alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (psParallelCompact.hpp)

This example Java source code file (psParallelCompact.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assert, blockdata, debug_only, heapword, iterationstatus, null, objectstartarray, oopclosure, parallelcompactdata, parcompactionmanager, parmarkbitmapclosure, regiondata, spaceid

The psParallelCompact.hpp Java example source code

/*
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

#include "gc_implementation/parallelScavenge/objectStartArray.hpp"
#include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
#include "gc_implementation/shared/collectorCounters.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
#include "memory/sharedHeap.hpp"
#include "oops/oop.hpp"

class ParallelScavengeHeap;
class PSAdaptiveSizePolicy;
class PSYoungGen;
class PSOldGen;
class ParCompactionManager;
class ParallelTaskTerminator;
class PSParallelCompact;
class GCTaskManager;
class GCTaskQueue;
class PreGCValues;
class MoveAndUpdateClosure;
class RefProcTaskExecutor;
class ParallelOldTracer;
class STWGCTimer;

// The SplitInfo class holds the information needed to 'split' a source region
// so that the live data can be copied to two destination *spaces*.  Normally,
// all the live data in a region is copied to a single destination space (e.g.,
// everything live in a region in eden is copied entirely into the old gen).
// However, when the heap is nearly full, all the live data in eden may not fit
// into the old gen.  Copying only some of the regions from eden to old gen
// requires finding a region that does not contain a partial object (i.e., no
// live object crosses the region boundary) somewhere near the last object that
// does fit into the old gen.  Since it's not always possible to find such a
// region, splitting is necessary for predictable behavior.
//
// A region is always split at the end of the partial object.  This avoids
// additional tests when calculating the new location of a pointer, which is a
// very hot code path.  The partial object and everything to its left will be
// copied to another space (call it dest_space_1).  The live data to the right
// of the partial object will be copied either within the space itself, or to a
// different destination space (distinct from dest_space_1).
//
// Split points are identified during the summary phase, when region
// destinations are computed:  data about the split, including the
// partial_object_size, is recorded in a SplitInfo record and the
// partial_object_size field in the summary data is set to zero.  The zeroing is
// possible (and necessary) since the partial object will move to a different
// destination space than anything to its right, thus the partial object should
// not affect the locations of any objects to its right.
//
// The recorded data is used during the compaction phase, but only rarely:  when
// the partial object on the split region will be copied across a destination
// region boundary.  This test is made once each time a region is filled, and is
// a simple address comparison, so the overhead is negligible (see
// PSParallelCompact::first_src_addr()).
//
// Notes:
//
// Only regions with partial objects are split; a region without a partial
// object does not need any extra bookkeeping.
//
// At most one region is split per space, so the amount of data required is
// constant.
//
// A region is split only when the destination space would overflow.  Once that
// happens, the destination space is abandoned and no other data (even from
// other source spaces) is targeted to that destination space.  Abandoning the
// destination space may leave a somewhat large unused area at the end, if a
// large object caused the overflow.
//
// Future work:
//
// More bookkeeping would be required to continue to use the destination space.
// The most general solution would allow data from regions in two different
// source spaces to be "joined" in a single destination region.  At the very
// least, additional code would be required in next_src_region() to detect the
// join and skip to an out-of-order source region.  If the join region was also
// the last destination region to which a split region was copied (the most
// likely case), then additional work would be needed to get fill_region() to
// stop iteration and switch to a new source region at the right point.  Basic
// idea would be to use a fake value for the top of the source space.  It is
// doable, if a bit tricky.
//
// A simpler (but less general) solution would fill the remainder of the
// destination region with a dummy object and continue filling the next
// destination region.

class SplitInfo
{
public:
  // Return true if this split info is valid (i.e., if a split has been
  // recorded).  The very first region cannot have a partial object and thus is
  // never split, so 0 is the 'invalid' value.
  bool is_valid() const { return _src_region_idx > 0; }

  // Return true if this split holds data for the specified source region.
  inline bool is_split(size_t source_region) const;

  // The index of the split region, the size of the partial object on that
  // region and the destination of the partial object.
  size_t    src_region_idx() const   { return _src_region_idx; }
  size_t    partial_obj_size() const { return _partial_obj_size; }
  HeapWord* destination() const      { return _destination; }

  // The destination count of the partial object referenced by this split
  // (either 1 or 2).  This must be added to the destination count of the
  // remainder of the source region.
  unsigned int destination_count() const { return _destination_count; }

  // If a word within the partial object will be written to the first word of a
  // destination region, this is the address of the destination region;
  // otherwise this is NULL.
  HeapWord* dest_region_addr() const     { return _dest_region_addr; }

  // If a word within the partial object will be written to the first word of a
  // destination region, this is the address of that word within the partial
  // object; otherwise this is NULL.
  HeapWord* first_src_addr() const       { return _first_src_addr; }

  // Record the data necessary to split the region src_region_idx.
  void record(size_t src_region_idx, size_t partial_obj_size,
              HeapWord* destination);

  void clear();

  DEBUG_ONLY(void verify_clear();)

private:
  size_t       _src_region_idx;
  size_t       _partial_obj_size;
  HeapWord*    _destination;
  unsigned int _destination_count;
  HeapWord*    _dest_region_addr;
  HeapWord*    _first_src_addr;
};

inline bool SplitInfo::is_split(size_t region_idx) const
{
  return _src_region_idx == region_idx && is_valid();
}

class SpaceInfo
{
 public:
  MutableSpace* space() const { return _space; }

  // Where the free space will start after the collection.  Valid only after the
  // summary phase completes.
  HeapWord* new_top() const { return _new_top; }

  // Allows new_top to be set.
  HeapWord** new_top_addr() { return &_new_top; }

  // Where the smallest allowable dense prefix ends (used only for perm gen).
  HeapWord* min_dense_prefix() const { return _min_dense_prefix; }

