alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (objArrayKlass.cpp)

This example Java source code file (objArrayKlass.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

check_null, heapword\*, include_all_gcs, klass, klasshandle, null, objarrayklass, objarrayklass\:\:cast, objarrayklass_oop_iterate, thread, traps, usecompressedoops

The objArrayKlass.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayKlass.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "oops/symbol.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/copy.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/parNew/parOopClosures.inline.hpp"
#include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#endif // INCLUDE_ALL_GCS

ObjArrayKlass* ObjArrayKlass::allocate(ClassLoaderData* loader_data, int n, KlassHandle klass_handle, Symbol* name, TRAPS) {
  assert(ObjArrayKlass::header_size() <= InstanceKlass::header_size(),
      "array klasses must be same size as InstanceKlass");

  int size = ArrayKlass::static_size(ObjArrayKlass::header_size());

  return new (loader_data, size, THREAD) ObjArrayKlass(n, klass_handle, name);
}

Klass* ObjArrayKlass::allocate_objArray_klass(ClassLoaderData* loader_data,
                                                int n, KlassHandle element_klass, TRAPS) {

  // Eagerly allocate the direct array supertype.
  KlassHandle super_klass = KlassHandle();
  if (!Universe::is_bootstrapping() || SystemDictionary::Object_klass_loaded()) {
    KlassHandle element_super (THREAD, element_klass->super());
    if (element_super.not_null()) {
      // The element type has a direct super.  E.g., String[] has direct super of Object[].
      super_klass = KlassHandle(THREAD, element_super->array_klass_or_null());
      bool supers_exist = super_klass.not_null();
      // Also, see if the element has secondary supertypes.
      // We need an array type for each.
      Array<Klass*>* element_supers = element_klass->secondary_supers();
      for( int i = element_supers->length()-1; i >= 0; i-- ) {
        Klass* elem_super = element_supers->at(i);
        if (elem_super->array_klass_or_null() == NULL) {
          supers_exist = false;
          break;
        }
      }
      if (!supers_exist) {
        // Oops.  Not allocated yet.  Back out, allocate it, and retry.
        KlassHandle ek;
        {
          MutexUnlocker mu(MultiArray_lock);
          MutexUnlocker mc(Compile_lock);   // for vtables
          Klass* sk = element_super->array_klass(CHECK_0);
          super_klass = KlassHandle(THREAD, sk);
          for( int i = element_supers->length()-1; i >= 0; i-- ) {
            KlassHandle elem_super (THREAD, element_supers->at(i));
            elem_super->array_klass(CHECK_0);
          }
          // Now retry from the beginning
          Klass* klass_oop = element_klass->array_klass(n, CHECK_0);
          // Create a handle because the enclosing brace, when locking
          // can cause a gc.  Better to have this function return a Handle.
          ek = KlassHandle(THREAD, klass_oop);
        }  // re-lock
        return ek();
      }
    } else {
      // The element type is already Object.  Object[] has direct super of Object.
      super_klass = KlassHandle(THREAD, SystemDictionary::Object_klass());
    }
  }

  // Create type name for klass.
  Symbol* name = NULL;
  if (!element_klass->oop_is_instance() ||
      (name = InstanceKlass::cast(element_klass())->array_name()) == NULL) {

    ResourceMark rm(THREAD);
    char *name_str = element_klass->name()->as_C_string();
    int len = element_klass->name()->utf8_length();
    char *new_str = NEW_RESOURCE_ARRAY(char, len + 4);
    int idx = 0;
    new_str[idx++] = '[';
    if (element_klass->oop_is_instance()) { // it could be an array or simple type
      new_str[idx++] = 'L';
    }
    memcpy(&new_str[idx], name_str, len * sizeof(char));
    idx += len;
    if (element_klass->oop_is_instance()) {
      new_str[idx++] = ';';
    }
    new_str[idx++] = '\0';
    name = SymbolTable::new_permanent_symbol(new_str, CHECK_0);
    if (element_klass->oop_is_instance()) {
      InstanceKlass* ik = InstanceKlass::cast(element_klass());
      ik->set_array_name(name);
    }
  }

  // Initialize instance variables
  ObjArrayKlass* oak = ObjArrayKlass::allocate(loader_data, n, element_klass, name, CHECK_0);

