alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (asParNewGeneration.cpp)

This example Java source code file (asParNewGeneration.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

asparnew, collectedheap\:\:gencollectedheap, eden, gencollectedheap\:\:heap, heapword\*, max2, memregion, printadaptivesizepolicy, ptr_format, sanity, size_format, spacedecorator\:\:dontmangle, verbose

The asParNewGeneration.cpp Java example source code

/*
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/parNew/asParNewGeneration.hpp"
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/defNewGeneration.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "oops/markOop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"

ASParNewGeneration::ASParNewGeneration(ReservedSpace rs,
                                       size_t initial_byte_size,
                                       size_t min_byte_size,
                                       int level) :
  ParNewGeneration(rs, initial_byte_size, level),
  _min_gen_size(min_byte_size) {}

const char* ASParNewGeneration::name() const {
  return "adaptive size par new generation";
}

void ASParNewGeneration::adjust_desired_tenuring_threshold() {
  assert(UseAdaptiveSizePolicy,
    "Should only be used with UseAdaptiveSizePolicy");
}

void ASParNewGeneration::resize(size_t eden_size, size_t survivor_size) {
  // Resize the generation if needed. If the generation resize
  // reports false, do not attempt to resize the spaces.
  if (resize_generation(eden_size, survivor_size)) {
    // Then we lay out the spaces inside the generation
    resize_spaces(eden_size, survivor_size);

    space_invariants();

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("Young generation size: "
        "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
        " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
        " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
        eden_size, survivor_size, used(), capacity(),
        max_gen_size(), min_gen_size());
    }
  }
}

size_t ASParNewGeneration::available_to_min_gen() {
  assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
  return virtual_space()->committed_size() - min_gen_size();
}

// This method assumes that from-space has live data and that
// any shrinkage of the young gen is limited by location of
// from-space.
size_t ASParNewGeneration::available_to_live() const {
#undef SHRINKS_AT_END_OF_EDEN
#ifdef SHRINKS_AT_END_OF_EDEN
  size_t delta_in_survivor = 0;
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  const size_t space_alignment = heap->intra_heap_alignment();
  const size_t gen_alignment = heap->object_heap_alignment();

  MutableSpace* space_shrinking = NULL;
  if (from_space()->end() > to_space()->end()) {
    space_shrinking = from_space();
  } else {
    space_shrinking = to_space();
  }

  // Include any space that is committed but not included in
  // the survivor spaces.
  assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
    "Survivor space beyond high end");
  size_t unused_committed = pointer_delta(virtual_space()->high(),
    space_shrinking->end(), sizeof(char));

  if (space_shrinking->is_empty()) {
    // Don't let the space shrink to 0
    assert(space_shrinking->capacity_in_bytes() >= space_alignment,
      "Space is too small");
    delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
  } else {
    delta_in_survivor = pointer_delta(space_shrinking->end(),
                                      space_shrinking->top(),
                                      sizeof(char));
  }

  size_t delta_in_bytes = unused_committed + delta_in_survivor;
  delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
  return delta_in_bytes;
#else
  // The only space available for shrinking is in to-space if it
  // is above from-space.
  if (to()->bottom() > from()->bottom()) {
    const size_t alignment = os::vm_page_size();
    if (to()->capacity() < alignment) {
      return 0;
    } else {
      return to()->capacity() - alignment;
    }
  } else {
    return 0;
  }
#endif
}

// Return the number of bytes available for resizing down the young
// generation.  This is the minimum of
//      input "bytes"
//      bytes to the minimum young gen size
//      bytes to the size currently being used + some small extra
size_t ASParNewGeneration::limit_gen_shrink (size_t bytes) {
  // Allow shrinkage into the current eden but keep eden large enough
  // to maintain the minimum young gen size
  bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
  return align_size_down(bytes, os::vm_page_size());
}