  // Where the dense prefix ends, or the compacted region begins.
  HeapWord* dense_prefix() const { return _dense_prefix; }

  // The start array for the (generation containing the) space, or NULL if there
  // is no start array.
  ObjectStartArray* start_array() const { return _start_array; }

  SplitInfo& split_info() { return _split_info; }

  void set_space(MutableSpace* s)           { _space = s; }
  void set_new_top(HeapWord* addr)          { _new_top = addr; }
  void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
  void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
  void set_start_array(ObjectStartArray* s) { _start_array = s; }

  void publish_new_top() const              { _space->set_top(_new_top); }

 private:
  MutableSpace*     _space;
  HeapWord*         _new_top;
  HeapWord*         _min_dense_prefix;
  HeapWord*         _dense_prefix;
  ObjectStartArray* _start_array;
  SplitInfo         _split_info;
};

class ParallelCompactData
{
public:
  // Sizes are in HeapWords, unless indicated otherwise.
  static const size_t Log2RegionSize;
  static const size_t RegionSize;
  static const size_t RegionSizeBytes;

  // Mask for the bits in a size_t to get an offset within a region.
  static const size_t RegionSizeOffsetMask;
  // Mask for the bits in a pointer to get an offset within a region.
  static const size_t RegionAddrOffsetMask;
  // Mask for the bits in a pointer to get the address of the start of a region.
  static const size_t RegionAddrMask;

  static const size_t Log2BlockSize;
  static const size_t BlockSize;
  static const size_t BlockSizeBytes;

  static const size_t BlockSizeOffsetMask;
  static const size_t BlockAddrOffsetMask;
  static const size_t BlockAddrMask;

  static const size_t BlocksPerRegion;
  static const size_t Log2BlocksPerRegion;

  class RegionData
  {
  public:
    // Destination address of the region.
    HeapWord* destination() const { return _destination; }

    // The first region containing data destined for this region.
    size_t source_region() const { return _source_region; }

    // The object (if any) starting in this region and ending in a different
    // region that could not be updated during the main (parallel) compaction
    // phase.  This is different from _partial_obj_addr, which is an object that
    // extends onto a source region.  However, the two uses do not overlap in
    // time, so the same field is used to save space.
    HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }

    // The starting address of the partial object extending onto the region.
    HeapWord* partial_obj_addr() const { return _partial_obj_addr; }

    // Size of the partial object extending onto the region (words).
    size_t partial_obj_size() const { return _partial_obj_size; }

    // Size of live data that lies within this region due to objects that start
    // in this region (words).  This does not include the partial object
    // extending onto the region (if any), or the part of an object that extends
    // onto the next region (if any).
    size_t live_obj_size() const { return _dc_and_los & los_mask; }

    // Total live data that lies within the region (words).
    size_t data_size() const { return partial_obj_size() + live_obj_size(); }

    // The destination_count is the number of other regions to which data from
    // this region will be copied.  At the end of the summary phase, the valid
    // values of destination_count are
    //
    // 0 - data from the region will be compacted completely into itself, or the
    //     region is empty.  The region can be claimed and then filled.
    // 1 - data from the region will be compacted into 1 other region; some
    //     data from the region may also be compacted into the region itself.
    // 2 - data from the region will be copied to 2 other regions.
    //
    // During compaction as regions are emptied, the destination_count is
    // decremented (atomically) and when it reaches 0, it can be claimed and
    // then filled.
    //
    // A region is claimed for processing by atomically changing the
    // destination_count to the claimed value (dc_claimed).  After a region has
    // been filled, the destination_count should be set to the completed value
    // (dc_completed).
    inline uint destination_count() const;
    inline uint destination_count_raw() const;

    // Whether the block table for this region has been filled.
    inline bool blocks_filled() const;

    // Number of times the block table was filled.
    DEBUG_ONLY(inline size_t blocks_filled_count() const;)

    // The location of the java heap data that corresponds to this region.
    inline HeapWord* data_location() const;

    // The highest address referenced by objects in this region.
    inline HeapWord* highest_ref() const;

    // Whether this region is available to be claimed, has been claimed, or has
    // been completed.
    //
    // Minor subtlety:  claimed() returns true if the region is marked
    // completed(), which is desirable since a region must be claimed before it
    // can be completed.
    bool available() const { return _dc_and_los < dc_one; }
    bool claimed() const   { return _dc_and_los >= dc_claimed; }
    bool completed() const { return _dc_and_los >= dc_completed; }

    // These are not atomic.
    void set_destination(HeapWord* addr)       { _destination = addr; }
    void set_source_region(size_t region)      { _source_region = region; }
    void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
    void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
    void set_partial_obj_size(size_t words)    {
      _partial_obj_size = (region_sz_t) words;
    }
    inline void set_blocks_filled();

    inline void set_destination_count(uint count);
    inline void set_live_obj_size(size_t words);
    inline void set_data_location(HeapWord* addr);
    inline void set_completed();
    inline bool claim_unsafe();

    // These are atomic.
    inline void add_live_obj(size_t words);
    inline void set_highest_ref(HeapWord* addr);
    inline void decrement_destination_count();
    inline bool claim();

  private:
    // The type used to represent object sizes within a region.
    typedef uint region_sz_t;

    // Constants for manipulating the _dc_and_los field, which holds both the
    // destination count and live obj size.  The live obj size lives at the
    // least significant end so no masking is necessary when adding.
    static const region_sz_t dc_shift;           // Shift amount.
    static const region_sz_t dc_mask;            // Mask for destination count.
    static const region_sz_t dc_one;             // 1, shifted appropriately.
    static const region_sz_t dc_claimed;         // Region has been claimed.
    static const region_sz_t dc_completed;       // Region has been completed.
    static const region_sz_t los_mask;           // Mask for live obj size.

