|
Java example source code file (allocation.cpp)
The allocation.cpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "memory/genCollectedHeap.hpp" #include "memory/metaspaceShared.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "runtime/task.hpp" #include "runtime/threadCritical.hpp" #include "services/memTracker.hpp" #include "utilities/ostream.hpp" #ifdef TARGET_OS_FAMILY_linux # include "os_linux.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_solaris # include "os_solaris.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_windows # include "os_windows.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_bsd # include "os_bsd.inline.hpp" #endif void* StackObj::operator new(size_t size) throw() { ShouldNotCallThis(); return 0; } void StackObj::operator delete(void* p) { ShouldNotCallThis(); } void* StackObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; } void StackObj::operator delete [](void* p) { ShouldNotCallThis(); } void* _ValueObj::operator new(size_t size) throw() { ShouldNotCallThis(); return 0; } void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); } void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; } void _ValueObj::operator delete [](void* p) { ShouldNotCallThis(); } void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, bool read_only, MetaspaceObj::Type type, TRAPS) throw() { // Klass has it's own operator new return Metaspace::allocate(loader_data, word_size, read_only, type, CHECK_NULL); } bool MetaspaceObj::is_shared() const { return MetaspaceShared::is_in_shared_space(this); } bool MetaspaceObj::is_metaspace_object() const { return Metaspace::contains((void*)this); } void MetaspaceObj::print_address_on(outputStream* st) const { st->print(" {"INTPTR_FORMAT"}", this); } void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() { address res; switch (type) { case C_HEAP: res = (address)AllocateHeap(size, flags, CALLER_PC); DEBUG_ONLY(set_allocation_type(res, C_HEAP);) break; case RESOURCE_AREA: // new(size) sets allocation type RESOURCE_AREA. res = (address)operator new(size); break; default: ShouldNotReachHere(); } return res; } void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() { return (address) operator new(size, type, flags); } void* ResourceObj::operator new(size_t size, const std::nothrow_t& nothrow_constant, allocation_type type, MEMFLAGS flags) throw() { //should only call this with std::nothrow, use other operator new() otherwise address res; switch (type) { case C_HEAP: res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL); DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);) break; case RESOURCE_AREA: // new(size) sets allocation type RESOURCE_AREA. res = (address)operator new(size, std::nothrow); break; default: ShouldNotReachHere(); } return res; } void* ResourceObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant, allocation_type type, MEMFLAGS flags) throw() { return (address)operator new(size, nothrow_constant, type, flags); } void ResourceObj::operator delete(void* p) { assert(((ResourceObj *)p)->allocated_on_C_heap(), "delete only allowed for C_HEAP objects"); DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;) FreeHeap(p); } void ResourceObj::operator delete [](void* p) { operator delete(p); } #ifdef ASSERT void ResourceObj::set_allocation_type(address res, allocation_type type) { // Set allocation type in the resource object uintptr_t allocation = (uintptr_t)res; assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least"); assert(type <= allocation_mask, "incorrect allocation type"); ResourceObj* resobj = (ResourceObj *)res; resobj->_allocation_t[0] = ~(allocation + type); if (type != STACK_OR_EMBEDDED) { // Called from operator new() and CollectionSetChooser(), // set verification value. resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type; } } ResourceObj::allocation_type ResourceObj::get_allocation_type() const { assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object"); return (allocation_type)((~_allocation_t[0]) & allocation_mask); } bool ResourceObj::is_type_set() const { allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask); return get_allocation_type() == type && (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]); } ResourceObj::ResourceObj() { // default constructor if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) { // Operator new() is not called for allocations // on stack and for embedded objects. set_allocation_type((address)this, STACK_OR_EMBEDDED); } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED // For some reason we got a value which resembles // an embedded or stack object (operator new() does not // set such type). Keep it since it is valid value // (even if it was garbage). // Ignore garbage in other fields. } else if (is_type_set()) { // Operator new() was called and type was set. assert(!allocated_on_stack(), err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")", this, get_allocation_type(), _allocation_t[0], _allocation_t[1])); } else { // Operator new() was not called. // Assume that it is embedded or stack object. set_allocation_type((address)this, STACK_OR_EMBEDDED); } _allocation_t[1] = 0; // Zap verification value } ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream. // Note: garbage may resembles valid value. assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(), err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")", this, get_allocation_type(), _allocation_t[0], _allocation_t[1])); set_allocation_type((address)this, STACK_OR_EMBEDDED); _allocation_t[1] = 0; // Zap verification value } ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment // Used in InlineTree::ok_to_inline() for WarmCallInfo. assert(allocated_on_stack(), err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")", this, get_allocation_type(), _allocation_t[0], _allocation_t[1])); // Keep current _allocation_t value; return *this; } ResourceObj::~ResourceObj() { // allocated_on_C_heap() also checks that encoded (in _allocation) address == this. if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap. _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type } } #endif // ASSERT void trace_heap_malloc(size_t size, const char* name, void* p) { // A lock is not needed here - tty uses a lock internally tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name); } void trace_heap_free(void* p) { // A lock is not needed here - tty uses a lock internally tty->print_cr("Heap free " INTPTR_FORMAT, p); } //-------------------------------------------------------------------------------------- // ChunkPool implementation // MT-safe pool of chunks to reduce malloc/free thrashing // NB: not using Mutex because pools are used before Threads are initialized class ChunkPool: public CHeapObj<mtInternal> { Chunk* _first; // first cached Chunk; its first word points to next chunk size_t _num_chunks; // number of unused chunks in pool size_t _num_used; // number of chunks currently checked out const size_t _size; // size of each chunk (must be uniform) // Our four static pools static ChunkPool* _large_pool; static ChunkPool* _medium_pool; static ChunkPool* _small_pool; static ChunkPool* _tiny_pool; // return first element or null void* get_first() { Chunk* c = _first; if (_first) { _first = _first->next(); _num_chunks--; } return c; } public: // All chunks in a ChunkPool has the same size ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; } // Allocate a new chunk from the pool (might expand the pool) _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) { assert(bytes == _size, "bad size"); void* p = NULL; // No VM lock can be taken inside ThreadCritical lock, so os::malloc // should be done outside ThreadCritical lock due to NMT { ThreadCritical tc; _num_used++; p = get_first(); } if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC); if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate"); } return p; } // Return a chunk to the pool void free(Chunk* chunk) { assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size"); ThreadCritical tc; _num_used--; // Add chunk to list chunk->set_next(_first); _first = chunk; _num_chunks++; } // Prune the pool void free_all_but(size_t n) { Chunk* cur = NULL; Chunk* next; { // if we have more than n chunks, free all of them ThreadCritical tc; if (_num_chunks > n) { // free chunks at end of queue, for better locality cur = _first; for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next(); if (cur != NULL) { next = cur->next(); cur->set_next(NULL); cur = next; _num_chunks = n; } } } // Free all remaining chunks, outside of ThreadCritical // to avoid deadlock with NMT while(cur != NULL) { next = cur->next(); os::free(cur, mtChunk); cur = next; } } // Accessors to preallocated pool's static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; } static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; } static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; } static ChunkPool* tiny_pool() { assert(_tiny_pool != NULL, "must be initialized"); return _tiny_pool; } static void