alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (sharedHeap.hpp)

This example Java source code file (sharedHeap.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

codeblobclosure, collectorpolicy, extendedoopclosure, flexibleworkgang, genremset, klassclosure, oopclosure, scanningoption, share_vm_memory_sharedheap_hpp, sharedheap, so_strings, space, strongrootsscope, subtasksdone

The sharedHeap.hpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_MEMORY_SHAREDHEAP_HPP
#define SHARE_VM_MEMORY_SHAREDHEAP_HPP

#include "gc_interface/collectedHeap.hpp"
#include "memory/generation.hpp"

// A "SharedHeap" is an implementation of a java heap for HotSpot.  This
// is an abstract class: there may be many different kinds of heaps.  This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.

class Generation;
class BarrierSet;
class GenRemSet;
class Space;
class SpaceClosure;
class OopClosure;
class OopsInGenClosure;
class ObjectClosure;
class SubTasksDone;
class WorkGang;
class FlexibleWorkGang;
class CollectorPolicy;
class KlassClosure;

// Note on use of FlexibleWorkGang's for GC.
// There are three places where task completion is determined.
// In
//    1) ParallelTaskTerminator::offer_termination() where _n_threads
//    must be set to the correct value so that count of workers that
//    have offered termination will exactly match the number
//    working on the task.  Tasks such as those derived from GCTask
//    use ParallelTaskTerminator's.  Tasks that want load balancing
//    by work stealing use this method to gauge completion.
//    2) SubTasksDone has a variable _n_threads that is used in
//    all_tasks_completed() to determine completion.  all_tasks_complete()
//    counts the number of tasks that have been done and then reset
//    the SubTasksDone so that it can be used again.  When the number of
//    tasks is set to the number of GC workers, then _n_threads must
//    be set to the number of active GC workers. G1CollectedHeap,
//    HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
//    This seems too many.
//    3) SequentialSubTasksDone has an _n_threads that is used in
//    a way similar to SubTasksDone and has the same dependency on the
//    number of active GC workers.  CompactibleFreeListSpace and Space
//    have SequentialSubTasksDone's.
// Example of using SubTasksDone and SequentialSubTasksDone
// G1CollectedHeap::g1_process_strong_roots() calls
//  process_strong_roots(false, // no scoping; this is parallel code
//                       is_scavenging, so,
//                       &buf_scan_non_heap_roots,
//                       &eager_scan_code_roots);
//  which delegates to SharedHeap::process_strong_roots() and uses
//  SubTasksDone* _process_strong_tasks to claim tasks.
//  process_strong_roots() calls
//      rem_set()->younger_refs_iterate()
//  to scan the card table and which eventually calls down into
//  CardTableModRefBS::par_non_clean_card_iterate_work().  This method
//  uses SequentialSubTasksDone* _pst to claim tasks.
//  Both SubTasksDone and SequentialSubTasksDone call their method
//  all_tasks_completed() to count the number of GC workers that have
//  finished their work.  That logic is "when all the workers are
//  finished the tasks are finished".
//
//  The pattern that appears  in the code is to set _n_threads
//  to a value > 1 before a task that you would like executed in parallel
//  and then to set it to 0 after that task has completed.  A value of
//  0 is a "special" value in set_n_threads() which translates to
//  setting _n_threads to 1.
//
//  Some code uses _n_terminiation to decide if work should be done in
//  parallel.  The notorious possibly_parallel_oops_do() in threads.cpp
//  is an example of such code.  Look for variable "is_par" for other
//  examples.
//
//  The active_workers is not reset to 0 after a parallel phase.  It's
//  value may be used in later phases and in one instance at least
//  (the parallel remark) it has to be used (the parallel remark depends
//  on the partitioning done in the previous parallel scavenge).

class SharedHeap : public CollectedHeap {
  friend class VMStructs;

  friend class VM_GC_Operation;
  friend class VM_CGC_Operation;

private:
  // For claiming strong_roots tasks.
  SubTasksDone* _process_strong_tasks;

protected:
  // There should be only a single instance of "SharedHeap" in a program.
  // This is enforced with the protected constructor below, which will also
  // set the static pointer "_sh" to that instance.
  static SharedHeap* _sh;

  // and the Gen Remembered Set, at least one good enough to scan the perm
  // gen.
  GenRemSet* _rem_set;

  // A gc policy, controls global gc resource issues
  CollectorPolicy *_collector_policy;

  // See the discussion below, in the specification of the reader function
  // for this variable.
  int _strong_roots_parity;

  // If we're doing parallel GC, use this gang of threads.
  FlexibleWorkGang* _workers;

  // Full initialization is done in a concrete subtype's "initialize"
  // function.
  SharedHeap(CollectorPolicy* policy_);