    HeapWord*            _destination;
    size_t               _source_region;
    HeapWord*            _partial_obj_addr;
    region_sz_t          _partial_obj_size;
    region_sz_t volatile _dc_and_los;
    bool                 _blocks_filled;

#ifdef ASSERT
    size_t               _blocks_filled_count;   // Number of block table fills.

    // These enable optimizations that are only partially implemented.  Use
    // debug builds to prevent the code fragments from breaking.
    HeapWord*            _data_location;
    HeapWord*            _highest_ref;
#endif  // #ifdef ASSERT

#ifdef ASSERT
   public:
    uint                 _pushed;   // 0 until region is pushed onto a stack
   private:
#endif
  };

  // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
  // holds an offset, which is the amount of live data in the Region to the left
  // of the first live object that starts in the Block.
  class BlockData
  {
  public:
    typedef unsigned short int blk_ofs_t;

    blk_ofs_t offset() const    { return _offset; }
    void set_offset(size_t val) { _offset = (blk_ofs_t)val; }

  private:
    blk_ofs_t _offset;
  };

public:
  ParallelCompactData();
  bool initialize(MemRegion covered_region);

  size_t region_count() const { return _region_count; }
  size_t reserved_byte_size() const { return _reserved_byte_size; }

  // Convert region indices to/from RegionData pointers.
  inline RegionData* region(size_t region_idx) const;
  inline size_t     region(const RegionData* const region_ptr) const;

  size_t block_count() const { return _block_count; }
  inline BlockData* block(size_t block_idx) const;
  inline size_t     block(const BlockData* block_ptr) const;

  void add_obj(HeapWord* addr, size_t len);
  void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }

  // Fill in the regions covering [beg, end) so that no data moves; i.e., the
  // destination of region n is simply the start of region n.  The argument beg
  // must be region-aligned; end need not be.
  void summarize_dense_prefix(HeapWord* beg, HeapWord* end);

  HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
                                  HeapWord* destination, HeapWord* target_end,
                                  HeapWord** target_next);
  bool summarize(SplitInfo& split_info,
                 HeapWord* source_beg, HeapWord* source_end,
                 HeapWord** source_next,
                 HeapWord* target_beg, HeapWord* target_end,
                 HeapWord** target_next);

  void clear();
  void clear_range(size_t beg_region, size_t end_region);
  void clear_range(HeapWord* beg, HeapWord* end) {
    clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
  }

  // Return the number of words between addr and the start of the region
  // containing addr.
  inline size_t     region_offset(const HeapWord* addr) const;

  // Convert addresses to/from a region index or region pointer.
  inline size_t     addr_to_region_idx(const HeapWord* addr) const;
  inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
  inline HeapWord*  region_to_addr(size_t region) const;
  inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
  inline HeapWord*  region_to_addr(const RegionData* region) const;

  inline HeapWord*  region_align_down(HeapWord* addr) const;
  inline HeapWord*  region_align_up(HeapWord* addr) const;
  inline bool       is_region_aligned(HeapWord* addr) const;

  // Analogous to region_offset() for blocks.
  size_t     block_offset(const HeapWord* addr) const;
  size_t     addr_to_block_idx(const HeapWord* addr) const;
  size_t     addr_to_block_idx(const oop obj) const {
    return addr_to_block_idx((HeapWord*) obj);
  }
  inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
  inline HeapWord*  block_to_addr(size_t block) const;
  inline size_t     region_to_block_idx(size_t region) const;

  inline HeapWord*  block_align_down(HeapWord* addr) const;
  inline HeapWord*  block_align_up(HeapWord* addr) const;
  inline bool       is_block_aligned(HeapWord* addr) const;

  // Return the address one past the end of the partial object.
  HeapWord* partial_obj_end(size_t region_idx) const;

  // Return the location of the object after compaction.
  HeapWord* calc_new_pointer(HeapWord* addr);

  HeapWord* calc_new_pointer(oop p) {
    return calc_new_pointer((HeapWord*) p);
  }

#ifdef  ASSERT
  void verify_clear(const PSVirtualSpace* vspace);
  void verify_clear();
#endif  // #ifdef ASSERT

private:
  bool initialize_block_data();
  bool initialize_region_data(size_t region_size);
  PSVirtualSpace* create_vspace(size_t count, size_t element_size);

private:
  HeapWord*       _region_start;
#ifdef  ASSERT
  HeapWord*       _region_end;
#endif  // #ifdef ASSERT

  PSVirtualSpace* _region_vspace;
  size_t          _reserved_byte_size;
  RegionData*     _region_data;
  size_t          _region_count;

  PSVirtualSpace* _block_vspace;
  BlockData*      _block_data;
  size_t          _block_count;
};

inline uint
ParallelCompactData::RegionData::destination_count_raw() const
{
  return _dc_and_los & dc_mask;
}

inline uint
ParallelCompactData::RegionData::destination_count() const
{
  return destination_count_raw() >> dc_shift;
}

inline bool
ParallelCompactData::RegionData::blocks_filled() const
{
  return _blocks_filled;
}