initialize() { _large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size()); _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size()); _small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size()); _tiny_pool = new ChunkPool(Chunk::tiny_size + Chunk::aligned_overhead_size()); } static void clean() { enum { BlocksToKeep = 5 }; _tiny_pool->free_all_but(BlocksToKeep); _small_pool->free_all_but(BlocksToKeep); _medium_pool->free_all_but(BlocksToKeep); _large_pool->free_all_but(BlocksToKeep); } }; ChunkPool* ChunkPool::_large_pool = NULL; ChunkPool* ChunkPool::_medium_pool = NULL; ChunkPool* ChunkPool::_small_pool = NULL; ChunkPool* ChunkPool::_tiny_pool = NULL; void chunkpool_init() { ChunkPool::initialize(); } void Chunk::clean_chunk_pool() { ChunkPool::clean(); } //-------------------------------------------------------------------------------------- // ChunkPoolCleaner implementation // class ChunkPoolCleaner : public PeriodicTask { enum { CleaningInterval = 5000 }; // cleaning interval in ms public: ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {} void task() { ChunkPool::clean(); } }; //-------------------------------------------------------------------------------------- // Chunk implementation void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() { // requested_size is equal to sizeof(Chunk) but in order for the arena // allocations to come out aligned as expected the size must be aligned // to expected arena alignment. // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it. assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment"); size_t bytes = ARENA_ALIGN(requested_size) + length; switch (length) { case Chunk::size: return ChunkPool::large_pool()->allocate(bytes, alloc_failmode); case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode); case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes, alloc_failmode); case Chunk::tiny_size: return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode); default: { void* p = os::malloc(bytes, mtChunk, CALLER_PC); if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new"); } return p; } } } void Chunk::operator delete(void* p) { Chunk* c = (Chunk*)p; switch (c->length()) { case Chunk::size: ChunkPool::large_pool()->free(c); break; case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break; case Chunk::init_size: ChunkPool::small_pool()->free(c); break; case Chunk::tiny_size: ChunkPool::tiny_pool()->free(c); break; default: os::free(c, mtChunk); } } Chunk::Chunk(size_t length) : _len(length) { _next = NULL; // Chain on the linked list } void Chunk::chop() { Chunk *k = this; while( k ) { Chunk *tmp = k->next(); // clear out this chunk (to detect allocation bugs) if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length()); delete k; // Free chunk (was malloc'd) k = tmp; } } void Chunk::next_chop() { _next->chop(); _next = NULL; } void Chunk::start_chunk_pool_cleaner_task() { #ifdef ASSERT static bool task_created = false; assert(!task_created, "should not start chuck pool cleaner twice"); task_created = true; #endif ChunkPoolCleaner* cleaner = new ChunkPoolCleaner(); cleaner->enroll(); } //------------------------------Arena------------------------------------------ NOT_PRODUCT(volatile jint Arena::_instance_count = 0;) Arena::Arena(size_t init_size) { size_t round_size = (sizeof (char *)) - 1; init_size = (init_size+round_size) & ~round_size; _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size); _hwm = _chunk->bottom(); // Save the cached hwm, max _max = _chunk->top(); set_size_in_bytes(init_size); NOT_PRODUCT(Atomic::inc(&_instance_count);) } Arena::Arena() { _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size); _hwm = _chunk->bottom(); // Save the cached hwm, max _max = _chunk->top(); set_size_in_bytes(Chunk::init_size); NOT_PRODUCT(Atomic::inc(&_instance_count);) } Arena *Arena::move_contents(Arena *copy) { copy->destruct_contents(); copy->_chunk = _chunk; copy->_hwm = _hwm; copy->_max = _max; copy->_first = _first; // workaround rare racing condition, which could double count // the arena size by native memory tracking size_t size = size_in_bytes(); set_size_in_bytes(0); copy->set_size_in_bytes(size); // Destroy original arena reset(); return copy; // Return Arena with contents } Arena::~Arena() { destruct_contents(); NOT_PRODUCT(Atomic::dec(&_instance_count);) } void* Arena::operator new(size_t size) throw() { assert(false, "Use dynamic memory type binding"); return NULL; } void* Arena::operator new (size_t size, const std::nothrow_t& nothrow_constant) throw() { assert(false, "Use dynamic memory type