  // Add all classes to our internal class loader list here,
  // including classes in the bootstrap (NULL) class loader.
  // GC walks these as strong roots.
  loader_data->add_class(oak);

  // Call complete_create_array_klass after all instance variables has been initialized.
  ArrayKlass::complete_create_array_klass(oak, super_klass, CHECK_0);

  return oak;
}

ObjArrayKlass::ObjArrayKlass(int n, KlassHandle element_klass, Symbol* name) : ArrayKlass(name) {
  this->set_dimension(n);
  this->set_element_klass(element_klass());
  // decrement refcount because object arrays are not explicitly freed.  The
  // InstanceKlass array_name() keeps the name counted while the klass is
  // loaded.
  name->decrement_refcount();

  Klass* bk;
  if (element_klass->oop_is_objArray()) {
    bk = ObjArrayKlass::cast(element_klass())->bottom_klass();
  } else {
    bk = element_klass();
  }
  assert(bk != NULL && (bk->oop_is_instance() || bk->oop_is_typeArray()), "invalid bottom klass");
  this->set_bottom_klass(bk);
  this->set_class_loader_data(bk->class_loader_data());

  this->set_layout_helper(array_layout_helper(T_OBJECT));
  assert(this->oop_is_array(), "sanity");
  assert(this->oop_is_objArray(), "sanity");
}

int ObjArrayKlass::oop_size(oop obj) const {
  assert(obj->is_objArray(), "must be object array");
  return objArrayOop(obj)->object_size();
}

objArrayOop ObjArrayKlass::allocate(int length, TRAPS) {
  if (length >= 0) {
    if (length <= arrayOopDesc::max_array_length(T_OBJECT)) {
      int size = objArrayOopDesc::object_size(length);
      KlassHandle h_k(THREAD, this);
      return (objArrayOop)CollectedHeap::array_allocate(h_k, size, length, CHECK_NULL);
    } else {
      report_java_out_of_memory("Requested array size exceeds VM limit");
      JvmtiExport::post_array_size_exhausted();
      THROW_OOP_0(Universe::out_of_memory_error_array_size());
    }
  } else {
    THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
  }
}

static int multi_alloc_counter = 0;

oop ObjArrayKlass::multi_allocate(int rank, jint* sizes, TRAPS) {
  int length = *sizes;
  // Call to lower_dimension uses this pointer, so most be called before a
  // possible GC
  KlassHandle h_lower_dimension(THREAD, lower_dimension());
  // If length < 0 allocate will throw an exception.
  objArrayOop array = allocate(length, CHECK_NULL);
  objArrayHandle h_array (THREAD, array);
  if (rank > 1) {
    if (length != 0) {
      for (int index = 0; index < length; index++) {
        ArrayKlass* ak = ArrayKlass::cast(h_lower_dimension());
        oop sub_array = ak->multi_allocate(rank-1, &sizes[1], CHECK_NULL);
        h_array->obj_at_put(index, sub_array);
      }
    } else {
      // Since this array dimension has zero length, nothing will be
      // allocated, however the lower dimension values must be checked
      // for illegal values.
      for (int i = 0; i < rank - 1; ++i) {
        sizes += 1;
        if (*sizes < 0) {
          THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
        }
      }
    }
  }
  return h_array();
}

// Either oop or narrowOop depending on UseCompressedOops.
template <class T> void ObjArrayKlass::do_copy(arrayOop s, T* src,
                               arrayOop d, T* dst, int length, TRAPS) {

  BarrierSet* bs = Universe::heap()->barrier_set();
  // For performance reasons, we assume we are that the write barrier we
  // are using has optimized modes for arrays of references.  At least one
  // of the asserts below will fail if this is not the case.
  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");