#ifdef ASSERT
inline size_t
ParallelCompactData::RegionData::blocks_filled_count() const
{
  return _blocks_filled_count;
}
#endif // #ifdef ASSERT

inline void
ParallelCompactData::RegionData::set_blocks_filled()
{
  _blocks_filled = true;
  // Debug builds count the number of times the table was filled.
  DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
}

inline void
ParallelCompactData::RegionData::set_destination_count(uint count)
{
  assert(count <= (dc_completed >> dc_shift), "count too large");
  const region_sz_t live_sz = (region_sz_t) live_obj_size();
  _dc_and_los = (count << dc_shift) | live_sz;
}

inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
{
  assert(words <= los_mask, "would overflow");
  _dc_and_los = destination_count_raw() | (region_sz_t)words;
}

inline void ParallelCompactData::RegionData::decrement_destination_count()
{
  assert(_dc_and_los < dc_claimed, "already claimed");
  assert(_dc_and_los >= dc_one, "count would go negative");
  Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
}

inline HeapWord* ParallelCompactData::RegionData::data_location() const
{
  DEBUG_ONLY(return _data_location;)
  NOT_DEBUG(return NULL;)
}

inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
{
  DEBUG_ONLY(return _highest_ref;)
  NOT_DEBUG(return NULL;)
}

inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
{
  DEBUG_ONLY(_data_location = addr;)
}

inline void ParallelCompactData::RegionData::set_completed()
{
  assert(claimed(), "must be claimed first");
  _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
}

// MT-unsafe claiming of a region.  Should only be used during single threaded
// execution.
inline bool ParallelCompactData::RegionData::claim_unsafe()
{
  if (available()) {
    _dc_and_los |= dc_claimed;
    return true;
  }
  return false;
}

inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
{
  assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
  Atomic::add((int) words, (volatile int*) &_dc_and_los);
}

inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
{
#ifdef ASSERT
  HeapWord* tmp = _highest_ref;
  while (addr > tmp) {
    tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
  }
#endif  // #ifdef ASSERT
}

inline bool ParallelCompactData::RegionData::claim()
{
  const int los = (int) live_obj_size();
  const int old = Atomic::cmpxchg(dc_claimed | los,
                                  (volatile int*) &_dc_and_los, los);
  return old == los;
}

inline ParallelCompactData::RegionData*
ParallelCompactData::region(size_t region_idx) const
{
  assert(region_idx <= region_count(), "bad arg");
  return _region_data + region_idx;
}

inline size_t
ParallelCompactData::region(const RegionData* const region_ptr) const
{
  assert(region_ptr >= _region_data, "bad arg");
  assert(region_ptr <= _region_data + region_count(), "bad arg");
  return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
}

inline ParallelCompactData::BlockData*
ParallelCompactData::block(size_t n) const {
  assert(n < block_count(), "bad arg");
  return _block_data + n;
}

inline size_t
ParallelCompactData::region_offset(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
}

inline size_t
ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return pointer_delta(addr, _region_start) >> Log2RegionSize;
}

inline ParallelCompactData::RegionData*
ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
{
  return region(addr_to_region_idx(addr));
}

inline HeapWord*
ParallelCompactData::region_to_addr(size_t region) const
{
  assert(region <= _region_count, "region out of range");
  return _region_start + (region << Log2RegionSize);
}

inline HeapWord*
ParallelCompactData::region_to_addr(const RegionData* region) const
{
  return region_to_addr(pointer_delta(region, _region_data,
                                      sizeof(RegionData)));
}

inline HeapWord*
ParallelCompactData::region_to_addr(size_t region, size_t offset) const
{
  assert(region <= _region_count, "region out of range");
  assert(offset < RegionSize, "offset too big");  // This may be too strict.
  return region_to_addr(region) + offset;
}

inline HeapWord*
ParallelCompactData::region_align_down(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr < _region_end + RegionSize, "bad addr");
  return (HeapWord*)(size_t(addr) & RegionAddrMask);
}

inline HeapWord*
ParallelCompactData::region_align_up(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return region_align_down(addr + RegionSizeOffsetMask);
}

inline bool
ParallelCompactData::is_region_aligned(HeapWord* addr) const
{
  return region_offset(addr) == 0;
}

inline size_t
ParallelCompactData::block_offset(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
}

inline size_t
ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return pointer_delta(addr, _region_start) >> Log2BlockSize;
}

inline ParallelCompactData::BlockData*
ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
{
  return block(addr_to_block_idx(addr));
}

inline HeapWord*
ParallelCompactData::block_to_addr(size_t block) const
{
  assert(block < _block_count, "block out of range");
  return _region_start + (block << Log2BlockSize);
}

inline size_t
ParallelCompactData::region_to_block_idx(size_t region) const
{
  return region << Log2BlocksPerRegion;
}

inline HeapWord*
ParallelCompactData::block_align_down(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr < _region_end + RegionSize, "bad addr");
  return (HeapWord*)(size_t(addr) & BlockAddrMask);
}

inline HeapWord*
ParallelCompactData::block_align_up(HeapWord* addr) const
{
  assert(addr >= _region_start, "bad addr");
  assert(addr <= _region_end, "bad addr");
  return block_align_down(addr + BlockSizeOffsetMask);
}

inline bool
ParallelCompactData::is_block_aligned(HeapWord* addr) const
{
  return block_offset(addr) == 0;
}

// Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
// do_addr() method.
//
// The closure is initialized with the number of heap words to process
// (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
// methods in subclasses should update the total as words are processed.  Since
// only one subclass actually uses this mechanism to terminate iteration, the
// default initial value is > 0.  The implementation is here and not in the
// single subclass that uses it to avoid making is_full() virtual, and thus
// adding a virtual call per live object.

class ParMarkBitMapClosure: public StackObj {
 public:
  typedef ParMarkBitMap::idx_t idx_t;
  typedef ParMarkBitMap::IterationStatus IterationStatus;

 public:
  inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
                              size_t words = max_uintx);

  inline ParCompactionManager* compaction_manager() const;
  inline ParMarkBitMap*        bitmap() const;
  inline size_t                words_remaining() const;
  inline bool                  is_full() const;
  inline HeapWord*             source() const;

  inline void                  set_source(HeapWord* addr);

  virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;

 protected:
  inline void decrement_words_remaining(size_t words);

 private:
  ParMarkBitMap* const        _bitmap;
  ParCompactionManager* const _compaction_manager;
  DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
  size_t                      _words_remaining; // Words left to copy.