  // Returns true if the calling thread holds the heap lock,
  // or the calling thread is a par gc thread and the heap_lock is held
  // by the vm thread doing a gc operation.
  bool heap_lock_held_for_gc();
  // True if the heap_lock is held by the a non-gc thread invoking a gc
  // operation.
  bool _thread_holds_heap_lock_for_gc;

public:
  static SharedHeap* heap() { return _sh; }

  void set_barrier_set(BarrierSet* bs);
  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }

  // Does operations required after initialization has been done.
  virtual void post_initialize();

  // Initialization of ("weak") reference processing support
  virtual void ref_processing_init();

  // This function returns the "GenRemSet" object that allows us to scan
  // generations in a fully generational heap.
  GenRemSet* rem_set() { return _rem_set; }

  // Iteration functions.
  void oop_iterate(ExtendedOopClosure* cl) = 0;

  // Same as above, restricted to a memory region.
  virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl) = 0;

  // Iterate over all spaces in use in the heap, in an undefined order.
  virtual void space_iterate(SpaceClosure* cl) = 0;

  // A SharedHeap will contain some number of spaces.  This finds the
  // space whose reserved area contains the given address, or else returns
  // NULL.
  virtual Space* space_containing(const void* addr) const = 0;

  bool no_gc_in_progress() { return !is_gc_active(); }

  // Some collectors will perform "process_strong_roots" in parallel.
  // Such a call will involve claiming some fine-grained tasks, such as
  // scanning of threads.  To make this process simpler, we provide the
  // "strong_roots_parity()" method.  Collectors that start parallel tasks
  // whose threads invoke "process_strong_roots" must
  // call "change_strong_roots_parity" in sequential code starting such a
  // task.  (This also means that a parallel thread may only call
  // process_strong_roots once.)
  //
  // For calls to process_strong_roots by sequential code, the parity is
  // updated automatically.
  //
  // The idea is that objects representing fine-grained tasks, such as
  // threads, will contain a "parity" field.  A task will is claimed in the
  // current "process_strong_roots" call only if its parity field is the
  // same as the "strong_roots_parity"; task claiming is accomplished by
  // updating the parity field to the strong_roots_parity with a CAS.
  //
  // If the client meats this spec, then strong_roots_parity() will have
  // the following properties:
  //   a) to return a different value than was returned before the last
  //      call to change_strong_roots_parity, and
  //   c) to never return a distinguished value (zero) with which such
  //      task-claiming variables may be initialized, to indicate "never
  //      claimed".
 private:
  void change_strong_roots_parity();
 public:
  int strong_roots_parity() { return _strong_roots_parity; }

  // Call these in sequential code around process_strong_roots.
  // strong_roots_prologue calls change_strong_roots_parity, if
  // parallel tasks are enabled.
  class StrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
  public:
    StrongRootsScope(SharedHeap* outer, bool activate = true);
    ~StrongRootsScope();
  };
  friend class StrongRootsScope;

  enum ScanningOption {
    SO_None                = 0x0,
    SO_AllClasses          = 0x1,
    SO_SystemClasses       = 0x2,
    SO_Strings             = 0x4,
    SO_CodeCache           = 0x8
  };

  FlexibleWorkGang* workers() const { return _workers; }

  // Invoke the "do_oop" method the closure "roots" on all root locations.
  // The "so" argument determines which roots the closure is applied to:
  // "SO_None" does none;
  // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
  // "SO_SystemClasses" to all the "system" classes and loaders;
  // "SO_Strings" applies the closure to all entries in StringTable;
  // "SO_CodeCache" applies the closure to all elements of the CodeCache.
  void process_strong_roots(bool activate_scope,
                            bool is_scavenging,
                            ScanningOption so,
                            OopClosure* roots,
                            CodeBlobClosure* code_roots,
                            KlassClosure* klass_closure);

  // Apply "blk" to all the weak roots of the system.  These include
  // JNI weak roots, the code cache, system dictionary, symbol table,
  // string table.
  void process_weak_roots(OopClosure* root_closure,
                          CodeBlobClosure* code_roots);

  // The functions below are helper functions that a subclass of
  // "SharedHeap" can use in the implementation of its virtual
  // functions.

public:

  // Do anything common to GC's.
  virtual void gc_prologue(bool full) = 0;
  virtual void gc_epilogue(bool full) = 0;

  // Sets the number of parallel threads that will be doing tasks
  // (such as process strong roots) subsequently.
  virtual void set_par_threads(uint t);

  int n_termination();
  void set_n_termination(int t);

  //
  // New methods from CollectedHeap
  //

  // Some utilities.
  void print_size_transition(outputStream* out,
                             size_t bytes_before,
                             size_t bytes_after,
                             size_t capacity);
};

#endif // SHARE_VM_MEMORY_SHAREDHEAP_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java sharedHeap.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.