  if (s == d) {
    // since source and destination are equal we do not need conversion checks.
    assert(length > 0, "sanity check");
    bs->write_ref_array_pre(dst, length);
    Copy::conjoint_oops_atomic(src, dst, length);
  } else {
    // We have to make sure all elements conform to the destination array
    Klass* bound = ObjArrayKlass::cast(d->klass())->element_klass();
    Klass* stype = ObjArrayKlass::cast(s->klass())->element_klass();
    if (stype == bound || stype->is_subtype_of(bound)) {
      // elements are guaranteed to be subtypes, so no check necessary
      bs->write_ref_array_pre(dst, length);
      Copy::conjoint_oops_atomic(src, dst, length);
    } else {
      // slow case: need individual subtype checks
      // note: don't use obj_at_put below because it includes a redundant store check
      T* from = src;
      T* end = from + length;
      for (T* p = dst; from < end; from++, p++) {
        // XXX this is going to be slow.
        T element = *from;
        // even slower now
        bool element_is_null = oopDesc::is_null(element);
        oop new_val = element_is_null ? oop(NULL)
                                      : oopDesc::decode_heap_oop_not_null(element);
        if (element_is_null ||
            (new_val->klass())->is_subtype_of(bound)) {
          bs->write_ref_field_pre(p, new_val);
          *p = *from;
        } else {
          // We must do a barrier to cover the partial copy.
          const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);
          // pointer delta is scaled to number of elements (length field in
          // objArrayOop) which we assume is 32 bit.
          assert(pd == (size_t)(int)pd, "length field overflow");
          bs->write_ref_array((HeapWord*)dst, pd);
          THROW(vmSymbols::java_lang_ArrayStoreException());
          return;
        }
      }
    }
  }
  bs->write_ref_array((HeapWord*)dst, length);
}

void ObjArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,
                               int dst_pos, int length, TRAPS) {
  assert(s->is_objArray(), "must be obj array");

  if (!d->is_objArray()) {
    THROW(vmSymbols::java_lang_ArrayStoreException());
  }

  // Check is all offsets and lengths are non negative
  if (src_pos < 0 || dst_pos < 0 || length < 0) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check if the ranges are valid
  if  ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
     || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }

  // Special case. Boundary cases must be checked first
  // This allows the following call: copy_array(s, s.length(), d.length(), 0).
  // This is correct, since the position is supposed to be an 'in between point', i.e., s.length(),
  // points to the right of the last element.
  if (length==0) {
    return;
  }
  if (UseCompressedOops) {
    narrowOop* const src = objArrayOop(s)->obj_at_addr<narrowOop>(src_pos);
    narrowOop* const dst = objArrayOop(d)->obj_at_addr<narrowOop>(dst_pos);
    do_copy<narrowOop>(s, src, d, dst, length, CHECK);
  } else {
    oop* const src = objArrayOop(s)->obj_at_addr<oop>(src_pos);
    oop* const dst = objArrayOop(d)->obj_at_addr<oop>(dst_pos);
    do_copy<oop> (s, src, d, dst, length, CHECK);
  }
}


Klass* ObjArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {

  assert(dimension() <= n, "check order of chain");
  int dim = dimension();
  if (dim == n) return this;

  if (higher_dimension() == NULL) {
    if (or_null)  return NULL;

    ResourceMark rm;
    JavaThread *jt = (JavaThread *)THREAD;
    {
      MutexLocker mc(Compile_lock, THREAD);   // for vtables
      // Ensure atomic creation of higher dimensions
      MutexLocker mu(MultiArray_lock, THREAD);

      // Check if another thread beat us
      if (higher_dimension() == NULL) {

        // Create multi-dim klass object and link them together
        Klass* k =
          ObjArrayKlass::allocate_objArray_klass(class_loader_data(), dim + 1, this, CHECK_NULL);
        ObjArrayKlass* ak = ObjArrayKlass::cast(k);
        ak->set_lower_dimension(this);
        OrderAccess::storestore();
        set_higher_dimension(ak);
        assert(ak->oop_is_objArray(), "incorrect initialization of ObjArrayKlass");
      }
    }
  } else {
    CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
  }

  ObjArrayKlass *ak = ObjArrayKlass::cast(higher_dimension());
  if (or_null) {
    return ak->array_klass_or_null(n);
  }
  return ak->array_klass(n, CHECK_NULL);
}

Klass* ObjArrayKlass::array_klass_impl(bool or_null, TRAPS) {
  return array_klass_impl(or_null, dimension() +  1, CHECK_NULL);
}

bool ObjArrayKlass::can_be_primary_super_slow() const {
  if (!bottom_klass()->can_be_primary_super())
    // array of interfaces
    return false;
  else
    return Klass::can_be_primary_super_slow();
}