binding"); return NULL; } // dynamic memory type binding void* Arena::operator new(size_t size, MEMFLAGS flags) throw() { #ifdef ASSERT void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC); if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p); return p; #else return (void *) AllocateHeap(size, flags|otArena, CALLER_PC); #endif } void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() { #ifdef ASSERT void* p = os::malloc(size, flags|otArena, CALLER_PC); if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p); return p; #else return os::malloc(size, flags|otArena, CALLER_PC); #endif } void Arena::operator delete(void* p) { FreeHeap(p); } // Destroy this arenas contents and reset to empty void Arena::destruct_contents() { if (UseMallocOnly && _first != NULL) { char* end = _first->next() ? _first->top() : _hwm; free_malloced_objects(_first, _first->bottom(), end, _hwm); } // reset size before chop to avoid a rare racing condition // that can have total arena memory exceed total chunk memory set_size_in_bytes(0); _first->chop(); reset(); } // This is high traffic method, but many calls actually don't // change the size void Arena::set_size_in_bytes(size_t size) { if (_size_in_bytes != size) { _size_in_bytes = size; MemTracker::record_arena_size((address)this, size); } } // Total of all Chunks in arena size_t Arena::used() const { size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk register Chunk *k = _first; while( k != _chunk) { // Whilst have Chunks in a row sum += k->length(); // Total size of this Chunk k = k->next(); // Bump along to next Chunk } return sum; // Return total consumed space. } void Arena::signal_out_of_memory(size_t sz, const char* whence) const { vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence); } // Grow a new Chunk void* Arena::grow(size_t x, AllocFailType alloc_failmode) { // Get minimal required size. Either real big, or even bigger for giant objs size_t len = MAX2(x, (size_t) Chunk::size); Chunk *k = _chunk; // Get filled-up chunk address _chunk = new (alloc_failmode, len) Chunk(len); if (_chunk == NULL) { return NULL; } if (k) k->set_next(_chunk); // Append new chunk to end of linked list else _first = _chunk; _hwm = _chunk->bottom(); // Save the cached hwm, max _max = _chunk->top(); set_size_in_bytes(size_in_bytes() + len); void* result = _hwm; _hwm += x; return result; } // Reallocate storage in Arena. void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) { assert(new_size >= 0, "bad size"); if (new_size == 0) return NULL; #ifdef ASSERT if (UseMallocOnly) { // always allocate a new object (otherwise we'll free this one twice) char* copy = (char*)Amalloc(new_size, alloc_failmode); if (copy == NULL) { return NULL; } size_t n = MIN2(old_size, new_size); if (n > 0) memcpy(copy, old_ptr, n); Afree(old_ptr,old_size); // Mostly done to keep stats accurate return copy; } #endif char *c_old = (char*)old_ptr; // Handy name // Stupid fast special case if( new_size <= old_size ) { // Shrink in-place if( c_old+old_size == _hwm) // Attempt to free the excess bytes _hwm = c_old+new_size; // Adjust hwm return c_old; } // make sure that new_size is legal size_t corrected_new_size = ARENA_ALIGN(new_size); // See if we can resize in-place if( (c_old+old_size == _hwm) && // Adjusting recent thing (c_old+corrected_new_size <= _max) ) { // Still fits where it sits _hwm = c_old+corrected_new_size; // Adjust hwm return c_old; // Return old pointer } // Oops, got to relocate guts void *new_ptr = Amalloc(new_size, alloc_failmode); if (new_ptr == NULL) { return NULL; } memcpy( new_ptr, c_old, old_size ); Afree(c_old,old_size); // Mostly done to keep stats accurate return new_ptr; } // Determine if pointer belongs to this Arena or not. bool Arena::contains( const void *ptr ) const { #ifdef ASSERT if (UseMallocOnly) { // really slow, but not easy to make fast if (_chunk == NULL) return false; char** bottom = (char**)_chunk->bottom(); for (char** p = (char**)_hwm - 1; p >= bottom; p--) { if (*p == ptr) return true; } for (Chunk *c = _first; c != NULL; c = c->next()) { if (c == _chunk) continue; // current chunk has been processed char** bottom = (char**)c->bottom(); for (char** p = (char**)c->top() - 1; p >= bottom; p--) { if (*p == ptr) return true; } } return false; } #endif if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm ) return true; // Check for in this chunk for (Chunk *c = _first; c; c = c->next()) { if (c == _chunk) continue; // current chunk has been processed if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) { return