 protected:
  HeapWord*                   _source;          // Next addr that would be read.
};

inline
ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
                                           ParCompactionManager* cm,
                                           size_t words):
  _bitmap(bitmap), _compaction_manager(cm)
#ifdef  ASSERT
  , _initial_words_remaining(words)
#endif
{
  _words_remaining = words;
  _source = NULL;
}

inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
  return _compaction_manager;
}

inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
  return _bitmap;
}

inline size_t ParMarkBitMapClosure::words_remaining() const {
  return _words_remaining;
}

inline bool ParMarkBitMapClosure::is_full() const {
  return words_remaining() == 0;
}

inline HeapWord* ParMarkBitMapClosure::source() const {
  return _source;
}

inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
  _source = addr;
}

inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
  assert(_words_remaining >= words, "processed too many words");
  _words_remaining -= words;
}

// The UseParallelOldGC collector is a stop-the-world garbage collector that
// does parts of the collection using parallel threads.  The collection includes
// the tenured generation and the young generation.  The permanent generation is
// collected at the same time as the other two generations but the permanent
// generation is collect by a single GC thread.  The permanent generation is
// collected serially because of the requirement that during the processing of a
// klass AAA, any objects reference by AAA must already have been processed.
// This requirement is enforced by a left (lower address) to right (higher
// address) sliding compaction.
//
// There are four phases of the collection.
//
//      - marking phase
//      - summary phase
//      - compacting phase
//      - clean up phase
//
// Roughly speaking these phases correspond, respectively, to
//      - mark all the live objects
//      - calculate the destination of each object at the end of the collection
//      - move the objects to their destination
//      - update some references and reinitialize some variables
//
// These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
// marking phase is implemented in PSParallelCompact::marking_phase() and does a
// complete marking of the heap.  The summary phase is implemented in
// PSParallelCompact::summary_phase().  The move and update phase is implemented
// in PSParallelCompact::compact().
//
// A space that is being collected is divided into regions and with each region
// is associated an object of type ParallelCompactData.  Each region is of a
// fixed size and typically will contain more than 1 object and may have parts
// of objects at the front and back of the region.
//
// region            -----+---------------------+----------
// objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
//
// The marking phase does a complete marking of all live objects in the heap.
// The marking also compiles the size of the data for all live objects covered
// by the region.  This size includes the part of any live object spanning onto
// the region (part of AAA if it is live) from the front, all live objects
// contained in the region (BBB and/or CCC if they are live), and the part of
// any live objects covered by the region that extends off the region (part of
// DDD if it is live).  The marking phase uses multiple GC threads and marking
// is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
// done atomically as is the accumulation of the size of the live objects
// covered by a region.
//
// The summary phase calculates the total live data to the left of each region
// XXX.  Based on that total and the bottom of the space, it can calculate the
// starting location of the live data in XXX.  The summary phase calculates for
// each region XXX quantites such as
//
//      - the amount of live data at the beginning of a region from an object
//        entering the region.
//      - the location of the first live data on the region
//      - a count of the number of regions receiving live data from XXX.
//
// See ParallelCompactData for precise details.  The summary phase also
// calculates the dense prefix for the compaction.  The dense prefix is a
// portion at the beginning of the space that is not moved.  The objects in the
// dense prefix do need to have their object references updated.  See method
// summarize_dense_prefix().
//
// The summary phase is done using 1 GC thread.
//
// The compaction phase moves objects to their new location and updates all
// references in the object.
//
// A current exception is that objects that cross a region boundary are moved
// but do not have their references updated.  References are not updated because
// it cannot easily be determined if the klass pointer KKK for the object AAA
// has been updated.  KKK likely resides in a region to the left of the region
// containing AAA.  These AAA's have there references updated at the end in a
// clean up phase.  See the method PSParallelCompact::update_deferred_objects().
// An alternate strategy is being investigated for this deferral of updating.
//
// Compaction is done on a region basis.  A region that is ready to be filled is
// put on a ready list and GC threads take region off the list and fill them.  A
// region is ready to be filled if it empty of live objects.  Such a region may
// have been initially empty (only contained dead objects) or may have had all
// its live objects copied out already.  A region that compacts into itself is
// also ready for filling.  The ready list is initially filled with empty
// regions and regions compacting into themselves.  There is always at least 1
// region that can be put on the ready list.  The regions are atomically added
// and removed from the ready list.

class PSParallelCompact : AllStatic {
 public:
  // Convenient access to type names.
  typedef ParMarkBitMap::idx_t idx_t;
  typedef ParallelCompactData::RegionData RegionData;
  typedef ParallelCompactData::BlockData BlockData;

  typedef enum {
    old_space_id, eden_space_id,
    from_space_id, to_space_id, last_space_id
  } SpaceId;

 public:
  // Inline closure decls
  //
  class IsAliveClosure: public BoolObjectClosure {
   public:
    virtual bool do_object_b(oop p);
  };

  class KeepAliveClosure: public OopClosure {
   private:
    ParCompactionManager* _compaction_manager;
   protected:
    template <class T> inline void do_oop_work(T* p);
   public:
    KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
  };

  class FollowStackClosure: public VoidClosure {
   private:
    ParCompactionManager* _compaction_manager;
   public:
    FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_void();
  };

  class AdjustPointerClosure: public OopClosure {
   public:
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
    // do not walk from thread stacks to the code cache on this phase
    virtual void do_code_blob(CodeBlob* cb) const { }
  };

  class AdjustKlassClosure : public KlassClosure {
   public:
    void do_klass(Klass* klass);
  };

