alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (callGenerator.cpp)

This example Java source code file (callGenerator.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

c\-, callgenerator, compile\:\:current, directcallgenerator, graphkit, jvmstate, lateinlinecallgenerator, method\:\:invalid_vtable_index, node, null, parse, typeoopptr, warmcallinfo

The callGenerator.cpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "ci/bcEscapeAnalyzer.hpp"
#include "ci/ciCallSite.hpp"
#include "ci/ciObjArray.hpp"
#include "ci/ciMemberName.hpp"
#include "ci/ciMethodHandle.hpp"
#include "classfile/javaClasses.hpp"
#include "compiler/compileLog.hpp"
#include "opto/addnode.hpp"
#include "opto/callGenerator.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/parse.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"


// Utility function.
const TypeFunc* CallGenerator::tf() const {
  return TypeFunc::make(method());
}

//-----------------------------ParseGenerator---------------------------------
// Internal class which handles all direct bytecode traversal.
class ParseGenerator : public InlineCallGenerator {
private:
  bool  _is_osr;
  float _expected_uses;

public:
  ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
    : InlineCallGenerator(method)
  {
    _is_osr        = is_osr;
    _expected_uses = expected_uses;
    assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  }

  virtual bool      is_parse() const           { return true; }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  int is_osr() { return _is_osr; }

};

JVMState* ParseGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  Compile* C = Compile::current();

  if (is_osr()) {
    // The JVMS for a OSR has a single argument (see its TypeFunc).
    assert(jvms->depth() == 1, "no inline OSR");
  }

  if (C->failing()) {
    return NULL;  // bailing out of the compile; do not try to parse
  }

  Parse parser(jvms, method(), _expected_uses, parent_parser);
  // Grab signature for matching/allocation
#ifdef ASSERT
  if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
    MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
    assert(C->env()->system_dictionary_modification_counter_changed(),
           "Must invalidate if TypeFuncs differ");
  }
#endif

  GraphKit& exits = parser.exits();

  if (C->failing()) {
    while (exits.pop_exception_state() != NULL) ;
    return NULL;
  }

  assert(exits.jvms()->same_calls_as(jvms), "sanity");

  // Simply return the exit state of the parser,
  // augmented by any exceptional states.
  return exits.transfer_exceptions_into_jvms();
}

//---------------------------DirectCallGenerator------------------------------
// Internal class which handles all out-of-line calls w/o receiver type checks.
class DirectCallGenerator : public CallGenerator {
 private:
  CallStaticJavaNode* _call_node;
  // Force separate memory and I/O projections for the exceptional
  // paths to facilitate late inlinig.
  bool                _separate_io_proj;

 public:
  DirectCallGenerator(ciMethod* method, bool separate_io_proj)
    : CallGenerator(method),
      _separate_io_proj(separate_io_proj)
  {
  }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);

  CallStaticJavaNode* call_node() const { return _call_node; }
};

JVMState* DirectCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  bool is_static = method()->is_static();
  address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
                             : SharedRuntime::get_resolve_opt_virtual_call_stub();

  if (kit.C->log() != NULL) {
    kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
  }

  CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
  _call_node = call;  // Save the call node in case we need it later
  if (!is_static) {
    // Make an explicit receiver null_check as part of this call.
    // Since we share a map with the caller, his JVMS gets adjusted.
    kit.null_check_receiver_before_call(method());
    if (kit.stopped()) {
      // And dump it back to the caller, decorated with any exceptions:
      return kit.transfer_exceptions_into_jvms();
    }
    // Mark the call node as virtual, sort of:
    call->set_optimized_virtual(true);
    if (method()->is_method_handle_intrinsic() ||
        method()->is_compiled_lambda_form()) {
      call->set_method_handle_invoke(true);
    }
  }
  kit.set_arguments_for_java_call(call);
  kit.set_edges_for_java_call(call, false, _separate_io_proj);
  Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
  kit.push_node(method()->return_type()->basic_type(), ret);
  return kit.transfer_exceptions_into_jvms();
}

