alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (psOldGen.cpp)

This example Java source code file (psOldGen.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

gcexpandtoallocatedelaymillis, heapword, heapword\*, memregion, null, objectstartarray, parallelscavengeheap\*, sanity, size_format, space, verbose, verifyobjectstartarrayclosure

The psOldGen.cpp Java example source code

/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/gcLocker.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"

inline const char* PSOldGen::select_name() {
  return UseParallelOldGC ? "ParOldGen" : "PSOldGen";
}

PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment,
                   size_t initial_size, size_t min_size, size_t max_size,
                   const char* perf_data_name, int level):
  _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  _max_gen_size(max_size)
{
  initialize(rs, alignment, perf_data_name, level);
}

PSOldGen::PSOldGen(size_t initial_size,
                   size_t min_size, size_t max_size,
                   const char* perf_data_name, int level):
  _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  _max_gen_size(max_size)
{}

void PSOldGen::initialize(ReservedSpace rs, size_t alignment,
                          const char* perf_data_name, int level) {
  initialize_virtual_space(rs, alignment);
  initialize_work(perf_data_name, level);

  // The old gen can grow to gen_size_limit().  _reserve reflects only
  // the current maximum that can be committed.
  assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check");

  initialize_performance_counters(perf_data_name, level);
}

void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {

  _virtual_space = new PSVirtualSpace(rs, alignment);
  if (!_virtual_space->expand_by(_init_gen_size)) {
    vm_exit_during_initialization("Could not reserve enough space for "
                                  "object heap");
  }
}

void PSOldGen::initialize_work(const char* perf_data_name, int level) {
  //
  // Basic memory initialization
  //

  MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(),
    heap_word_size(_max_gen_size));
  assert(limit_reserved.byte_size() == _max_gen_size,
    "word vs bytes confusion");
  //
  // Object start stuff
  //

  start_array()->initialize(limit_reserved);

  _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
                        (HeapWord*)virtual_space()->high_boundary());

  //
  // Card table stuff
  //

  MemRegion cmr((HeapWord*)virtual_space()->low(),
                (HeapWord*)virtual_space()->high());
  if (ZapUnusedHeapArea) {
    // Mangle newly committed space immediately rather than
    // waiting for the initialization of the space even though
    // mangling is related to spaces.  Doing it here eliminates
    // the need to carry along information that a complete mangling
    // (bottom to end) needs to be done.
    SpaceMangler::mangle_region(cmr);
  }

  Universe::heap()->barrier_set()->resize_covered_region(cmr);

  CardTableModRefBS* _ct = (CardTableModRefBS*)Universe::heap()->barrier_set();
  assert (_ct->kind() == BarrierSet::CardTableModRef, "Sanity");

  // Verify that the start and end of this generation is the start of a card.
  // If this wasn't true, a single card could span more than one generation,
  // which would cause problems when we commit/uncommit memory, and when we
  // clear and dirty cards.
  guarantee(_ct->is_card_aligned(_reserved.start()), "generation must be card aligned");
  if (_reserved.end() != Universe::heap()->reserved_region().end()) {
    // Don't check at the very end of the heap as we'll assert that we're probing off
    // the end if we try.
    guarantee(_ct->is_card_aligned(_reserved.end()), "generation must be card aligned");
  }

  //
  // ObjectSpace stuff
  //

  _object_space = new MutableSpace(virtual_space()->alignment());

  if (_object_space == NULL)
    vm_exit_during_initialization("Could not allocate an old gen space");

  object_space()->initialize(cmr,
                             SpaceDecorator::Clear,
                             SpaceDecorator::Mangle);

  _object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio);

  if (_object_mark_sweep == NULL)
    vm_exit_during_initialization("Could not complete allocation of old generation");

  // Update the start_array
  start_array()->set_covered_region(cmr);
}

void PSOldGen::initialize_performance_counters(const char* perf_data_name, int level) {
  // Generation Counters, generation 'level', 1 subspace
  _gen_counters = new PSGenerationCounters(perf_data_name, level, 1,
                                           virtual_space());
  _space_counters = new SpaceCounters(perf_data_name, 0,
                                      virtual_space()->reserved_size(),
                                      _object_space, _gen_counters);
}

// Assume that the generation has been allocated if its
// reserved size is not 0.
bool  PSOldGen::is_allocated() {
  return virtual_space()->reserved_size() != 0;
}

void PSOldGen::precompact() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Reset start array first.
  start_array()->reset();

  object_mark_sweep()->precompact();

  // Now compact the young gen
  heap->young_gen()->precompact();
}

void PSOldGen::adjust_pointers() {
  object_mark_sweep()->adjust_pointers();
}

void PSOldGen::compact() {
  object_mark_sweep()->compact(ZapUnusedHeapArea);
}

size_t PSOldGen::contiguous_available() const {
  return object_space()->free_in_bytes() + virtual_space()->uncommitted_size();
}

