alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (rewriter.cpp)

This example Java source code file (rewriter.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bytecodes::code, bytecodes\:\:_fast_aldc, bytecodes\:\:_fast_aldc_w, bytecodes\:\:_invokedynamic, bytecodes\:\:_ldc, bytecodes\:\:_ldc_w, bytecodes\:\:_lookupswitch, bytes::get_java_u2, bytes\:\:get_native_u2, bytes\:\:put_java_u2, bytes\:\:put_native_u2, check, method, traps

The rewriter.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/bytecodes.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/rewriter.hpp"
#include "memory/gcLocker.hpp"
#include "memory/resourceArea.hpp"
#include "oops/generateOopMap.hpp"
#include "prims/methodHandles.hpp"

// Computes a CPC map (new_index -> original_index) for constant pool entries
// that are referred to by the interpreter at runtime via the constant pool cache.
// Also computes a CP map (original_index -> new_index).
// Marks entries in CP which require additional processing.
void Rewriter::compute_index_maps() {
  const int length  = _pool->length();
  init_maps(length);
  bool saw_mh_symbol = false;
  for (int i = 0; i < length; i++) {
    int tag = _pool->tag_at(i).value();
    switch (tag) {
      case JVM_CONSTANT_InterfaceMethodref:
      case JVM_CONSTANT_Fieldref          : // fall through
      case JVM_CONSTANT_Methodref         : // fall through
        add_cp_cache_entry(i);
        break;
      case JVM_CONSTANT_String:
      case JVM_CONSTANT_MethodHandle      : // fall through
      case JVM_CONSTANT_MethodType        : // fall through
        add_resolved_references_entry(i);
        break;
      case JVM_CONSTANT_Utf8:
        if (_pool->symbol_at(i) == vmSymbols::java_lang_invoke_MethodHandle())
          saw_mh_symbol = true;
        break;
    }
  }

  // Record limits of resolved reference map for constant pool cache indices
  record_map_limits();

  guarantee((int)_cp_cache_map.length()-1 <= (int)((u2)-1),
            "all cp cache indexes fit in a u2");

  if (saw_mh_symbol)
    _method_handle_invokers.initialize(length, (int)0);
}

// Unrewrite the bytecodes if an error occurs.
void Rewriter::restore_bytecodes() {
  int len = _methods->length();
  bool invokespecial_error = false;

  for (int i = len-1; i >= 0; i--) {
    Method* method = _methods->at(i);
    scan_method(method, true, &invokespecial_error);
    assert(!invokespecial_error, "reversing should not get an invokespecial error");
  }
}

// Creates a constant pool cache given a CPC map
void Rewriter::make_constant_pool_cache(TRAPS) {
  ClassLoaderData* loader_data = _pool->pool_holder()->class_loader_data();
  ConstantPoolCache* cache =
      ConstantPoolCache::allocate(loader_data, _cp_cache_map,
                                  _invokedynamic_cp_cache_map,
                                  _invokedynamic_references_map, CHECK);

  // initialize object cache in constant pool
  _pool->initialize_resolved_references(loader_data, _resolved_references_map,
                                        _resolved_reference_limit,
                                        CHECK);
  _pool->set_cache(cache);
  cache->set_constant_pool(_pool());
}



// The new finalization semantics says that registration of
// finalizable objects must be performed on successful return from the
// Object.<init> constructor.  We could implement this trivially if
// <init> were never rewritten but since JVMTI allows this to occur, a
// more complicated solution is required.  A special return bytecode
// is used only by Object.<init> to signal the finalization
// registration point.  Additionally local 0 must be preserved so it's
// available to pass to the registration function.  For simplicty we
// require that local 0 is never overwritten so it's available as an
// argument for registration.

void Rewriter::rewrite_Object_init(methodHandle method, TRAPS) {
  RawBytecodeStream bcs(method);
  while (!bcs.is_last_bytecode()) {
    Bytecodes::Code opcode = bcs.raw_next();
    switch (opcode) {
      case Bytecodes::_return: *bcs.bcp() = Bytecodes::_return_register_finalizer; break;

      case Bytecodes::_istore:
      case Bytecodes::_lstore:
      case Bytecodes::_fstore:
      case Bytecodes::_dstore:
      case Bytecodes::_astore:
        if (bcs.get_index() != 0) continue;