// Note that the the alignment used is the OS page size as
// opposed to an alignment associated with the virtual space
// (as is done in the ASPSYoungGen/ASPSOldGen)
bool ASParNewGeneration::resize_generation(size_t eden_size,
                                           size_t survivor_size) {
  const size_t alignment = os::vm_page_size();
  size_t orig_size = virtual_space()->committed_size();
  bool size_changed = false;

  // There used to be this guarantee there.
  // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
  // Code below forces this requirement.  In addition the desired eden
  // size and disired survivor sizes are desired goals and may
  // exceed the total generation size.

  assert(min_gen_size() <= orig_size && orig_size <= max_gen_size(),
    "just checking");

  // Adjust new generation size
  const size_t eden_plus_survivors =
          align_size_up(eden_size + 2 * survivor_size, alignment);
  size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_gen_size()),
                             min_gen_size());
  assert(desired_size <= max_gen_size(), "just checking");

  if (desired_size > orig_size) {
    // Grow the generation
    size_t change = desired_size - orig_size;
    assert(change % alignment == 0, "just checking");
    if (expand(change)) {
      return false; // Error if we fail to resize!
    }
    size_changed = true;
  } else if (desired_size < orig_size) {
    size_t desired_change = orig_size - desired_size;
    assert(desired_change % alignment == 0, "just checking");

    desired_change = limit_gen_shrink(desired_change);

    if (desired_change > 0) {
      virtual_space()->shrink_by(desired_change);
      reset_survivors_after_shrink();

      size_changed = true;
    }
  } else {
    if (Verbose && PrintGC) {
      if (orig_size == max_gen_size()) {
        gclog_or_tty->print_cr("ASParNew generation size at maximum: "
          SIZE_FORMAT "K", orig_size/K);
      } else if (orig_size == min_gen_size()) {
        gclog_or_tty->print_cr("ASParNew generation size at minium: "
          SIZE_FORMAT "K", orig_size/K);
      }
    }
  }

  if (size_changed) {
    MemRegion cmr((HeapWord*)virtual_space()->low(),
                  (HeapWord*)virtual_space()->high());
    GenCollectedHeap::heap()->barrier_set()->resize_covered_region(cmr);

    if (Verbose && PrintGC) {
      size_t current_size  = virtual_space()->committed_size();
      gclog_or_tty->print_cr("ASParNew generation size changed: "
                             SIZE_FORMAT "K->" SIZE_FORMAT "K",
                             orig_size/K, current_size/K);
    }
  }

  guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
            virtual_space()->committed_size() == max_gen_size(), "Sanity");

  return true;
}

void ASParNewGeneration::reset_survivors_after_shrink() {

  GenCollectedHeap* gch = GenCollectedHeap::heap();
  HeapWord* new_end = (HeapWord*)virtual_space()->high();

  if (from()->end() > to()->end()) {
    assert(new_end >= from()->end(), "Shrinking past from-space");
  } else {
    assert(new_end >= to()->bottom(), "Shrink was too large");
    // Was there a shrink of the survivor space?
    if (new_end < to()->end()) {
      MemRegion mr(to()->bottom(), new_end);
      to()->initialize(mr,
                       SpaceDecorator::DontClear,
                       SpaceDecorator::DontMangle);
    }
  }
}
void ASParNewGeneration::resize_spaces(size_t requested_eden_size,
                                       size_t requested_survivor_size) {
  assert(UseAdaptiveSizePolicy, "sanity check");
  assert(requested_eden_size > 0  && requested_survivor_size > 0,
         "just checking");
  CollectedHeap* heap = Universe::heap();
  assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity");


  // We require eden and to space to be empty
  if ((!eden()->is_empty()) || (!to()->is_empty())) {
    return;
  }

  size_t cur_eden_size = eden()->capacity();

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: "
                  SIZE_FORMAT
                  ", requested_survivor_size: " SIZE_FORMAT ")",
                  requested_eden_size, requested_survivor_size);
    gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  eden()->bottom(),
                  eden()->end(),
                  pointer_delta(eden()->end(),
                                eden()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  from()->bottom(),
                  from()->end(),
                  pointer_delta(from()->end(),
                                from()->bottom(),
                                sizeof(char)));
    gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
                  SIZE_FORMAT,
                  to()->bottom(),
                  to()->end(),
                  pointer_delta(  to()->end(),
                                  to()->bottom(),
                                  sizeof(char)));
  }