GrowableArray<Klass*>* ObjArrayKlass::compute_secondary_supers(int num_extra_slots) {
  // interfaces = { cloneable_klass, serializable_klass, elemSuper[], ... };
  Array<Klass*>* elem_supers = element_klass()->secondary_supers();
  int num_elem_supers = elem_supers == NULL ? 0 : elem_supers->length();
  int num_secondaries = num_extra_slots + 2 + num_elem_supers;
  if (num_secondaries == 2) {
    // Must share this for correct bootstrapping!
    set_secondary_supers(Universe::the_array_interfaces_array());
    return NULL;
  } else {
    GrowableArray<Klass*>* secondaries = new GrowableArray(num_elem_supers+2);
    secondaries->push(SystemDictionary::Cloneable_klass());
    secondaries->push(SystemDictionary::Serializable_klass());
    for (int i = 0; i < num_elem_supers; i++) {
      Klass* elem_super = (Klass*) elem_supers->at(i);
      Klass* array_super = elem_super->array_klass_or_null();
      assert(array_super != NULL, "must already have been created");
      secondaries->push(array_super);
    }
    return secondaries;
  }
}

bool ObjArrayKlass::compute_is_subtype_of(Klass* k) {
  if (!k->oop_is_objArray())
    return ArrayKlass::compute_is_subtype_of(k);

  ObjArrayKlass* oak = ObjArrayKlass::cast(k);
  return element_klass()->is_subtype_of(oak->element_klass());
}

void ObjArrayKlass::initialize(TRAPS) {
  bottom_klass()->initialize(THREAD);  // dispatches to either InstanceKlass or TypeArrayKlass
}

#define ObjArrayKlass_SPECIALIZED_OOP_ITERATE(T, a, p, do_oop) \
{                                   \
  T* p         = (T*)(a)->base();   \
  T* const end = p + (a)->length(); \
  while (p < end) {                 \
    do_oop;                         \
    p++;                            \
  }                                 \
}

#define ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(T, a, p, low, high, do_oop) \
{                                   \
  T* const l = (T*)(low);           \
  T* const h = (T*)(high);          \
  T* p       = (T*)(a)->base();     \
  T* end     = p + (a)->length();   \
  if (p < l) p = l;                 \
  if (end > h) end = h;             \
  while (p < end) {                 \
    do_oop;                         \
    ++p;                            \
  }                                 \
}

#define ObjArrayKlass_OOP_ITERATE(a, p, do_oop)      \
  if (UseCompressedOops) {                           \
    ObjArrayKlass_SPECIALIZED_OOP_ITERATE(narrowOop, \
      a, p, do_oop)                                  \
  } else {                                           \
    ObjArrayKlass_SPECIALIZED_OOP_ITERATE(oop,       \
      a, p, do_oop)                                  \
  }

#define ObjArrayKlass_BOUNDED_OOP_ITERATE(a, p, low, high, do_oop) \
  if (UseCompressedOops) {                                   \
    ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop, \
      a, p, low, high, do_oop)                               \
  } else {                                                   \
    ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop,       \
      a, p, low, high, do_oop)                               \
  }

void ObjArrayKlass::oop_follow_contents(oop obj) {
  assert (obj->is_array(), "obj must be array");
  MarkSweep::follow_klass(obj->klass());
  if (UseCompressedOops) {
    objarray_follow_contents<narrowOop>(obj, 0);
  } else {
    objarray_follow_contents<oop>(obj, 0);
  }
}

#if INCLUDE_ALL_GCS
void ObjArrayKlass::oop_follow_contents(ParCompactionManager* cm,
                                        oop obj) {
  assert(obj->is_array(), "obj must be array");
  PSParallelCompact::follow_klass(cm, obj->klass());
  if (UseCompressedOops) {
    objarray_follow_contents<narrowOop>(cm, obj, 0);
  } else {
    objarray_follow_contents<oop>(cm, obj, 0);
  }
}
#endif // INCLUDE_ALL_GCS

#define if_do_metadata_checked(closure, nv_suffix)                    \
  /* Make sure the non-virtual and the virtual versions match. */     \
  assert(closure->do_metadata##nv_suffix() == closure->do_metadata(), \
      "Inconsistency in do_metadata");                                \
  if (closure->do_metadata##nv_suffix())