//--------------------------VirtualCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class VirtualCallGenerator : public CallGenerator {
private:
  int _vtable_index;
public:
  VirtualCallGenerator(ciMethod* method, int vtable_index)
    : CallGenerator(method), _vtable_index(vtable_index)
  {
    assert(vtable_index == Method::invalid_vtable_index ||
           vtable_index >= 0, "either invalid or usable");
  }
  virtual bool      is_virtual() const          { return true; }
  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};

JVMState* VirtualCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  Node* receiver = kit.argument(0);

  if (kit.C->log() != NULL) {
    kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
  }

  // If the receiver is a constant null, do not torture the system
  // by attempting to call through it.  The compile will proceed
  // correctly, but may bail out in final_graph_reshaping, because
  // the call instruction will have a seemingly deficient out-count.
  // (The bailout says something misleading about an "infinite loop".)
  if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
    kit.inc_sp(method()->arg_size());  // restore arguments
    kit.uncommon_trap(Deoptimization::Reason_null_check,
                      Deoptimization::Action_none,
                      NULL, "null receiver");
    return kit.transfer_exceptions_into_jvms();
  }

  // Ideally we would unconditionally do a null check here and let it
  // be converted to an implicit check based on profile information.
  // However currently the conversion to implicit null checks in
  // Block::implicit_null_check() only looks for loads and stores, not calls.
  ciMethod *caller = kit.method();
  ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
  if (!UseInlineCaches || !ImplicitNullChecks ||
       ((ImplicitNullCheckThreshold > 0) && caller_md &&
       (caller_md->trap_count(Deoptimization::Reason_null_check)
       >= (uint)ImplicitNullCheckThreshold))) {
    // Make an explicit receiver null_check as part of this call.
    // Since we share a map with the caller, his JVMS gets adjusted.
    receiver = kit.null_check_receiver_before_call(method());
    if (kit.stopped()) {
      // And dump it back to the caller, decorated with any exceptions:
      return kit.transfer_exceptions_into_jvms();
    }
  }

  assert(!method()->is_static(), "virtual call must not be to static");
  assert(!method()->is_final(), "virtual call should not be to final");
  assert(!method()->is_private(), "virtual call should not be to private");
  assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
         "no vtable calls if +UseInlineCaches ");
  address target = SharedRuntime::get_resolve_virtual_call_stub();
  // Normal inline cache used for call
  CallDynamicJavaNode *call = new (kit.C) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
  kit.set_arguments_for_java_call(call);
  kit.set_edges_for_java_call(call);
  Node* ret = kit.set_results_for_java_call(call);
  kit.push_node(method()->return_type()->basic_type(), ret);

  // Represent the effect of an implicit receiver null_check
  // as part of this call.  Since we share a map with the caller,
  // his JVMS gets adjusted.
  kit.cast_not_null(receiver);
  return kit.transfer_exceptions_into_jvms();
}

CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
  if (InlineTree::check_can_parse(m) != NULL)  return NULL;
  return new ParseGenerator(m, expected_uses);
}

// As a special case, the JVMS passed to this CallGenerator is
// for the method execution already in progress, not just the JVMS
// of the caller.  Thus, this CallGenerator cannot be mixed with others!
CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
  if (InlineTree::check_can_parse(m) != NULL)  return NULL;
  float past_uses = m->interpreter_invocation_count();
  float expected_uses = past_uses;
  return new ParseGenerator(m, expected_uses, true);
}

CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
  assert(!m->is_abstract(), "for_direct_call mismatch");
  return new DirectCallGenerator(m, separate_io_proj);
}

CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
  assert(!m->is_static(), "for_virtual_call mismatch");
  assert(!m->is_method_handle_intrinsic(), "should be a direct call");
  return new VirtualCallGenerator(m, vtable_index);
}