// Allocation. We report all successful allocations to the size policy
// Note that the perm gen does not use this method, and should not!
HeapWord* PSOldGen::allocate(size_t word_size) {
  assert_locked_or_safepoint(Heap_lock);
  HeapWord* res = allocate_noexpand(word_size);

  if (res == NULL) {
    res = expand_and_allocate(word_size);
  }

  // Allocations in the old generation need to be reported
  if (res != NULL) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    heap->size_policy()->tenured_allocation(word_size);
  }

  return res;
}

HeapWord* PSOldGen::expand_and_allocate(size_t word_size) {
  expand(word_size*HeapWordSize);
  if (GCExpandToAllocateDelayMillis > 0) {
    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  }
  return allocate_noexpand(word_size);
}

HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) {
  expand(word_size*HeapWordSize);
  if (GCExpandToAllocateDelayMillis > 0) {
    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  }
  return cas_allocate_noexpand(word_size);
}

void PSOldGen::expand(size_t bytes) {
  if (bytes == 0) {
    return;
  }
  MutexLocker x(ExpandHeap_lock);
  const size_t alignment = virtual_space()->alignment();
  size_t aligned_bytes  = align_size_up(bytes, alignment);
  size_t aligned_expand_bytes = align_size_up(MinHeapDeltaBytes, alignment);

  if (UseNUMA) {
    // With NUMA we use round-robin page allocation for the old gen. Expand by at least
    // providing a page per lgroup. Alignment is larger or equal to the page size.
    aligned_expand_bytes = MAX2(aligned_expand_bytes, alignment * os::numa_get_groups_num());
  }
  if (aligned_bytes == 0){
    // The alignment caused the number of bytes to wrap.  An expand_by(0) will
    // return true with the implication that and expansion was done when it
    // was not.  A call to expand implies a best effort to expand by "bytes"
    // but not a guarantee.  Align down to give a best effort.  This is likely
    // the most that the generation can expand since it has some capacity to
    // start with.
    aligned_bytes = align_size_down(bytes, alignment);
  }

  bool success = false;
  if (aligned_expand_bytes > aligned_bytes) {
    success = expand_by(aligned_expand_bytes);
  }
  if (!success) {
    success = expand_by(aligned_bytes);
  }
  if (!success) {
    success = expand_to_reserved();
  }

  if (PrintGC && Verbose) {
    if (success && GC_locker::is_active_and_needs_gc()) {
      gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
    }
  }
}

bool PSOldGen::expand_by(size_t bytes) {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);
  if (bytes == 0) {
    return true;  // That's what virtual_space()->expand_by(0) would return
  }
  bool result = virtual_space()->expand_by(bytes);
  if (result) {
    if (ZapUnusedHeapArea) {
      // We need to mangle the newly expanded area. The memregion spans
      // end -> new_end, we assume that top -> end is already mangled.
      // Do the mangling before post_resize() is called because
      // the space is available for allocation after post_resize();
      HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
      assert(object_space()->end() < virtual_space_high,
        "Should be true before post_resize()");
      MemRegion mangle_region(object_space()->end(), virtual_space_high);
      // Note that the object space has not yet been updated to
      // coincede with the new underlying virtual space.
      SpaceMangler::mangle_region(mangle_region);
    }
    post_resize();
    if (UsePerfData) {
      _space_counters->update_capacity();
      _gen_counters->update_all();
    }
  }

  if (result && Verbose && PrintGC) {
    size_t new_mem_size = virtual_space()->committed_size();
    size_t old_mem_size = new_mem_size - bytes;
    gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
                                       SIZE_FORMAT "K to "
                                       SIZE_FORMAT "K",
                    name(), old_mem_size/K, bytes/K, new_mem_size/K);
  }

  return result;
}

bool PSOldGen::expand_to_reserved() {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);

  bool result = true;
  const size_t remaining_bytes = virtual_space()->uncommitted_size();
  if (remaining_bytes > 0) {
    result = expand_by(remaining_bytes);
    DEBUG_ONLY(if (!result) warning("grow to reserve failed"));
  }
  return result;
}

void PSOldGen::shrink(size_t bytes) {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);

  size_t size = align_size_down(bytes, virtual_space()->alignment());
  if (size > 0) {
    assert_lock_strong(ExpandHeap_lock);
    virtual_space()->shrink_by(bytes);
    post_resize();

    if (Verbose && PrintGC) {
      size_t new_mem_size = virtual_space()->committed_size();
      size_t old_mem_size = new_mem_size + bytes;
      gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by "
                                         SIZE_FORMAT "K to "
                                         SIZE_FORMAT "K",
                      name(), old_mem_size/K, bytes/K, new_mem_size/K);
    }
  }
}

void PSOldGen::resize(size_t desired_free_space) {
  const size_t alignment = virtual_space()->alignment();
  const size_t size_before = virtual_space()->committed_size();
  size_t new_size = used_in_bytes() + desired_free_space;
  if (new_size < used_in_bytes()) {
    // Overflowed the addition.
    new_size = gen_size_limit();
  }
  // Adjust according to our min and max
  new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size());

  assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?");
  new_size = align_size_up(new_size, alignment);

  const size_t current_size = capacity_in_bytes();