  // There's nothing to do if the new sizes are the same as the current
  if (requested_survivor_size == to()->capacity() &&
      requested_survivor_size == from()->capacity() &&
      requested_eden_size == eden()->capacity()) {
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    capacities are the right sizes, returning");
    }
    return;
  }

  char* eden_start = (char*)eden()->bottom();
  char* eden_end   = (char*)eden()->end();
  char* from_start = (char*)from()->bottom();
  char* from_end   = (char*)from()->end();
  char* to_start   = (char*)to()->bottom();
  char* to_end     = (char*)to()->end();

  const size_t alignment = os::vm_page_size();
  const bool maintain_minimum =
    (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();

  // Check whether from space is below to space
  if (from_start < to_start) {
    // Eden, from, to
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, from, to:");
    }

    // Set eden
    // "requested_eden_size" is a goal for the size of eden
    // and may not be attainable.  "eden_size" below is
    // calculated based on the location of from-space and
    // the goal for the size of eden.  from-space is
    // fixed in place because it contains live data.
    // The calculation is done this way to avoid 32bit
    // overflow (i.e., eden_start + requested_eden_size
    // may too large for representation in 32bits).
    size_t eden_size;
    if (maintain_minimum) {
      // Only make eden larger than the requested size if
      // the minimum size of the generation has to be maintained.
      // This could be done in general but policy at a higher
      // level is determining a requested size for eden and that
      // should be honored unless there is a fundamental reason.
      eden_size = pointer_delta(from_start,
                                eden_start,
                                sizeof(char));
    } else {
      eden_size = MIN2(requested_eden_size,
                       pointer_delta(from_start, eden_start, sizeof(char)));
    }

    eden_size = align_size_down(eden_size, alignment);
    eden_end = eden_start + eden_size;
    assert(eden_end >= eden_start, "addition overflowed");

    // To may resize into from space as long as it is clear of live data.
    // From space must remain page aligned, though, so we need to do some
    // extra calculations.

    // First calculate an optimal to-space
    to_end   = (char*)virtual_space()->high();
    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
                                    sizeof(char));

    // Does the optimal to-space overlap from-space?
    if (to_start < (char*)from()->end()) {
      // Calculate the minimum offset possible for from_end
      size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char));

      // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
      if (from_size == 0) {
        from_size = alignment;
      } else {
        from_size = align_size_up(from_size, alignment);
      }

      from_end = from_start + from_size;
      assert(from_end > from_start, "addition overflow or from_size problem");

      guarantee(from_end <= (char*)from()->end(), "from_end moved to the right");

      // Now update to_start with the new from_end
      to_start = MAX2(from_end, to_start);
    } else {
      // If shrinking, move to-space down to abut the end of from-space
      // so that shrinking will move to-space down.  If not shrinking
      // to-space is moving up to allow for growth on the next expansion.
      if (requested_eden_size <= cur_eden_size) {
        to_start = from_end;
        if (to_start + requested_survivor_size > to_start) {
          to_end = to_start + requested_survivor_size;
        }
      }
      // else leave to_end pointing to the high end of the virtual space.
    }

    guarantee(to_start != to_end, "to space is zero sized");

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
    }
  } else {
    // Eden, to, from
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("  Eden, to, from:");
    }

    // Calculate the to-space boundaries based on
    // the start of from-space.
    to_end = from_start;
    to_start = (char*)pointer_delta(from_start,
                                    (char*)requested_survivor_size,
                                    sizeof(char));
    // Calculate the ideal eden boundaries.
    // eden_end is already at the bottom of the generation
    assert(eden_start == virtual_space()->low(),
      "Eden is not starting at the low end of the virtual space");
    if (eden_start + requested_eden_size >= eden_start) {
      eden_end = eden_start + requested_eden_size;
    } else {
      eden_end = to_start;
    }