// Allow inlining decisions to be delayed
class LateInlineCallGenerator : public DirectCallGenerator {
 protected:
  CallGenerator* _inline_cg;

  virtual bool do_late_inline_check(JVMState* jvms) { return true; }

 public:
  LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    DirectCallGenerator(method, true), _inline_cg(inline_cg) {}

  virtual bool      is_late_inline() const { return true; }

  // Convert the CallStaticJava into an inline
  virtual void do_late_inline();

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    // Record that this call site should be revisited once the main
    // parse is finished.
    if (!is_mh_late_inline()) {
      C->add_late_inline(this);
    }

    // Emit the CallStaticJava and request separate projections so
    // that the late inlining logic can distinguish between fall
    // through and exceptional uses of the memory and io projections
    // as is done for allocations and macro expansion.
    return DirectCallGenerator::generate(jvms, parent_parser);
  }

  virtual void print_inlining_late(const char* msg) {
    CallNode* call = call_node();
    Compile* C = Compile::current();
    C->print_inlining_insert(this);
    C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
  }

};

void LateInlineCallGenerator::do_late_inline() {
  // Can't inline it
  CallStaticJavaNode* call = call_node();
  if (call == NULL || call->outcnt() == 0 ||
      call->in(0) == NULL || call->in(0)->is_top()) {
    return;
  }

  const TypeTuple *r = call->tf()->domain();
  for (int i1 = 0; i1 < method()->arg_size(); i1++) {
    if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
      assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
      return;
    }
  }

  if (call->in(TypeFunc::Memory)->is_top()) {
    assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
    return;
  }

  Compile* C = Compile::current();
  // Remove inlined methods from Compiler's lists.
  if (call->is_macro()) {
    C->remove_macro_node(call);
  }

  // Make a clone of the JVMState that appropriate to use for driving a parse
  JVMState* old_jvms = call->jvms();
  JVMState* jvms = old_jvms->clone_shallow(C);
  uint size = call->req();
  SafePointNode* map = new (C) SafePointNode(size, jvms);
  for (uint i1 = 0; i1 < size; i1++) {
    map->init_req(i1, call->in(i1));
  }

  // Make sure the state is a MergeMem for parsing.
  if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
    Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory));
    C->initial_gvn()->set_type_bottom(mem);
    map->set_req(TypeFunc::Memory, mem);
  }

  uint nargs = method()->arg_size();
  // blow away old call arguments
  Node* top = C->top();
  for (uint i1 = 0; i1 < nargs; i1++) {
    map->set_req(TypeFunc::Parms + i1, top);
  }
  jvms->set_map(map);

  // Make enough space in the expression stack to transfer
  // the incoming arguments and return value.
  map->ensure_stack(jvms, jvms->method()->max_stack());
  for (uint i1 = 0; i1 < nargs; i1++) {
    map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
  }

  // This check is done here because for_method_handle_inline() method
  // needs jvms for inlined state.
  if (!do_late_inline_check(jvms)) {
    map->disconnect_inputs(NULL, C);
    return;
  }

  C->print_inlining_insert(this);

  CompileLog* log = C->log();
  if (log != NULL) {
    log->head("late_inline method='%d'", log->identify(method()));
    JVMState* p = jvms;
    while (p != NULL) {
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
      p = p->caller();
    }
    log->tail("late_inline");
  }

  // Setup default node notes to be picked up by the inlining
  Node_Notes* old_nn = C->default_node_notes();
  if (old_nn != NULL) {
    Node_Notes* entry_nn = old_nn->clone(C);
    entry_nn->set_jvms(jvms);
    C->set_default_node_notes(entry_nn);
  }

  // Now perform the inling using the synthesized JVMState
  JVMState* new_jvms = _inline_cg->generate(jvms, NULL);
  if (new_jvms == NULL)  return;  // no change
  if (C->failing())      return;