        // fall through
      case Bytecodes::_istore_0:
      case Bytecodes::_lstore_0:
      case Bytecodes::_fstore_0:
      case Bytecodes::_dstore_0:
      case Bytecodes::_astore_0:
        THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(),
                  "can't overwrite local 0 in Object.<init>");
        break;
    }
  }
}


// Rewrite a classfile-order CP index into a native-order CPC index.
void Rewriter::rewrite_member_reference(address bcp, int offset, bool reverse) {
  address p = bcp + offset;
  if (!reverse) {
    int  cp_index    = Bytes::get_Java_u2(p);
    int  cache_index = cp_entry_to_cp_cache(cp_index);
    Bytes::put_native_u2(p, cache_index);
    if (!_method_handle_invokers.is_empty())
      maybe_rewrite_invokehandle(p - 1, cp_index, cache_index, reverse);
  } else {
    int cache_index = Bytes::get_native_u2(p);
    int pool_index = cp_cache_entry_pool_index(cache_index);
    Bytes::put_Java_u2(p, pool_index);
    if (!_method_handle_invokers.is_empty())
      maybe_rewrite_invokehandle(p - 1, pool_index, cache_index, reverse);
  }
}

// If the constant pool entry for invokespecial is InterfaceMethodref,
// we need to add a separate cpCache entry for its resolution, because it is
// different than the resolution for invokeinterface with InterfaceMethodref.
// These cannot share cpCache entries.  It's unclear if all invokespecial to
// InterfaceMethodrefs would resolve to the same thing so a new cpCache entry
// is created for each one.  This was added with lambda.
void Rewriter::rewrite_invokespecial(address bcp, int offset, bool reverse, bool* invokespecial_error) {
  address p = bcp + offset;
  if (!reverse) {
    int cp_index = Bytes::get_Java_u2(p);
    if (_pool->tag_at(cp_index).is_interface_method()) {
    int cache_index = add_invokespecial_cp_cache_entry(cp_index);
    if (cache_index != (int)(jushort) cache_index) {
      *invokespecial_error = true;
    }
    Bytes::put_native_u2(p, cache_index);
  } else {
      rewrite_member_reference(bcp, offset, reverse);
    }
  } else {
    rewrite_member_reference(bcp, offset, reverse);
  }
}


// Adjust the invocation bytecode for a signature-polymorphic method (MethodHandle.invoke, etc.)
void Rewriter::maybe_rewrite_invokehandle(address opc, int cp_index, int cache_index, bool reverse) {
  if (!reverse) {
    if ((*opc) == (u1)Bytecodes::_invokevirtual ||
        // allow invokespecial as an alias, although it would be very odd:
        (*opc) == (u1)Bytecodes::_invokespecial) {
      assert(_pool->tag_at(cp_index).is_method(), "wrong index");
      // Determine whether this is a signature-polymorphic method.
      if (cp_index >= _method_handle_invokers.length())  return;
      int status = _method_handle_invokers[cp_index];
      assert(status >= -1 && status <= 1, "oob tri-state");
      if (status == 0) {
        if (_pool->klass_ref_at_noresolve(cp_index) == vmSymbols::java_lang_invoke_MethodHandle() &&
            MethodHandles::is_signature_polymorphic_name(SystemDictionary::MethodHandle_klass(),
                                                         _pool->name_ref_at(cp_index))) {
          // we may need a resolved_refs entry for the appendix
          add_invokedynamic_resolved_references_entries(cp_index, cache_index);
          status = +1;
        } else {
          status = -1;
        }
        _method_handle_invokers[cp_index] = status;
      }
      // We use a special internal bytecode for such methods (if non-static).
      // The basic reason for this is that such methods need an extra "appendix" argument
      // to transmit the call site's intended call type.
      if (status > 0) {
        (*opc) = (u1)Bytecodes::_invokehandle;
      }
    }
  } else {
    // Do not need to look at cp_index.
    if ((*opc) == (u1)Bytecodes::_invokehandle) {
      (*opc) = (u1)Bytecodes::_invokevirtual;
      // Ignore corner case of original _invokespecial instruction.
      // This is safe because (a) the signature polymorphic method was final, and
      // (b) the implementation of MethodHandle will not call invokespecial on it.
    }
  }
}