  friend class KeepAliveClosure;
  friend class FollowStackClosure;
  friend class AdjustPointerClosure;
  friend class AdjustKlassClosure;
  friend class FollowKlassClosure;
  friend class InstanceClassLoaderKlass;
  friend class RefProcTaskProxy;

 private:
  static STWGCTimer           _gc_timer;
  static ParallelOldTracer    _gc_tracer;
  static elapsedTimer         _accumulated_time;
  static unsigned int         _total_invocations;
  static unsigned int         _maximum_compaction_gc_num;
  static jlong                _time_of_last_gc;   // ms
  static CollectorCounters*   _counters;
  static ParMarkBitMap        _mark_bitmap;
  static ParallelCompactData  _summary_data;
  static IsAliveClosure       _is_alive_closure;
  static SpaceInfo            _space_info[last_space_id];
  static bool                 _print_phases;
  static AdjustPointerClosure _adjust_pointer_closure;
  static AdjustKlassClosure   _adjust_klass_closure;

  // Reference processing (used in ...follow_contents)
  static ReferenceProcessor*  _ref_processor;

  // Updated location of intArrayKlassObj.
  static Klass* _updated_int_array_klass_obj;

  // Values computed at initialization and used by dead_wood_limiter().
  static double _dwl_mean;
  static double _dwl_std_dev;
  static double _dwl_first_term;
  static double _dwl_adjustment;
#ifdef  ASSERT
  static bool   _dwl_initialized;
#endif  // #ifdef ASSERT

 private:

  static void initialize_space_info();

  // Return true if details about individual phases should be printed.
  static inline bool print_phases();

  // Clear the marking bitmap and summary data that cover the specified space.
  static void clear_data_covering_space(SpaceId id);

  static void pre_compact(PreGCValues* pre_gc_values);
  static void post_compact();

  // Mark live objects
  static void marking_phase(ParCompactionManager* cm,
                            bool maximum_heap_compaction,
                            ParallelOldTracer *gc_tracer);

  template <class T>
  static inline void follow_root(ParCompactionManager* cm, T* p);

  // Compute the dense prefix for the designated space.  This is an experimental
  // implementation currently not used in production.
  static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
                                                    bool maximum_compaction);

  // Methods used to compute the dense prefix.

  // Compute the value of the normal distribution at x = density.  The mean and
  // standard deviation are values saved by initialize_dead_wood_limiter().
  static inline double normal_distribution(double density);

  // Initialize the static vars used by dead_wood_limiter().
  static void initialize_dead_wood_limiter();

  // Return the percentage of space that can be treated as "dead wood" (i.e.,
  // not reclaimed).
  static double dead_wood_limiter(double density, size_t min_percent);

  // Find the first (left-most) region in the range [beg, end) that has at least
  // dead_words of dead space to the left.  The argument beg must be the first
  // region in the space that is not completely live.
  static RegionData* dead_wood_limit_region(const RegionData* beg,
                                            const RegionData* end,
                                            size_t dead_words);

  // Return a pointer to the first region in the range [beg, end) that is not
  // completely full.
  static RegionData* first_dead_space_region(const RegionData* beg,
                                             const RegionData* end);

  // Return a value indicating the benefit or 'yield' if the compacted region
  // were to start (or equivalently if the dense prefix were to end) at the
  // candidate region.  Higher values are better.
  //
  // The value is based on the amount of space reclaimed vs. the costs of (a)
  // updating references in the dense prefix plus (b) copying objects and
  // updating references in the compacted region.
  static inline double reclaimed_ratio(const RegionData* const candidate,
                                       HeapWord* const bottom,
                                       HeapWord* const top,
                                       HeapWord* const new_top);

  // Compute the dense prefix for the designated space.
  static HeapWord* compute_dense_prefix(const SpaceId id,
                                        bool maximum_compaction);

  // Return true if dead space crosses onto the specified Region; bit must be
  // the bit index corresponding to the first word of the Region.
  static inline bool dead_space_crosses_boundary(const RegionData* region,
                                                 idx_t bit);

  // Summary phase utility routine to fill dead space (if any) at the dense
  // prefix boundary.  Should only be called if the the dense prefix is
  // non-empty.
  static void fill_dense_prefix_end(SpaceId id);

  // Clear the summary data source_region field for the specified addresses.
  static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);

#ifndef PRODUCT
  // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).

  // Fill the region [start, start + words) with live object(s).  Only usable
  // for the old and permanent generations.
  static void fill_with_live_objects(SpaceId id, HeapWord* const start,
                                     size_t words);
  // Include the new objects in the summary data.
  static void summarize_new_objects(SpaceId id, HeapWord* start);

  // Add live objects to a survivor space since it's rare that both survivors
  // are non-empty.
  static void provoke_split_fill_survivor(SpaceId id);

  // Add live objects and/or choose the dense prefix to provoke splitting.
  static void provoke_split(bool & maximum_compaction);
#endif

  static void summarize_spaces_quick();
  static void summarize_space(SpaceId id, bool maximum_compaction);
  static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);

  // Adjust addresses in roots.  Does not adjust addresses in heap.
  static void adjust_roots();

  DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)

  // Move objects to new locations.
  static void compact_perm(ParCompactionManager* cm);
  static void compact();

  // Add available regions to the stack and draining tasks to the task queue.
  static void enqueue_region_draining_tasks(GCTaskQueue* q,
                                            uint parallel_gc_threads);

  // Add dense prefix update tasks to the task queue.
  static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
                                         uint parallel_gc_threads);

  // Add region stealing tasks to the task queue.
  static void enqueue_region_stealing_tasks(
                                       GCTaskQueue* q,
                                       ParallelTaskTerminator* terminator_ptr,
                                       uint parallel_gc_threads);

