locked(); assert(size >= MinChunkSize, "too small"); HeapWord* res = NULL; // This is the common case. Keep it simple. if (blk->_word_size >= size + MinChunkSize) { assert(blk->_ptr != NULL, "consistency check"); res = blk->_ptr; // Note that the BOT is up-to-date for the linAB before allocation. It // indicates the start of the linAB. The split_block() updates the // BOT for the linAB after the allocation (indicates the start of the // next chunk to be allocated). size_t blk_size = blk->_word_size; blk->_word_size -= size; blk->_ptr += size; split_birth(size); repairLinearAllocBlock(blk); // Update BOT last so that other (parallel) GC threads see a consistent // view of the BOT and free blocks. // Above must occur before BOT is updated below. OrderAccess::storestore(); _bt.split_block(res, blk_size, size); // adjust block offset table _bt.allocated(res, size); } return res; } FreeChunk* CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) { assert_locked(); assert(size < SmallForDictionary, "just checking"); FreeChunk* res; res = _indexedFreeList[size].get_chunk_at_head(); if (res == NULL) { res = getChunkFromIndexedFreeListHelper(size); } _bt.verify_not_unallocated((HeapWord*) res, size); assert(res == NULL || res->size() == size, "Incorrect block size"); return res; } FreeChunk* CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size, bool replenish) { assert_locked(); FreeChunk* fc = NULL; if (size < SmallForDictionary) { assert(_indexedFreeList[size].head() == NULL || _indexedFreeList[size].surplus() <= 0, "List for this size should be empty or under populated"); // Try best fit in exact lists before replenishing the list if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) { // Replenish list. // // Things tried that failed. // Tried allocating out of the two LinAB's first before // replenishing lists. // Tried small linAB of size 256 (size in indexed list) // and replenishing indexed lists from the small linAB. // FreeChunk* newFc = NULL; const size_t replenish_size = CMSIndexedFreeListReplenish * size; if (replenish_size < SmallForDictionary) { // Do not replenish from an underpopulated size. if (_indexedFreeList[replenish_size].surplus() > 0 && _indexedFreeList[replenish_size].head() != NULL) { newFc = _indexedFreeList[replenish_size].get_chunk_at_head(); } else if (bestFitFirst()) { newFc = bestFitSmall(replenish_size); } } if (newFc == NULL && replenish_size > size) { assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant"); newFc = getChunkFromIndexedFreeListHelper(replenish_size, false); } // Note: The stats update re split-death of block obtained above // will be recorded below precisely when we know we are going to // be actually splitting it into more than one pieces below. if (newFc != NULL) { if (replenish || CMSReplenishIntermediate) { // Replenish this list and return one block to caller. size_t i; FreeChunk *curFc, *nextFc; size_t num_blk = newFc->size() / size; assert(num_blk >= 1, "Smaller than requested?"); assert(newFc->size() % size == 0, "Should be integral multiple of request"); if (num_blk > 1) { // we are sure we will be splitting the block just obtained // into multiple pieces; record the split-death of the original splitDeath(replenish_size); } // carve up and link blocks 0, ..., num_blk - 2 // The last chunk is not added to the lists but is returned as the // free chunk. for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size), i = 0; i < (num_blk - 1); curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size), i++) { curFc->set_size(size); // Don't record this as a return in order to try and // determine the "returns" from a GC. _bt.verify_not_unallocated((HeapWord*) fc, size); _indexedFreeList[size].return_chunk_at_tail(curFc, false); _bt.mark_block((HeapWord*)curFc, size); split_birth(size); // Don't record the initial population of the indexed list // as a split birth. } // check that the arithmetic was OK above assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size, "inconsistency in carving newFc"); curFc->set_size(size); _bt.mark_block((HeapWord*)curFc, size); split_birth(size); fc = curFc; } else { // Return entire block to caller fc = newFc; } } } } else { // Get a free chunk from the free chunk dictionary to be returned to // replenish the indexed free list. fc = getChunkFromDictionaryExact(size); } // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk"); return fc; } FreeChunk* CompactibleFreeListSpace::getChunkFromDictionary(size_t size) { assert_locked(); FreeChunk* fc = _dictionary->get_chunk(size, FreeBlockDictionary<FreeChunk>::atLeast); if (fc == NULL) { return NULL; } _bt.allocated((HeapWord*)fc, fc->size()); if (fc->size() >= size + MinChunkSize) { fc = splitChunkAndReturnRemainder(fc, size); } assert(fc->size() >= size, "chunk too small"); assert(fc->size() < size + MinChunkSize, "chunk too big"); _bt.verify_single_block((HeapWord*)fc, fc->size()); return fc; } FreeChunk* CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) { assert_locked(); FreeChunk* fc = _dictionary->get_chunk(size, FreeBlockDictionary<FreeChunk>::atLeast); if (fc == NULL) { return fc; } _bt.allocated((HeapWord*)fc, fc->size()); if (fc->size() == size) { _bt.verify_single_block((HeapWord*)fc, size); return fc; } assert(fc->size() > size, "get_chunk() guarantee"); if (fc->size() < size + MinChunkSize) { // Return the chunk to the dictionary and go get a bigger one. returnChunkToDictionary(fc); fc = _dictionary->get_chunk(size + MinChunkSize, FreeBlockDictionary<FreeChunk>::atLeast); if (fc == NULL) { return NULL; } _bt.allocated((HeapWord*)fc, fc->size()); } assert(fc->size() >= size + MinChunkSize, "tautology"); fc = splitChunkAndReturnRemainder(fc, size); assert(fc->size() == size, "chunk is wrong size"); _bt.verify_single_block((HeapWord*)fc, size); return fc; } void CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) { assert_locked(); size_t size = chunk->size(); _bt.verify_single_block((HeapWord*)chunk, size); // adjust _unallocated_block downward, as necessary _bt.freed((HeapWord*)chunk, size); _dictionary->return_chunk(chunk); #ifndef PRODUCT if (CMSCollector::abstract_state() != CMSCollector::Sweeping) { TreeChunk<FreeChunk, AdaptiveFreeList>* tc = TreeChunk Other Java examples (source code examples)Here is a short list of links related to this Java compactibleFreeListSpace.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.