void Rewriter::rewrite_invokedynamic(address bcp, int offset, bool reverse) {
  address p = bcp + offset;
  assert(p[-1] == Bytecodes::_invokedynamic, "not invokedynamic bytecode");
  if (!reverse) {
    int cp_index = Bytes::get_Java_u2(p);
    int cache_index = add_invokedynamic_cp_cache_entry(cp_index);
    int resolved_index = add_invokedynamic_resolved_references_entries(cp_index, cache_index);
    // Replace the trailing four bytes with a CPC index for the dynamic
    // call site.  Unlike other CPC entries, there is one per bytecode,
    // not just one per distinct CP entry.  In other words, the
    // CPC-to-CP relation is many-to-one for invokedynamic entries.
    // This means we must use a larger index size than u2 to address
    // all these entries.  That is the main reason invokedynamic
    // must have a five-byte instruction format.  (Of course, other JVM
    // implementations can use the bytes for other purposes.)
    // Note: We use native_u4 format exclusively for 4-byte indexes.
    Bytes::put_native_u4(p, ConstantPool::encode_invokedynamic_index(cache_index));
    // add the bcp in case we need to patch this bytecode if we also find a
    // invokespecial/InterfaceMethodref in the bytecode stream
    _patch_invokedynamic_bcps->push(p);
    _patch_invokedynamic_refs->push(resolved_index);
  } else {
    int cache_index = ConstantPool::decode_invokedynamic_index(
                        Bytes::get_native_u4(p));
    // We will reverse the bytecode rewriting _after_ adjusting them.
    // Adjust the cache index by offset to the invokedynamic entries in the
    // cpCache plus the delta if the invokedynamic bytecodes were adjusted.
    cache_index = cp_cache_delta() + _first_iteration_cp_cache_limit;
    int cp_index = invokedynamic_cp_cache_entry_pool_index(cache_index);
    assert(_pool->tag_at(cp_index).is_invoke_dynamic(), "wrong index");
    // zero out 4 bytes
    Bytes::put_Java_u4(p, 0);
    Bytes::put_Java_u2(p, cp_index);
  }
}

void Rewriter::patch_invokedynamic_bytecodes() {
  // If the end of the cp_cache is the same as after initializing with the
  // cpool, nothing needs to be done.  Invokedynamic bytecodes are at the
  // correct offsets. ie. no invokespecials added
  int delta = cp_cache_delta();
  if (delta > 0) {
    int length = _patch_invokedynamic_bcps->length();
    assert(length == _patch_invokedynamic_refs->length(),
           "lengths should match");
    for (int i = 0; i < length; i++) {
      address p = _patch_invokedynamic_bcps->at(i);
      int cache_index = ConstantPool::decode_invokedynamic_index(
                          Bytes::get_native_u4(p));
      Bytes::put_native_u4(p, ConstantPool::encode_invokedynamic_index(cache_index + delta));

      // invokedynamic resolved references map also points to cp cache and must
      // add delta to each.
      int resolved_index = _patch_invokedynamic_refs->at(i);
      for (int entry = 0; entry < ConstantPoolCacheEntry::_indy_resolved_references_entries; entry++) {
        assert(_invokedynamic_references_map[resolved_index+entry] == cache_index,
             "should be the same index");
        _invokedynamic_references_map.at_put(resolved_index+entry,
                                             cache_index + delta);
      }
    }
  }
}