  // Capture any exceptional control flow
  GraphKit kit(new_jvms);

  // Find the result object
  Node* result = C->top();
  int   result_size = method()->return_type()->size();
  if (result_size != 0 && !kit.stopped()) {
    result = (result_size == 1) ? kit.pop() : kit.pop_pair();
  }

  C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
  C->env()->notice_inlined_method(_inline_cg->method());
  C->set_inlining_progress(true);

  kit.replace_call(call, result);
}


CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineCallGenerator(method, inline_cg);
}

class LateInlineMHCallGenerator : public LateInlineCallGenerator {
  ciMethod* _caller;
  int _attempt;
  bool _input_not_const;

  virtual bool do_late_inline_check(JVMState* jvms);
  virtual bool already_attempted() const { return _attempt > 0; }

 public:
  LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
    LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}

  virtual bool is_mh_late_inline() const { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    JVMState* new_jvms = LateInlineCallGenerator::generate(jvms, parent_parser);
    if (_input_not_const) {
      // inlining won't be possible so no need to enqueue right now.
      call_node()->set_generator(this);
    } else {
      Compile::current()->add_late_inline(this);
    }
    return new_jvms;
  }

  virtual void print_inlining_late(const char* msg) {
    if (!_input_not_const) return;
    LateInlineCallGenerator::print_inlining_late(msg);
  }
};

bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {

  CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);

  if (!_input_not_const) {
    _attempt++;
  }

  if (cg != NULL) {
    assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
    _inline_cg = cg;
    Compile::current()->dec_number_of_mh_late_inlines();
    return true;
  }

  call_node()->set_generator(this);
  return false;
}

CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
  Compile::current()->inc_number_of_mh_late_inlines();
  CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
  return cg;
}

class LateInlineStringCallGenerator : public LateInlineCallGenerator {

 public:
  LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    LateInlineCallGenerator(method, inline_cg) {}

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    C->add_string_late_inline(this);

    JVMState* new_jvms =  DirectCallGenerator::generate(jvms, parent_parser);
    return new_jvms;
  }

  virtual bool is_string_late_inline() const { return true; }
};

CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineStringCallGenerator(method, inline_cg);
}

class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {

 public:
  LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
    LateInlineCallGenerator(method, inline_cg) {}

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser) {
    Compile *C = Compile::current();
    C->print_inlining_skip(this);

    C->add_boxing_late_inline(this);

    JVMState* new_jvms =  DirectCallGenerator::generate(jvms, parent_parser);
    return new_jvms;
  }
};

CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
  return new LateInlineBoxingCallGenerator(method, inline_cg);
}

//---------------------------WarmCallGenerator--------------------------------
// Internal class which handles initial deferral of inlining decisions.
class WarmCallGenerator : public CallGenerator {
  WarmCallInfo*   _call_info;
  CallGenerator*  _if_cold;
  CallGenerator*  _if_hot;
  bool            _is_virtual;   // caches virtuality of if_cold
  bool            _is_inline;    // caches inline-ness of if_hot

public:
  WarmCallGenerator(WarmCallInfo* ci,
                    CallGenerator* if_cold,
                    CallGenerator* if_hot)
    : CallGenerator(if_cold->method())
  {
    assert(method() == if_hot->method(), "consistent choices");
    _call_info  = ci;
    _if_cold    = if_cold;
    _if_hot     = if_hot;
    _is_virtual = if_cold->is_virtual();
    _is_inline  = if_hot->is_inline();
  }

  virtual bool      is_inline() const           { return _is_inline; }
  virtual bool      is_virtual() const          { return _is_virtual; }
  virtual bool      is_deferred() const         { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
                                            CallGenerator* if_cold,
                                            CallGenerator* if_hot) {
  return new WarmCallGenerator(ci, if_cold, if_hot);
}

