|
Java example source code file (barrierSet.hpp)
The barrierSet.hpp Java example source code/* * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP #define SHARE_VM_MEMORY_BARRIERSET_HPP #include "memory/memRegion.hpp" #include "oops/oopsHierarchy.hpp" // This class provides the interface between a barrier implementation and // the rest of the system. class BarrierSet: public CHeapObj<mtGC> { friend class VMStructs; public: enum Name { ModRef, CardTableModRef, CardTableExtension, G1SATBCT, G1SATBCTLogging, Other, Uninit }; enum Flags { None = 0, TargetUninitialized = 1 }; protected: int _max_covered_regions; Name _kind; public: BarrierSet() { _kind = Uninit; } // To get around prohibition on RTTI. BarrierSet::Name kind() { return _kind; } virtual bool is_a(BarrierSet::Name bsn) = 0; // These operations indicate what kind of barriers the BarrierSet has. virtual bool has_read_ref_barrier() = 0; virtual bool has_read_prim_barrier() = 0; virtual bool has_write_ref_barrier() = 0; virtual bool has_write_ref_pre_barrier() = 0; virtual bool has_write_prim_barrier() = 0; // These functions indicate whether a particular access of the given // kinds requires a barrier. virtual bool read_ref_needs_barrier(void* field) = 0; virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0; virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes, juint val1, juint val2) = 0; // The first four operations provide a direct implementation of the // barrier set. An interpreter loop, for example, could call these // directly, as appropriate. // Invoke the barrier, if any, necessary when reading the given ref field. virtual void read_ref_field(void* field) = 0; // Invoke the barrier, if any, necessary when reading the given primitive // "field" of "bytes" bytes in "obj". virtual void read_prim_field(HeapWord* field, size_t bytes) = 0; // Invoke the barrier, if any, necessary when writing "new_val" into the // ref field at "offset" in "obj". // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) // First the pre-write versions... template <class T> inline void write_ref_field_pre(T* field, oop new_val); private: // Keep this private so as to catch violations at build time. virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); }; protected: virtual void write_ref_field_pre_work( oop* field, oop new_val) {}; virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {}; public: // ...then the post-write version. inline void write_ref_field(void* field, oop new_val); protected: virtual void write_ref_field_work(void* field, oop new_val) = 0; public: // Invoke the barrier, if any, necessary when writing the "bytes"-byte // value(s) "val1" (and "val2") into the primitive "field". virtual void write_prim_field(HeapWord* field, size_t bytes, juint val1, juint val2) = 0; // Operations on arrays, or general regions (e.g., for "clone") may be // optimized by some barriers. // The first six operations tell whether such an optimization exists for // the particular barrier. virtual bool has_read_ref_array_opt() = 0; virtual bool has_read_prim_array_opt() = 0; virtual bool has_write_ref_array_pre_opt() { return true; } virtual bool has_write_ref_array_opt() = 0; virtual bool has_write_prim_array_opt() = 0; virtual bool has_read_region_opt() = 0; virtual bool has_write_region_opt() = 0; // These operations should assert false unless the correponding operation // above returns true. Otherwise, they should perform an appropriate // barrier for an array whose elements are all in the given memory region. virtual void read_ref_array(MemRegion mr) = 0; virtual void read_prim_array(MemRegion mr) = 0; // Below length is the # array elements being written virtual void write_ref_array_pre(oop* dst, int length, bool dest_uninitialized = false) {} virtual void write_ref_array_pre(narrowOop* dst, int length, bool dest_uninitialized = false) {} // Below count is the # array elements being written, starting // at the address "start", which may not necessarily be HeapWord-aligned inline void write_ref_array(HeapWord* start, size_t count); // Static versions, suitable for calling from generated code; // count is # array elements being written, starting with "start", // which may not necessarily be HeapWord-aligned. static void static_write_ref_array_pre(HeapWord* start, size_t count); static void static_write_ref_array_post(HeapWord* start, size_t count); protected: virtual void write_ref_array_work(MemRegion mr) = 0; public: virtual void write_prim_array(MemRegion mr) = 0; virtual void read_region(MemRegion mr) = 0; // (For efficiency reasons, this operation is specialized for certain // barrier types. Semantically, it should be thought of as a call to the // virtual "_work" function below, which must implement the barrier.) inline void write_region(MemRegion mr); protected: virtual void write_region_work(MemRegion mr) = 0; public: // Some barrier sets create tables whose elements correspond to parts of // the heap; the CardTableModRefBS is an example. Such barrier sets will // normally reserve space for such tables, and commit parts of the table // "covering" parts of the heap that are committed. The constructor is // passed the maximum number of independently committable subregions to // be covered, and the "resize_covoered_region" function allows the // sub-parts of the heap to inform the barrier set of changes of their // sizes. BarrierSet(int max_covered_regions) : _max_covered_regions(max_covered_regions) {} // Inform the BarrierSet that the the covered heap region that starts // with "base" has been changed to have the given size (possibly from 0, // for initialization.) virtual void resize_covered_region(MemRegion new_region) = 0; // If the barrier set imposes any alignment restrictions on boundaries // within the heap, this function tells whether they are met. virtual bool is_aligned(HeapWord* addr) = 0; // Print a description of the memory for the barrier set virtual void print_on(outputStream* st) const = 0; }; #endif // SHARE_VM_MEMORY_BARRIERSET_HPP Other Java examples (source code examples)Here is a short list of links related to this Java barrierSet.hpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.