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
      "desired free: " SIZE_FORMAT " used: " SIZE_FORMAT
      " new size: " SIZE_FORMAT " current size " SIZE_FORMAT
      " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
      desired_free_space, used_in_bytes(), new_size, current_size,
      gen_size_limit(), min_gen_size());
  }

  if (new_size == current_size) {
    // No change requested
    return;
  }
  if (new_size > current_size) {
    size_t change_bytes = new_size - current_size;
    expand(change_bytes);
  } else {
    size_t change_bytes = current_size - new_size;
    // shrink doesn't grab this lock, expand does. Is that right?
    MutexLocker x(ExpandHeap_lock);
    shrink(change_bytes);
  }

  if (PrintAdaptiveSizePolicy) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
                  "collection: %d "
                  "(" SIZE_FORMAT ") -> (" SIZE_FORMAT ") ",
                  heap->total_collections(),
                  size_before, virtual_space()->committed_size());
  }
}

// NOTE! We need to be careful about resizing. During a GC, multiple
// allocators may be active during heap expansion. If we allow the
// heap resizing to become visible before we have correctly resized
// all heap related data structures, we may cause program failures.
void PSOldGen::post_resize() {
  // First construct a memregion representing the new size
  MemRegion new_memregion((HeapWord*)virtual_space()->low(),
    (HeapWord*)virtual_space()->high());
  size_t new_word_size = new_memregion.word_size();

  start_array()->set_covered_region(new_memregion);
  Universe::heap()->barrier_set()->resize_covered_region(new_memregion);

  // ALWAYS do this last!!
  object_space()->initialize(new_memregion,
                             SpaceDecorator::DontClear,
                             SpaceDecorator::DontMangle);

  assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
    "Sanity");
}

size_t PSOldGen::gen_size_limit() {
  return _max_gen_size;
}

void PSOldGen::reset_after_change() {
  ShouldNotReachHere();
  return;
}

size_t PSOldGen::available_for_expansion() {
  ShouldNotReachHere();
  return 0;
}

size_t PSOldGen::available_for_contraction() {
  ShouldNotReachHere();
  return 0;
}

void PSOldGen::print() const { print_on(tty);}
void PSOldGen::print_on(outputStream* st) const {
  st->print(" %-15s", name());
  if (PrintGCDetails && Verbose) {
    st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
                capacity_in_bytes(), used_in_bytes());
  } else {
    st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
                capacity_in_bytes()/K, used_in_bytes()/K);
  }
  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                virtual_space()->low_boundary(),
                virtual_space()->high(),
                virtual_space()->high_boundary());

  st->print("  object"); object_space()->print_on(st);
}

void PSOldGen::print_used_change(size_t prev_used) const {
  gclog_or_tty->print(" [%s:", name());
  gclog_or_tty->print(" "  SIZE_FORMAT "K"
                      "->" SIZE_FORMAT "K"
                      "("  SIZE_FORMAT "K)",
                      prev_used / K, used_in_bytes() / K,
                      capacity_in_bytes() / K);
  gclog_or_tty->print("]");
}

void PSOldGen::update_counters() {
  if (UsePerfData) {
    _space_counters->update_all();
    _gen_counters->update_all();
  }
}

#ifndef PRODUCT

void PSOldGen::space_invariants() {
  assert(object_space()->end() == (HeapWord*) virtual_space()->high(),
    "Space invariant");
  assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(),
    "Space invariant");
  assert(virtual_space()->low_boundary() <= virtual_space()->low(),
    "Space invariant");
  assert(virtual_space()->high_boundary() >= virtual_space()->high(),
    "Space invariant");
  assert(virtual_space()->low_boundary() == (char*) _reserved.start(),
    "Space invariant");
  assert(virtual_space()->high_boundary() == (char*) _reserved.end(),
    "Space invariant");
  assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
    "Space invariant");
}
#endif

void PSOldGen::verify() {
  object_space()->verify();
}
class VerifyObjectStartArrayClosure : public ObjectClosure {
  PSOldGen* _gen;
  ObjectStartArray* _start_array;

 public:
  VerifyObjectStartArrayClosure(PSOldGen* gen, ObjectStartArray* start_array) :
    _gen(gen), _start_array(start_array) { }

  virtual void do_object(oop obj) {
    HeapWord* test_addr = (HeapWord*)obj + 1;
    guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object");
    guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation");
  }
};

void PSOldGen::verify_object_start_array() {
  VerifyObjectStartArrayClosure check( this, &_start_array );
  object_iterate(&check);
}

#ifndef PRODUCT
void PSOldGen::record_spaces_top() {
  assert(ZapUnusedHeapArea, "Not mangling unused space");
  object_space()->set_top_for_allocations();
}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java psOldGen.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.