JVMState* WarmCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  Compile* C = Compile::current();
  if (C->log() != NULL) {
    C->log()->elem("warm_call bci='%d'", jvms->bci());
  }
  jvms = _if_cold->generate(jvms, parent_parser);
  if (jvms != NULL) {
    Node* m = jvms->map()->control();
    if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
    if (m->is_Catch())     m = m->in(0);  else m = C->top();
    if (m->is_Proj())      m = m->in(0);  else m = C->top();
    if (m->is_CallJava()) {
      _call_info->set_call(m->as_Call());
      _call_info->set_hot_cg(_if_hot);
#ifndef PRODUCT
      if (PrintOpto || PrintOptoInlining) {
        tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
        tty->print("WCI: ");
        _call_info->print();
      }
#endif
      _call_info->set_heat(_call_info->compute_heat());
      C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
    }
  }
  return jvms;
}

void WarmCallInfo::make_hot() {
  Unimplemented();
}

void WarmCallInfo::make_cold() {
  // No action:  Just dequeue.
}


//------------------------PredictedCallGenerator------------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class PredictedCallGenerator : public CallGenerator {
  ciKlass*       _predicted_receiver;
  CallGenerator* _if_missed;
  CallGenerator* _if_hit;
  float          _hit_prob;

public:
  PredictedCallGenerator(ciKlass* predicted_receiver,
                         CallGenerator* if_missed,
                         CallGenerator* if_hit, float hit_prob)
    : CallGenerator(if_missed->method())
  {
    // The call profile data may predict the hit_prob as extreme as 0 or 1.
    // Remove the extremes values from the range.
    if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
    if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;

    _predicted_receiver = predicted_receiver;
    _if_missed          = if_missed;
    _if_hit             = if_hit;
    _hit_prob           = hit_prob;
  }

  virtual bool      is_virtual()   const    { return true; }
  virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
  virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
                                                 CallGenerator* if_missed,
                                                 CallGenerator* if_hit,
                                                 float hit_prob) {
  return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
}


JVMState* PredictedCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();
  // We need an explicit receiver null_check before checking its type.
  // We share a map with the caller, so his JVMS gets adjusted.
  Node* receiver = kit.argument(0);

  CompileLog* log = kit.C->log();
  if (log != NULL) {
    log->elem("predicted_call bci='%d' klass='%d'",
              jvms->bci(), log->identify(_predicted_receiver));
  }

  receiver = kit.null_check_receiver_before_call(method());
  if (kit.stopped()) {
    return kit.transfer_exceptions_into_jvms();
  }

  Node* exact_receiver = receiver;  // will get updated in place...
  Node* slow_ctl = kit.type_check_receiver(receiver,
                                           _predicted_receiver, _hit_prob,
                                           &exact_receiver);

  SafePointNode* slow_map = NULL;
  JVMState* slow_jvms;
  { PreserveJVMState pjvms(&kit);
    kit.set_control(slow_ctl);
    if (!kit.stopped()) {
      slow_jvms = _if_missed->generate(kit.sync_jvms(), parent_parser);
      if (kit.failing())
        return NULL;  // might happen because of NodeCountInliningCutoff
      assert(slow_jvms != NULL, "must be");
      kit.add_exception_states_from(slow_jvms);
      kit.set_map(slow_jvms->map());
      if (!kit.stopped())
        slow_map = kit.stop();
    }
  }

  if (kit.stopped()) {
    // Instance exactly does not matches the desired type.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // fall through if the instance exactly matches the desired type
  kit.replace_in_map(receiver, exact_receiver);

  // Make the hot call:
  JVMState* new_jvms = _if_hit->generate(kit.sync_jvms(), parent_parser);
  if (new_jvms == NULL) {
    // Inline failed, so make a direct call.
    assert(_if_hit->is_inline(), "must have been a failed inline");
    CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
    new_jvms = cg->generate(kit.sync_jvms(), parent_parser);
  }
  kit.add_exception_states_from(new_jvms);
  kit.set_jvms(new_jvms);