#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)           \
                                                                                \
int ObjArrayKlass::oop_oop_iterate##nv_suffix(oop obj,                          \
                                              OopClosureType* closure) {        \
  SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
  assert (obj->is_array(), "obj must be array");                                \
  objArrayOop a = objArrayOop(obj);                                             \
  /* Get size before changing pointers. */                                      \
  /* Don't call size() or oop_size() since that is a virtual call. */           \
  int size = a->object_size();                                                  \
  if_do_metadata_checked(closure, nv_suffix) {                                  \
    closure->do_klass##nv_suffix(obj->klass());                                 \
  }                                                                             \
  ObjArrayKlass_OOP_ITERATE(a, p, (closure)->do_oop##nv_suffix(p))              \
  return size;                                                                  \
}

#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m(OopClosureType, nv_suffix)         \
                                                                                \
int ObjArrayKlass::oop_oop_iterate##nv_suffix##_m(oop obj,                      \
                                                  OopClosureType* closure,      \
                                                  MemRegion mr) {               \
  SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
  assert(obj->is_array(), "obj must be array");                                 \
  objArrayOop a  = objArrayOop(obj);                                            \
  /* Get size before changing pointers. */                                      \
  /* Don't call size() or oop_size() since that is a virtual call */            \
  int size = a->object_size();                                                  \
  if_do_metadata_checked(closure, nv_suffix) {                                  \
    /* SSS: Do we need to pass down mr here? */                                 \
    closure->do_klass##nv_suffix(a->klass());                                   \
  }                                                                             \
  ObjArrayKlass_BOUNDED_OOP_ITERATE(                                            \
    a, p, mr.start(), mr.end(), (closure)->do_oop##nv_suffix(p))                \
  return size;                                                                  \
}

// Like oop_oop_iterate but only iterates over a specified range and only used
// for objArrayOops.
#define ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r(OopClosureType, nv_suffix)         \
                                                                                \
int ObjArrayKlass::oop_oop_iterate_range##nv_suffix(oop obj,                    \
                                                  OopClosureType* closure,      \
                                                  int start, int end) {         \
  SpecializationStats::record_iterate_call##nv_suffix(SpecializationStats::oa); \
  assert(obj->is_array(), "obj must be array");                                 \
  objArrayOop a  = objArrayOop(obj);                                            \
  /* Get size before changing pointers. */                                      \
  /* Don't call size() or oop_size() since that is a virtual call */            \
  int size = a->object_size();                                                  \
  if (UseCompressedOops) {                                                      \
    HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr<narrowOop>(start);\
    /* this might be wierd if end needs to be aligned on HeapWord boundary */   \
    HeapWord* high = (HeapWord*)((narrowOop*)a->base() + end);                  \
    MemRegion mr(low, high);                                                    \
    if_do_metadata_checked(closure, nv_suffix) {                                \
      /* SSS: Do we need to pass down mr here? */                               \
      closure->do_klass##nv_suffix(a->klass());                                 \
    }                                                                           \
    ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(narrowOop,                    \
      a, p, low, high, (closure)->do_oop##nv_suffix(p))                         \
  } else {                                                                      \
    HeapWord* low = start == 0 ? (HeapWord*)a : (HeapWord*)a->obj_at_addr<oop>(start);  \
    HeapWord* high = (HeapWord*)((oop*)a->base() + end);                        \
    MemRegion mr(low, high);                                                    \
    if_do_metadata_checked(closure, nv_suffix) {                                \
      /* SSS: Do we need to pass down mr here? */                               \
      closure->do_klass##nv_suffix(a->klass());                                 \
    }                                                                           \
    ObjArrayKlass_SPECIALIZED_BOUNDED_OOP_ITERATE(oop,                          \
      a, p, low, high, (closure)->do_oop##nv_suffix(p))                         \
  }                                                                             \
  return size;                                                                  \
}

ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN)
ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_m)
ALL_OOP_OOP_ITERATE_CLOSURES_1(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ObjArrayKlass_OOP_OOP_ITERATE_DEFN_r)

int ObjArrayKlass::oop_adjust_pointers(oop obj) {
  assert(obj->is_objArray(), "obj must be obj array");
  objArrayOop a = objArrayOop(obj);
  // Get size before changing pointers.
  // Don't call size() or oop_size() since that is a virtual call.
  int size = a->object_size();
  ObjArrayKlass_OOP_ITERATE(a, p, MarkSweep::adjust_pointer(p))
  return size;
}

