alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (gcUtil.hpp)

This example Java source code file (gcUtil.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

adaptivepaddedaverage, adaptivepaddednozerodevaverage, adaptiveweightedaverage, adaptiveweightedaverage\:\:clear, cheapobj, gcpausetimer, has, how, linearleastsquarefit, old_threshold, running, share_vm_gc_implementation_shared_gcutil_hpp, stackobj, the

The gcUtil.hpp Java example source code

/*
 * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_GCUTIL_HPP
#define SHARE_VM_GC_IMPLEMENTATION_SHARED_GCUTIL_HPP

#include "memory/allocation.hpp"
#include "runtime/timer.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/ostream.hpp"

// Catch-all file for utility classes

// A weighted average maintains a running, weighted average
// of some float value (templates would be handy here if we
// need different types).
//
// The average is adaptive in that we smooth it for the
// initial samples; we don't use the weight until we have
// enough samples for it to be meaningful.
//
// This serves as our best estimate of a future unknown.
//
class AdaptiveWeightedAverage : public CHeapObj<mtGC> {
 private:
  float            _average;        // The last computed average
  unsigned         _sample_count;   // How often we've sampled this average
  unsigned         _weight;         // The weight used to smooth the averages
                                    //   A higher weight favors the most
                                    //   recent data.
  bool             _is_old;         // Has enough historical data

  const static unsigned OLD_THRESHOLD = 100;

 protected:
  float            _last_sample;    // The last value sampled.

  void  increment_count() {
    _sample_count++;
    if (!_is_old && _sample_count > OLD_THRESHOLD) {
      _is_old = true;
    }
  }

  void  set_average(float avg)  { _average = avg;        }

  // Helper function, computes an adaptive weighted average
  // given a sample and the last average
  float compute_adaptive_average(float new_sample, float average);

 public:
  // Input weight must be between 0 and 100
  AdaptiveWeightedAverage(unsigned weight, float avg = 0.0) :
    _average(avg), _sample_count(0), _weight(weight), _last_sample(0.0),
    _is_old(false) {
  }

  void clear() {
    _average = 0;
    _sample_count = 0;
    _last_sample = 0;
    _is_old = false;
  }

  // Useful for modifying static structures after startup.
  void  modify(size_t avg, unsigned wt, bool force = false)  {
    assert(force, "Are you sure you want to call this?");
    _average = (float)avg;
    _weight  = wt;
  }

  // Accessors
  float    average() const       { return _average;       }
  unsigned weight()  const       { return _weight;        }
  unsigned count()   const       { return _sample_count;  }
  float    last_sample() const   { return _last_sample;   }
  bool     is_old()  const       { return _is_old;        }

  // Update data with a new sample.
  void sample(float new_sample);

  static inline float exp_avg(float avg, float sample,
                               unsigned int weight) {
    assert(0 <= weight && weight <= 100, "weight must be a percent");
    return (100.0F - weight) * avg / 100.0F + weight * sample / 100.0F;
  }
  static inline size_t exp_avg(size_t avg, size_t sample,
                               unsigned int weight) {
    // Convert to float and back to avoid integer overflow.
    return (size_t)exp_avg((float)avg, (float)sample, weight);
  }

  // Printing
  void print_on(outputStream* st) const;
  void print() const;
};


// A weighted average that includes a deviation from the average,
// some multiple of which is added to the average.
//
// This serves as our best estimate of an upper bound on a future
// unknown.
class AdaptivePaddedAverage : public AdaptiveWeightedAverage {
 private:
  float          _padded_avg;     // The last computed padded average
  float          _deviation;      // Running deviation from the average
  unsigned       _padding;        // A multiple which, added to the average,
                                  // gives us an upper bound guess.

 protected:
  void set_padded_average(float avg)  { _padded_avg = avg;  }
  void set_deviation(float dev)       { _deviation  = dev;  }

 public:
  AdaptivePaddedAverage() :
    AdaptiveWeightedAverage(0),
    _padded_avg(0.0), _deviation(0.0), _padding(0) {}

  AdaptivePaddedAverage(unsigned weight, unsigned padding) :
    AdaptiveWeightedAverage(weight),
    _padded_avg(0.0), _deviation(0.0), _padding(padding) {}

  // Placement support
  void* operator new(size_t ignored, void* p) throw() { return p; }
  // Allocator
  void* operator new(size_t size) throw() { return CHeapObj<mtGC>::operator new(size); }

  // Accessor
  float padded_average() const         { return _padded_avg; }
  float deviation()      const         { return _deviation;  }
  unsigned padding()     const         { return _padding;    }

  void clear() {
    AdaptiveWeightedAverage::clear();
    _padded_avg = 0;
    _deviation = 0;
  }

  // Override
  void  sample(float new_sample);

  // Printing
  void print_on(outputStream* st) const;
  void print() const;
};

// A weighted average that includes a deviation from the average,
// some multiple of which is added to the average.
//
// This serves as our best estimate of an upper bound on a future
// unknown.
// A special sort of padded average:  it doesn't update deviations
// if the sample is zero. The average is allowed to change. We're
// preventing the zero samples from drastically changing our padded
// average.
class AdaptivePaddedNoZeroDevAverage : public AdaptivePaddedAverage {
public:
  AdaptivePaddedNoZeroDevAverage(unsigned weight, unsigned padding) :
    AdaptivePaddedAverage(weight, padding)  {}
  // Override
  void  sample(float new_sample);

  // Printing
  void print_on(outputStream* st) const;
  void print() const;
};

// Use a least squares fit to a set of data to generate a linear
// equation.
//              y = intercept + slope * x

class LinearLeastSquareFit : public CHeapObj<mtGC> {
  double _sum_x;        // sum of all independent data points x
  double _sum_x_squared; // sum of all independent data points x**2
  double _sum_y;        // sum of all dependent data points y
  double _sum_xy;       // sum of all x * y.
  double _intercept;     // constant term
  double _slope;        // slope
  // The weighted averages are not currently used but perhaps should
  // be used to get decaying averages.
  AdaptiveWeightedAverage _mean_x; // weighted mean of independent variable
  AdaptiveWeightedAverage _mean_y; // weighted mean of dependent variable

 public:
  LinearLeastSquareFit(unsigned weight);
  void update(double x, double y);
  double y(double x);
  double slope() { return _slope; }
  // Methods to decide if a change in the dependent variable will
  // achive a desired goal.  Note that these methods are not
  // complementary and both are needed.
  bool decrement_will_decrease();
  bool increment_will_decrease();
};

class GCPauseTimer : StackObj {
  elapsedTimer* _timer;
 public:
  GCPauseTimer(elapsedTimer* timer) {
    _timer = timer;
    _timer->stop();
  }
  ~GCPauseTimer() {
    _timer->start();
  }
};

#endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_GCUTIL_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java gcUtil.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.