  // Need to merge slow and fast?
  if (slow_map == NULL) {
    // The fast path is the only path remaining.
    return kit.transfer_exceptions_into_jvms();
  }

  if (kit.stopped()) {
    // Inlined method threw an exception, so it's just the slow path after all.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Finish the diamond.
  kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
  RegionNode* region = new (kit.C) RegionNode(3);
  region->init_req(1, kit.control());
  region->init_req(2, slow_map->control());
  kit.set_control(gvn.transform(region));
  Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
  iophi->set_req(2, slow_map->i_o());
  kit.set_i_o(gvn.transform(iophi));
  kit.merge_memory(slow_map->merged_memory(), region, 2);
  uint tos = kit.jvms()->stkoff() + kit.sp();
  uint limit = slow_map->req();
  for (uint i = TypeFunc::Parms; i < limit; i++) {
    // Skip unused stack slots; fast forward to monoff();
    if (i == tos) {
      i = kit.jvms()->monoff();
      if( i >= limit ) break;
    }
    Node* m = kit.map()->in(i);
    Node* n = slow_map->in(i);
    if (m != n) {
      const Type* t = gvn.type(m)->meet(gvn.type(n));
      Node* phi = PhiNode::make(region, m, t);
      phi->set_req(2, n);
      kit.map()->set_req(i, gvn.transform(phi));
    }
  }
  return kit.transfer_exceptions_into_jvms();
}


CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
  assert(callee->is_method_handle_intrinsic() ||
         callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
  bool input_not_const;
  CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
  Compile* C = Compile::current();
  if (cg != NULL) {
    if (!delayed_forbidden && AlwaysIncrementalInline) {
      return CallGenerator::for_late_inline(callee, cg);
    } else {
      return cg;
    }
  }
  int bci = jvms->bci();
  ciCallProfile profile = caller->call_profile_at_bci(bci);
  int call_site_count = caller->scale_count(profile.count());

  if (IncrementalInline && call_site_count > 0 &&
      (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
    return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
  } else {
    // Out-of-line call.
    return CallGenerator::for_direct_call(callee);
  }
}

CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();
  Compile* C = kit.C;
  vmIntrinsics::ID iid = callee->intrinsic_id();
  input_not_const = true;
  switch (iid) {
  case vmIntrinsics::_invokeBasic:
    {
      // Get MethodHandle receiver:
      Node* receiver = kit.argument(0);
      if (receiver->Opcode() == Op_ConP) {
        input_not_const = false;
        const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
        ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
        guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
        const int vtable_index = Method::invalid_vtable_index;
        CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true);
        assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
        if (cg != NULL && cg->is_inline())
          return cg;
      }
    }
    break;

  case vmIntrinsics::_linkToVirtual:
  case vmIntrinsics::_linkToStatic:
  case vmIntrinsics::_linkToSpecial:
  case vmIntrinsics::_linkToInterface:
    {
      // Get MemberName argument:
      Node* member_name = kit.argument(callee->arg_size() - 1);
      if (member_name->Opcode() == Op_ConP) {
        input_not_const = false;
        const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
        ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();

        // In lamda forms we erase signature types to avoid resolving issues
        // involving class loaders.  When we optimize a method handle invoke
        // to a direct call we must cast the receiver and arguments to its
        // actual types.
        ciSignature* signature = target->signature();
        const int receiver_skip = target->is_static() ? 0 : 1;
        // Cast receiver to its type.
        if (!target->is_static()) {
          Node* arg = kit.argument(0);
          const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
          const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
          if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
            Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
            kit.set_argument(0, cast_obj);
          }
        }
        // Cast reference arguments to its type.
        for (int i = 0; i < signature->count(); i++) {
          ciType* t = signature->type_at(i);
          if (t->is_klass()) {
            Node* arg = kit.argument(receiver_skip + i);
            const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
            const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
            if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
              Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
              kit.set_argument(receiver_skip + i, cast_obj);
            }
          }
        }