    // Does eden intrude into to-space?  to-space
    // gets priority but eden is not allowed to shrink
    // to 0.
    if (eden_end > to_start) {
      eden_end = to_start;
    }

    // Don't let eden shrink down to 0 or less.
    eden_end = MAX2(eden_end, eden_start + alignment);
    assert(eden_start + alignment >= eden_start, "Overflow");

    size_t eden_size;
    if (maintain_minimum) {
      // Use all the space available.
      eden_end = MAX2(eden_end, to_start);
      eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
      eden_size = MIN2(eden_size, cur_eden_size);
    } else {
      eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
    }
    eden_size = align_size_down(eden_size, alignment);
    assert(maintain_minimum || eden_size <= requested_eden_size,
      "Eden size is too large");
    assert(eden_size >= alignment, "Eden size is too small");
    eden_end = eden_start + eden_size;

    // Move to-space down to eden.
    if (requested_eden_size < cur_eden_size) {
      to_start = eden_end;
      if (to_start + requested_survivor_size > to_start) {
        to_end = MIN2(from_start, to_start + requested_survivor_size);
      } else {
        to_end = from_start;
      }
    }

    // eden_end may have moved so again make sure
    // the to-space and eden don't overlap.
    to_start = MAX2(eden_end, to_start);

    // from-space
    size_t from_used = from()->used();
    if (requested_survivor_size > from_used) {
      if (from_start + requested_survivor_size >= from_start) {
        from_end = from_start + requested_survivor_size;
      }
      if (from_end > virtual_space()->high()) {
        from_end = virtual_space()->high();
      }
    }

    assert(to_start >= eden_end, "to-space should be above eden");
    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print_cr("    [eden_start .. eden_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    eden_start,
                    eden_end,
                    pointer_delta(eden_end, eden_start, sizeof(char)));
      gclog_or_tty->print_cr("    [  to_start ..   to_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    to_start,
                    to_end,
                    pointer_delta(  to_end,   to_start, sizeof(char)));
      gclog_or_tty->print_cr("    [from_start .. from_end): "
                    "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
                    from_start,
                    from_end,
                    pointer_delta(from_end, from_start, sizeof(char)));
    }
  }


  guarantee((HeapWord*)from_start <= from()->bottom(),
            "from start moved to the right");
  guarantee((HeapWord*)from_end >= from()->top(),
            "from end moved into live data");
  assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
  assert(is_object_aligned((intptr_t)from_start), "checking alignment");
  assert(is_object_aligned((intptr_t)to_start), "checking alignment");

  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
  MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);

  // Let's make sure the call to initialize doesn't reset "top"!
  HeapWord* old_from_top = from()->top();

  // For PrintAdaptiveSizePolicy block  below
  size_t old_from = from()->capacity();
  size_t old_to   = to()->capacity();

  // If not clearing the spaces, do some checking to verify that
  // the spaces are already mangled.

  // Must check mangling before the spaces are reshaped.  Otherwise,
  // the bottom or end of one space may have moved into another
  // a failure of the check may not correctly indicate which space
  // is not properly mangled.
  if (ZapUnusedHeapArea) {
    HeapWord* limit = (HeapWord*) virtual_space()->high();
    eden()->check_mangled_unused_area(limit);
    from()->check_mangled_unused_area(limit);
      to()->check_mangled_unused_area(limit);
  }

  // The call to initialize NULL's the next compaction space
  eden()->initialize(edenMR,
                     SpaceDecorator::Clear,
                     SpaceDecorator::DontMangle);
  eden()->set_next_compaction_space(from());
    to()->initialize(toMR  ,
                     SpaceDecorator::Clear,
                     SpaceDecorator::DontMangle);
  from()->initialize(fromMR,
                     SpaceDecorator::DontClear,
                     SpaceDecorator::DontMangle);

  assert(from()->top() == old_from_top, "from top changed!");

  if (PrintAdaptiveSizePolicy) {
    GenCollectedHeap* gch = GenCollectedHeap::heap();
    assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity");

    gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
                  "collection: %d "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
                  "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
                  gch->total_collections(),
                  old_from, old_to,
                  from()->capacity(),
                  to()->capacity());
    gclog_or_tty->cr();
  }
}

void ASParNewGeneration::compute_new_size() {
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
    "not a CMS generational heap");