true; // Check for every chunk in Arena } } return false; // Not in any Chunk, so not in Arena } #ifdef ASSERT void* Arena::malloc(size_t size) { assert(UseMallocOnly, "shouldn't call"); // use malloc, but save pointer in res. area for later freeing char** save = (char**)internal_malloc_4(sizeof(char*)); return (*save = (char*)os::malloc(size, mtChunk)); } // for debugging with UseMallocOnly void* Arena::internal_malloc_4(size_t x) { assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" ); check_for_overflow(x, "Arena::internal_malloc_4"); if (_hwm + x > _max) { return grow(x); } else { char *old = _hwm; _hwm += x; return old; } } #endif //-------------------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT // The global operator new should never be called since it will usually indicate // a memory leak. Use CHeapObj as the base class of such objects to make it explicit // that they're allocated on the C heap. // Commented out in product version to avoid conflicts with third-party C++ native code. // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called // from jdk source and causing data corruption. Such as // Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed. // #ifndef ALLOW_OPERATOR_NEW_USAGE void* operator new(size_t size) throw() { assert(false, "Should not call global operator new"); return 0; } void* operator new [](size_t size) throw() { assert(false, "Should not call global operator new[]"); return 0; } void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() { assert(false, "Should not call global operator new"); return 0; } void* operator new [](size_t size, std::nothrow_t& nothrow_constant) throw() { assert(false, "Should not call global operator new[]"); return 0; } void operator delete(void* p) { assert(false, "Should not call global delete"); } void operator delete [](void* p) { assert(false, "Should not call global delete []"); } #endif // ALLOW_OPERATOR_NEW_USAGE void AllocatedObj::print() const { print_on(tty); } void AllocatedObj::print_value() const { print_value_on(tty); } void AllocatedObj::print_on(outputStream* st) const { st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this); } void AllocatedObj::print_value_on(outputStream* st) const { st->print("AllocatedObj(" INTPTR_FORMAT ")", this); } julong Arena::_bytes_allocated = 0; void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); } AllocStats::AllocStats() { start_mallocs = os::num_mallocs; start_frees = os::num_frees; start_malloc_bytes = os::alloc_bytes; start_mfree_bytes = os::free_bytes; start_res_bytes = Arena::_bytes_allocated; } julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; } julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; } julong AllocStats::num_frees() { return os::num_frees - start_frees; } julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; } julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; } void AllocStats::print() { tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), " UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc", num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M); } // debugging code inline void Arena::free_all(char** start, char** end) { for (char** p = start; p < end; p++) if (*p) os::free(*p); } void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) { assert(UseMallocOnly, "should not call"); // free all objects malloced since resource mark was created; resource area // contains their addresses if (chunk->next()) { // this chunk is full, and some others too for (Chunk* c = chunk->next(); c != NULL; c = c->next()) { char* top = c->top(); if (c->next() == NULL) { top = hwm2; // last junk is only used up to hwm2 assert(c->contains(hwm2), "bad hwm2"); } free_all((char**)c->bottom(), (char**)top); } assert(chunk->contains(hwm), "bad hwm"); assert(chunk->contains(max), "bad max"); free_all((char**)hwm, (char**)max); } else { // this chunk was partially used assert(chunk->contains(hwm), "bad hwm"); assert(chunk->contains(hwm2), "bad hwm2"); free_all((char**)hwm, (char**)hwm2); } } ReallocMark::ReallocMark() { #ifdef ASSERT Thread *thread = ThreadLocalStorage::get_thread_slow(); _nesting = thread->resource_area()->nesting(); #endif } void ReallocMark::check() { #ifdef ASSERT if (_nesting != Thread::current()->resource_area()->nesting()) { fatal("allocation bug: array could grow within nested ResourceMark"); } #endif } #endif // Non-product Other Java examples (source code examples)Here is a short list of links related to this Java allocation.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.