  // If objects are left in eden after a collection, try to move the boundary
  // and absorb them into the old gen.  Returns true if eden was emptied.
  static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
                                         PSYoungGen* young_gen,
                                         PSOldGen* old_gen);

  // Reset time since last full gc
  static void reset_millis_since_last_gc();

 public:
  class MarkAndPushClosure: public OopClosure {
   private:
    ParCompactionManager* _compaction_manager;
   public:
    MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
    virtual void do_oop(oop* p);
    virtual void do_oop(narrowOop* p);
  };

  // The one and only place to start following the classes.
  // Should only be applied to the ClassLoaderData klasses list.
  class FollowKlassClosure : public KlassClosure {
   private:
    MarkAndPushClosure* _mark_and_push_closure;
   public:
    FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
        _mark_and_push_closure(mark_and_push_closure) { }
    void do_klass(Klass* klass);
  };

  PSParallelCompact();

  // Convenient accessor for Universe::heap().
  static ParallelScavengeHeap* gc_heap() {
    return (ParallelScavengeHeap*)Universe::heap();
  }

  static void invoke(bool maximum_heap_compaction);
  static bool invoke_no_policy(bool maximum_heap_compaction);

  static void post_initialize();
  // Perform initialization for PSParallelCompact that requires
  // allocations.  This should be called during the VM initialization
  // at a pointer where it would be appropriate to return a JNI_ENOMEM
  // in the event of a failure.
  static bool initialize();

  // Closure accessors
  static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }

  // Public accessors
  static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  static unsigned int total_invocations() { return _total_invocations; }
  static CollectorCounters* counters()    { return _counters; }

  // Used to add tasks
  static GCTaskManager* const gc_task_manager();
  static Klass* updated_int_array_klass_obj() {
    return _updated_int_array_klass_obj;
  }

  // Marking support
  static inline bool mark_obj(oop obj);
  static inline bool is_marked(oop obj);
  // Check mark and maybe push on marking stack
  template <class T> static inline void mark_and_push(ParCompactionManager* cm,
                                                      T* p);
  template <class T> static inline void adjust_pointer(T* p);

  static inline void follow_klass(ParCompactionManager* cm, Klass* klass);

  static void follow_class_loader(ParCompactionManager* cm,
                                  ClassLoaderData* klass);

  // Compaction support.
  // Return true if p is in the range [beg_addr, end_addr).
  static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);

  // Convenience wrappers for per-space data kept in _space_info.
  static inline MutableSpace*     space(SpaceId space_id);
  static inline HeapWord*         new_top(SpaceId space_id);
  static inline HeapWord*         dense_prefix(SpaceId space_id);
  static inline ObjectStartArray* start_array(SpaceId space_id);

  // Move and update the live objects in the specified space.
  static void move_and_update(ParCompactionManager* cm, SpaceId space_id);

  // Process the end of the given region range in the dense prefix.
  // This includes saving any object not updated.
  static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
                                            size_t region_start_index,
                                            size_t region_end_index,
                                            idx_t exiting_object_offset,
                                            idx_t region_offset_start,
                                            idx_t region_offset_end);

  // Update a region in the dense prefix.  For each live object
  // in the region, update it's interior references.  For each
  // dead object, fill it with deadwood. Dead space at the end
  // of a region range will be filled to the start of the next
  // live object regardless of the region_index_end.  None of the
  // objects in the dense prefix move and dead space is dead
  // (holds only dead objects that don't need any processing), so
  // dead space can be filled in any order.
  static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
                                                  SpaceId space_id,
                                                  size_t region_index_start,
                                                  size_t region_index_end);

  // Return the address of the count + 1st live word in the range [beg, end).
  static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);

  // Return the address of the word to be copied to dest_addr, which must be
  // aligned to a region boundary.
  static HeapWord* first_src_addr(HeapWord* const dest_addr,
                                  SpaceId src_space_id,
                                  size_t src_region_idx);

  // Determine the next source region, set closure.source() to the start of the
  // new region return the region index.  Parameter end_addr is the address one
  // beyond the end of source range just processed.  If necessary, switch to a
  // new source space and set src_space_id (in-out parameter) and src_space_top
  // (out parameter) accordingly.
  static size_t next_src_region(MoveAndUpdateClosure& closure,
                                SpaceId& src_space_id,
                                HeapWord*& src_space_top,
                                HeapWord* end_addr);

  // Decrement the destination count for each non-empty source region in the
  // range [beg_region, region(region_align_up(end_addr))).  If the destination
  // count for a region goes to 0 and it needs to be filled, enqueue it.
  static void decrement_destination_counts(ParCompactionManager* cm,
                                           SpaceId src_space_id,
                                           size_t beg_region,
                                           HeapWord* end_addr);

  // Fill a region, copying objects from one or more source regions.
  static void fill_region(ParCompactionManager* cm, size_t region_idx);
  static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
    fill_region(cm, region);
  }

  // Fill in the block table for the specified region.
  static void fill_blocks(size_t region_idx);

  // Update the deferred objects in the space.
  static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);

  static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  static ParallelCompactData& summary_data() { return _summary_data; }

  // Reference Processing
  static ReferenceProcessor* const ref_processor() { return _ref_processor; }

  static STWGCTimer* gc_timer() { return &_gc_timer; }

  // Return the SpaceId for the given address.
  static SpaceId space_id(HeapWord* addr);

  // Time since last full gc (in milliseconds).
  static jlong millis_since_last_gc();

  static void print_on_error(outputStream* st);

#ifndef PRODUCT
  // Debugging support.
  static const char* space_names[last_space_id];
  static void print_region_ranges();
  static void print_dense_prefix_stats(const char* const algorithm,
                                       const SpaceId id,
                                       const bool maximum_compaction,
                                       HeapWord* const addr);
  static void summary_phase_msg(SpaceId dst_space_id,
                                HeapWord* dst_beg, HeapWord* dst_end,
                                SpaceId src_space_id,
                                HeapWord* src_beg, HeapWord* src_end);
#endif  // #ifndef PRODUCT