#if INCLUDE_ALL_GCS
void ObjArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
  assert(obj->is_objArray(), "obj must be obj array");
  ObjArrayKlass_OOP_ITERATE( \
    objArrayOop(obj), p, \
    if (PSScavenge::should_scavenge(p)) { \
      pm->claim_or_forward_depth(p); \
    })
}

int ObjArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
  assert (obj->is_objArray(), "obj must be obj array");
  objArrayOop a = objArrayOop(obj);
  int size = a->object_size();
  ObjArrayKlass_OOP_ITERATE(a, p, PSParallelCompact::adjust_pointer(p))
  return size;
}
#endif // INCLUDE_ALL_GCS

// JVM support

jint ObjArrayKlass::compute_modifier_flags(TRAPS) const {
  // The modifier for an objectArray is the same as its element
  if (element_klass() == NULL) {
    assert(Universe::is_bootstrapping(), "partial objArray only at startup");
    return JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC;
  }
  // Return the flags of the bottom element type.
  jint element_flags = bottom_klass()->compute_modifier_flags(CHECK_0);

  return (element_flags & (JVM_ACC_PUBLIC | JVM_ACC_PRIVATE | JVM_ACC_PROTECTED))
                        | (JVM_ACC_ABSTRACT | JVM_ACC_FINAL);
}


// Printing

void ObjArrayKlass::print_on(outputStream* st) const {
#ifndef PRODUCT
  Klass::print_on(st);
  st->print(" - instance klass: ");
  element_klass()->print_value_on(st);
  st->cr();
#endif //PRODUCT
}

void ObjArrayKlass::print_value_on(outputStream* st) const {
  assert(is_klass(), "must be klass");

  element_klass()->print_value_on(st);
  st->print("[]");
}

#ifndef PRODUCT

void ObjArrayKlass::oop_print_on(oop obj, outputStream* st) {
  ArrayKlass::oop_print_on(obj, st);
  assert(obj->is_objArray(), "must be objArray");
  objArrayOop oa = objArrayOop(obj);
  int print_len = MIN2((intx) oa->length(), MaxElementPrintSize);
  for(int index = 0; index < print_len; index++) {
    st->print(" - %3d : ", index);
    oa->obj_at(index)->print_value_on(st);
    st->cr();
  }
  int remaining = oa->length() - print_len;
  if (remaining > 0) {
    st->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
  }
}

#endif //PRODUCT

static int max_objArray_print_length = 4;

void ObjArrayKlass::oop_print_value_on(oop obj, outputStream* st) {
  assert(obj->is_objArray(), "must be objArray");
  st->print("a ");
  element_klass()->print_value_on(st);
  int len = objArrayOop(obj)->length();
  st->print("[%d] ", len);
  obj->print_address_on(st);
  if (NOT_PRODUCT(PrintOopAddress ||) PrintMiscellaneous && (WizardMode || Verbose)) {
    st->print("{");
    for (int i = 0; i < len; i++) {
      if (i > max_objArray_print_length) {
        st->print("..."); break;
      }
      st->print(" "INTPTR_FORMAT, (intptr_t)(void*)objArrayOop(obj)->obj_at(i));
    }
    st->print(" }");
  }
}

const char* ObjArrayKlass::internal_name() const {
  return external_name();
}


// Verification

void ObjArrayKlass::verify_on(outputStream* st, bool check_dictionary) {
  ArrayKlass::verify_on(st, check_dictionary);
  guarantee(element_klass()->is_klass(), "should be klass");
  guarantee(bottom_klass()->is_klass(), "should be klass");
  Klass* bk = bottom_klass();
  guarantee(bk->oop_is_instance() || bk->oop_is_typeArray(),  "invalid bottom klass");
}

void ObjArrayKlass::oop_verify_on(oop obj, outputStream* st) {
  ArrayKlass::oop_verify_on(obj, st);
  guarantee(obj->is_objArray(), "must be objArray");
  objArrayOop oa = objArrayOop(obj);
  for(int index = 0; index < oa->length(); index++) {
    guarantee(oa->obj_at(index)->is_oop_or_null(), "should be oop");
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java objArrayKlass.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.