  CMSAdaptiveSizePolicy* size_policy =
    (CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy();
  assert(size_policy->is_gc_cms_adaptive_size_policy(),
    "Wrong type of size policy");

  size_t survived = from()->used();
  if (!survivor_overflow()) {
    // Keep running averages on how much survived
    size_policy->avg_survived()->sample(survived);
  } else {
    size_t promoted =
      (size_t) next_gen()->gc_stats()->avg_promoted()->last_sample();
    assert(promoted < gch->capacity(), "Conversion problem?");
    size_t survived_guess = survived + promoted;
    size_policy->avg_survived()->sample(survived_guess);
  }

  size_t survivor_limit = max_survivor_size();
  _tenuring_threshold =
    size_policy->compute_survivor_space_size_and_threshold(
                                                     _survivor_overflow,
                                                     _tenuring_threshold,
                                                     survivor_limit);
  size_policy->avg_young_live()->sample(used());
  size_policy->avg_eden_live()->sample(eden()->used());

  size_policy->compute_eden_space_size(eden()->capacity(), max_gen_size());

  resize(size_policy->calculated_eden_size_in_bytes(),
         size_policy->calculated_survivor_size_in_bytes());

  if (UsePerfData) {
    CMSGCAdaptivePolicyCounters* counters =
      (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
    assert(counters->kind() ==
           GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
      "Wrong kind of counters");
    counters->update_tenuring_threshold(_tenuring_threshold);
    counters->update_survivor_overflowed(_survivor_overflow);
    counters->update_young_capacity(capacity());
  }
}


#ifndef PRODUCT
// Changes from PSYoungGen version
//      value of "alignment"
void ASParNewGeneration::space_invariants() {
  const size_t alignment = os::vm_page_size();

  // Currently, our eden size cannot shrink to zero
  guarantee(eden()->capacity() >= alignment, "eden too small");
  guarantee(from()->capacity() >= alignment, "from too small");
  guarantee(to()->capacity() >= alignment, "to too small");

  // Relationship of spaces to each other
  char* eden_start = (char*)eden()->bottom();
  char* eden_end   = (char*)eden()->end();
  char* from_start = (char*)from()->bottom();
  char* from_end   = (char*)from()->end();
  char* to_start   = (char*)to()->bottom();
  char* to_end     = (char*)to()->end();

  guarantee(eden_start >= virtual_space()->low(), "eden bottom");
  guarantee(eden_start < eden_end, "eden space consistency");
  guarantee(from_start < from_end, "from space consistency");
  guarantee(to_start < to_end, "to space consistency");

  // Check whether from space is below to space
  if (from_start < to_start) {
    // Eden, from, to
    guarantee(eden_end <= from_start, "eden/from boundary");
    guarantee(from_end <= to_start,   "from/to boundary");
    guarantee(to_end <= virtual_space()->high(), "to end");
  } else {
    // Eden, to, from
    guarantee(eden_end <= to_start, "eden/to boundary");
    guarantee(to_end <= from_start, "to/from boundary");
    guarantee(from_end <= virtual_space()->high(), "from end");
  }

  // More checks that the virtual space is consistent with the spaces
  assert(virtual_space()->committed_size() >=
    (eden()->capacity() +
     to()->capacity() +
     from()->capacity()), "Committed size is inconsistent");
  assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
    "Space invariant");
  char* eden_top = (char*)eden()->top();
  char* from_top = (char*)from()->top();
  char* to_top = (char*)to()->top();
  assert(eden_top <= virtual_space()->high(), "eden top");
  assert(from_top <= virtual_space()->high(), "from top");
  assert(to_top <= virtual_space()->high(), "to top");
}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java asParNewGeneration.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.