#ifdef  ASSERT
  // Sanity check the new location of a word in the heap.
  static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  // Verify that all the regions have been emptied.
  static void verify_complete(SpaceId space_id);
#endif  // #ifdef ASSERT
};

inline bool PSParallelCompact::mark_obj(oop obj) {
  const int obj_size = obj->size();
  if (mark_bitmap()->mark_obj(obj, obj_size)) {
    _summary_data.add_obj(obj, obj_size);
    return true;
  } else {
    return false;
  }
}

inline bool PSParallelCompact::is_marked(oop obj) {
  return mark_bitmap()->is_marked(obj);
}

template <class T>
inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  assert(!Universe::heap()->is_in_reserved(p),
         "roots shouldn't be things within the heap");

  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    if (mark_bitmap()->is_unmarked(obj)) {
      if (mark_obj(obj)) {
        obj->follow_contents(cm);
      }
    }
  }
  cm->follow_marking_stacks();
}

template <class T>
inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
      cm->push(obj);
    }
  }
}

template <class T>
inline void PSParallelCompact::adjust_pointer(T* p) {
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
    oop new_obj = (oop)summary_data().calc_new_pointer(obj);
    assert(new_obj != NULL,                    // is forwarding ptr?
           "should be forwarded");
    // Just always do the update unconditionally?
    if (new_obj != NULL) {
      assert(Universe::heap()->is_in_reserved(new_obj),
             "should be in object space");
      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
    }
  }
}

inline void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  oop holder = klass->klass_holder();
  PSParallelCompact::mark_and_push(cm, &holder);
}

template <class T>
inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  mark_and_push(_compaction_manager, p);
}

inline bool PSParallelCompact::print_phases() {
  return _print_phases;
}

inline double PSParallelCompact::normal_distribution(double density) {
  assert(_dwl_initialized, "uninitialized");
  const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
}

inline bool
PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
                                               idx_t bit)
{
  assert(bit > 0, "cannot call this for the first bit/region");
  assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
         "sanity check");

  // Dead space crosses the boundary if (1) a partial object does not extend
  // onto the region, (2) an object does not start at the beginning of the
  // region, and (3) an object does not end at the end of the prior region.
  return region->partial_obj_size() == 0 &&
    !_mark_bitmap.is_obj_beg(bit) &&
    !_mark_bitmap.is_obj_end(bit - 1);
}

inline bool
PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  return p >= beg_addr && p < end_addr;
}

inline bool
PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  return is_in((HeapWord*)p, beg_addr, end_addr);
}

inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].space();
}

inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].new_top();
}

inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].dense_prefix();
}

inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  assert(id < last_space_id, "id out of range");
  return _space_info[id].start_array();
}

#ifdef ASSERT
inline void
PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
{
  assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
         "must move left or to a different space");
  assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
         "checking alignment");
}
#endif // ASSERT

class MoveAndUpdateClosure: public ParMarkBitMapClosure {
 public:
  inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
                              ObjectStartArray* start_array,
                              HeapWord* destination, size_t words);

  // Accessors.
  HeapWord* destination() const         { return _destination; }

  // If the object will fit (size <= words_remaining()), copy it to the current
  // destination, update the interior oops and the start array and return either
  // full (if the closure is full) or incomplete.  If the object will not fit,
  // return would_overflow.
  virtual IterationStatus do_addr(HeapWord* addr, size_t size);

  // Copy enough words to fill this closure, starting at source().  Interior
  // oops and the start array are not updated.  Return full.
  IterationStatus copy_until_full();

  // Copy enough words to fill this closure or to the end of an object,
  // whichever is smaller, starting at source().  Interior oops and the start
  // array are not updated.
  void copy_partial_obj();

 protected:
  // Update variables to indicate that word_count words were processed.
  inline void update_state(size_t word_count);

 protected:
  ObjectStartArray* const _start_array;
  HeapWord*               _destination;         // Next addr to be written.
};

inline
MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
                                           ParCompactionManager* cm,
                                           ObjectStartArray* start_array,
                                           HeapWord* destination,
                                           size_t words) :
  ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
{
  _destination = destination;
}

inline void MoveAndUpdateClosure::update_state(size_t words)
{
  decrement_words_remaining(words);
  _source += words;
  _destination += words;
}

class UpdateOnlyClosure: public ParMarkBitMapClosure {
 private:
  const PSParallelCompact::SpaceId _space_id;
  ObjectStartArray* const          _start_array;

 public:
  UpdateOnlyClosure(ParMarkBitMap* mbm,
                    ParCompactionManager* cm,
                    PSParallelCompact::SpaceId space_id);

  // Update the object.
  virtual IterationStatus do_addr(HeapWord* addr, size_t words);

  inline void do_addr(HeapWord* addr);
};

inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
{
  _start_array->allocate_block(addr);
  oop(addr)->update_contents(compaction_manager());
}

class FillClosure: public ParMarkBitMapClosure
{
public:
  FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
    ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
    _start_array(PSParallelCompact::start_array(space_id))
  {
    assert(space_id == PSParallelCompact::old_space_id,
           "cannot use FillClosure in the young gen");
  }

  virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
    CollectedHeap::fill_with_objects(addr, size);
    HeapWord* const end = addr + size;
    do {
      _start_array->allocate_block(addr);
      addr += oop(addr)->size();
    } while (addr < end);
    return ParMarkBitMap::incomplete;
  }

private:
  ObjectStartArray* const _start_array;
};

#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java psParallelCompact.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.