// Rewrite some ldc bytecodes to _fast_aldc
void Rewriter::maybe_rewrite_ldc(address bcp, int offset, bool is_wide,
                                 bool reverse) {
  if (!reverse) {
    assert((*bcp) == (is_wide ? Bytecodes::_ldc_w : Bytecodes::_ldc), "not ldc bytecode");
    address p = bcp + offset;
    int cp_index = is_wide ? Bytes::get_Java_u2(p) : (u1)(*p);
    constantTag tag = _pool->tag_at(cp_index).value();
    if (tag.is_method_handle() || tag.is_method_type() || tag.is_string()) {
      int ref_index = cp_entry_to_resolved_references(cp_index);
      if (is_wide) {
        (*bcp) = Bytecodes::_fast_aldc_w;
        assert(ref_index == (u2)ref_index, "index overflow");
        Bytes::put_native_u2(p, ref_index);
      } else {
        (*bcp) = Bytecodes::_fast_aldc;
        assert(ref_index == (u1)ref_index, "index overflow");
        (*p) = (u1)ref_index;
      }
    }
  } else {
    Bytecodes::Code rewritten_bc =
              (is_wide ? Bytecodes::_fast_aldc_w : Bytecodes::_fast_aldc);
    if ((*bcp) == rewritten_bc) {
      address p = bcp + offset;
      int ref_index = is_wide ? Bytes::get_native_u2(p) : (u1)(*p);
      int pool_index = resolved_references_entry_to_pool_index(ref_index);
      if (is_wide) {
        (*bcp) = Bytecodes::_ldc_w;
        assert(pool_index == (u2)pool_index, "index overflow");
        Bytes::put_Java_u2(p, pool_index);
      } else {
        (*bcp) = Bytecodes::_ldc;
        assert(pool_index == (u1)pool_index, "index overflow");
        (*p) = (u1)pool_index;
      }
    }
  }
}


// Rewrites a method given the index_map information
void Rewriter::scan_method(Method* method, bool reverse, bool* invokespecial_error) {

  int nof_jsrs = 0;
  bool has_monitor_bytecodes = false;

  {
    // We cannot tolerate a GC in this block, because we've
    // cached the bytecodes in 'code_base'. If the Method*
    // moves, the bytecodes will also move.
    No_Safepoint_Verifier nsv;
    Bytecodes::Code c;

    // Bytecodes and their length
    const address code_base = method->code_base();
    const int code_length = method->code_size();

    int bc_length;
    for (int bci = 0; bci < code_length; bci += bc_length) {
      address bcp = code_base + bci;
      int prefix_length = 0;
      c = (Bytecodes::Code)(*bcp);

      // Since we have the code, see if we can get the length
      // directly. Some more complicated bytecodes will report
      // a length of zero, meaning we need to make another method
      // call to calculate the length.
      bc_length = Bytecodes::length_for(c);
      if (bc_length == 0) {
        bc_length = Bytecodes::length_at(method, bcp);

        // length_at will put us at the bytecode after the one modified
        // by 'wide'. We don't currently examine any of the bytecodes
        // modified by wide, but in case we do in the future...
        if (c == Bytecodes::_wide) {
          prefix_length = 1;
          c = (Bytecodes::Code)bcp[1];
        }
      }

      assert(bc_length != 0, "impossible bytecode length");

      switch (c) {
        case Bytecodes::_lookupswitch   : {
#ifndef CC_INTERP
          Bytecode_lookupswitch bc(method, bcp);
          (*bcp) = (
            bc.number_of_pairs() < BinarySwitchThreshold
            ? Bytecodes::_fast_linearswitch
            : Bytecodes::_fast_binaryswitch
          );
#endif
          break;
        }
        case Bytecodes::_fast_linearswitch:
        case Bytecodes::_fast_binaryswitch: {
#ifndef CC_INTERP
          (*bcp) = Bytecodes::_lookupswitch;
#endif
          break;
        }

        case Bytecodes::_invokespecial  : {
          rewrite_invokespecial(bcp, prefix_length+1, reverse, invokespecial_error);
          break;
        }

        case Bytecodes::_getstatic      : // fall through
        case Bytecodes::_putstatic      : // fall through
        case Bytecodes::_getfield       : // fall through
        case Bytecodes::_putfield       : // fall through
        case Bytecodes::_invokevirtual  : // fall through
        case Bytecodes::_invokestatic   :
        case Bytecodes::_invokeinterface:
        case Bytecodes::_invokehandle   : // if reverse=true
          rewrite_member_reference(bcp, prefix_length+1, reverse);
          break;
        case Bytecodes::_invokedynamic:
          rewrite_invokedynamic(bcp, prefix_length+1, reverse);
          break;
        case Bytecodes::_ldc:
        case Bytecodes::_fast_aldc:  // if reverse=true
          maybe_rewrite_ldc(bcp, prefix_length+1, false, reverse);
          break;
        case Bytecodes::_ldc_w:
        case Bytecodes::_fast_aldc_w:  // if reverse=true
          maybe_rewrite_ldc(bcp, prefix_length+1, true, reverse);
          break;
        case Bytecodes::_jsr            : // fall through
        case Bytecodes::_jsr_w          : nof_jsrs++;                   break;
        case Bytecodes::_monitorenter   : // fall through
        case Bytecodes::_monitorexit    : has_monitor_bytecodes = true; break;
      }
    }
  }

  // Update access flags
  if (has_monitor_bytecodes) {
    method->set_has_monitor_bytecodes();
  }

  // The present of a jsr bytecode implies that the method might potentially
  // have to be rewritten, so we run the oopMapGenerator on the method
  if (nof_jsrs > 0) {
    method->set_has_jsrs();
    // Second pass will revisit this method.
    assert(method->has_jsrs(), "didn't we just set this?");
  }
}

// After constant pool is created, revisit methods containing jsrs.
methodHandle Rewriter::rewrite_jsrs(methodHandle method, TRAPS) {
  ResourceMark rm(THREAD);
  ResolveOopMapConflicts romc(method);
  methodHandle original_method = method;
  method = romc.do_potential_rewrite(CHECK_(methodHandle()));
  // Update monitor matching info.
  if (romc.monitor_safe()) {
    method->set_guaranteed_monitor_matching();
  }

  return method;
}

void Rewriter::rewrite(instanceKlassHandle klass, TRAPS) {
  ResourceMark rm(THREAD);
  Rewriter     rw(klass, klass->constants(), klass->methods(), CHECK);
  // (That's all, folks.)
}


Rewriter::Rewriter(instanceKlassHandle klass, constantPoolHandle cpool, Array<Method*>* methods, TRAPS)
  : _klass(klass),
    _pool(cpool),
    _methods(methods)
{
  assert(_pool->cache() == NULL, "constant pool cache must not be set yet");

  // determine index maps for Method* rewriting
  compute_index_maps();

  if (RegisterFinalizersAtInit && _klass->name() == vmSymbols::java_lang_Object()) {
    bool did_rewrite = false;
    int i = _methods->length();
    while (i-- > 0) {
      Method* method = _methods->at(i);
      if (method->intrinsic_id() == vmIntrinsics::_Object_init) {
        // rewrite the return bytecodes of Object.<init> to register the
        // object for finalization if needed.
        methodHandle m(THREAD, method);
        rewrite_Object_init(m, CHECK);
        did_rewrite = true;
        break;
      }
    }
    assert(did_rewrite, "must find Object::<init> to rewrite it");
  }

  // rewrite methods, in two passes
  int len = _methods->length();
  bool invokespecial_error = false;

  for (int i = len-1; i >= 0; i--) {
    Method* method = _methods->at(i);
    scan_method(method, false, &invokespecial_error);
    if (invokespecial_error) {
      // If you get an error here, there is no reversing bytecodes
      // This exception is stored for this class and no further attempt is
      // made at verifying or rewriting.
      THROW_MSG(vmSymbols::java_lang_InternalError(),
                "This classfile overflows invokespecial for interfaces "
                "and cannot be loaded");
      return;
     }
  }

  // May have to fix invokedynamic bytecodes if invokestatic/InterfaceMethodref
  // entries had to be added.
  patch_invokedynamic_bytecodes();

  // allocate constant pool cache, now that we've seen all the bytecodes
  make_constant_pool_cache(THREAD);

  // Restore bytecodes to their unrewritten state if there are exceptions
  // rewriting bytecodes or allocating the cpCache
  if (HAS_PENDING_EXCEPTION) {
    restore_bytecodes();
    return;
  }

  // Relocate after everything, but still do this under the is_rewritten flag,
  // so methods with jsrs in custom class lists in aren't attempted to be
  // rewritten in the RO section of the shared archive.
  // Relocated bytecodes don't have to be restored, only the cp cache entries
  for (int i = len-1; i >= 0; i--) {
    methodHandle m(THREAD, _methods->at(i));

    if (m->has_jsrs()) {
      m = rewrite_jsrs(m, THREAD);
      // Restore bytecodes to their unrewritten state if there are exceptions
      // relocating bytecodes.  If some are relocated, that is ok because that
      // doesn't affect constant pool to cpCache rewriting.
      if (HAS_PENDING_EXCEPTION) {
        restore_bytecodes();
        return;
      }
      // Method might have gotten rewritten.
      methods->at_put(i, m());
    }
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java rewriter.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.