        // Try to get the most accurate receiver type
        const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
        const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
        int  vtable_index       = Method::invalid_vtable_index;
        bool call_does_dispatch = false;

        ciKlass* speculative_receiver_type = NULL;
        if (is_virtual_or_interface) {
          ciInstanceKlass* klass = target->holder();
          Node*             receiver_node = kit.argument(0);
          const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
          // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
          target = C->optimize_virtual_call(caller, jvms->bci(), klass, target, receiver_type,
                                            is_virtual,
                                            call_does_dispatch, vtable_index);  // out-parameters
          // We lack profiling at this call but type speculation may
          // provide us with a type
          speculative_receiver_type = receiver_type->speculative_type();
        }

        CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true);
        assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
        if (cg != NULL && cg->is_inline())
          return cg;
      }
    }
    break;

  default:
    fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
    break;
  }
  return NULL;
}


//------------------------PredictedIntrinsicGenerator------------------------------
// Internal class which handles all predicted Intrinsic calls.
class PredictedIntrinsicGenerator : public CallGenerator {
  CallGenerator* _intrinsic;
  CallGenerator* _cg;

public:
  PredictedIntrinsicGenerator(CallGenerator* intrinsic,
                              CallGenerator* cg)
    : CallGenerator(cg->method())
  {
    _intrinsic = intrinsic;
    _cg        = cg;
  }

  virtual bool      is_virtual()   const    { return true; }
  virtual bool      is_inlined()   const    { return true; }
  virtual bool      is_intrinsic() const    { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator* CallGenerator::for_predicted_intrinsic(CallGenerator* intrinsic,
                                                      CallGenerator* cg) {
  return new PredictedIntrinsicGenerator(intrinsic, cg);
}


JVMState* PredictedIntrinsicGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  PhaseGVN& gvn = kit.gvn();

  CompileLog* log = kit.C->log();
  if (log != NULL) {
    log->elem("predicted_intrinsic bci='%d' method='%d'",
              jvms->bci(), log->identify(method()));
  }

  Node* slow_ctl = _intrinsic->generate_predicate(kit.sync_jvms());
  if (kit.failing())
    return NULL;  // might happen because of NodeCountInliningCutoff

  SafePointNode* slow_map = NULL;
  JVMState* slow_jvms;
  if (slow_ctl != NULL) {
    PreserveJVMState pjvms(&kit);
    kit.set_control(slow_ctl);
    if (!kit.stopped()) {
      slow_jvms = _cg->generate(kit.sync_jvms(), parent_parser);
      if (kit.failing())
        return NULL;  // might happen because of NodeCountInliningCutoff
      assert(slow_jvms != NULL, "must be");
      kit.add_exception_states_from(slow_jvms);
      kit.set_map(slow_jvms->map());
      if (!kit.stopped())
        slow_map = kit.stop();
    }
  }

  if (kit.stopped()) {
    // Predicate is always false.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Generate intrinsic code:
  JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms(), parent_parser);
  if (new_jvms == NULL) {
    // Intrinsic failed, so use slow code or make a direct call.
    if (slow_map == NULL) {
      CallGenerator* cg = CallGenerator::for_direct_call(method());
      new_jvms = cg->generate(kit.sync_jvms(), parent_parser);
    } else {
      kit.set_jvms(slow_jvms);
      return kit.transfer_exceptions_into_jvms();
    }
  }
  kit.add_exception_states_from(new_jvms);
  kit.set_jvms(new_jvms);

  // Need to merge slow and fast?
  if (slow_map == NULL) {
    // The fast path is the only path remaining.
    return kit.transfer_exceptions_into_jvms();
  }

  if (kit.stopped()) {
    // Intrinsic method threw an exception, so it's just the slow path after all.
    kit.set_jvms(slow_jvms);
    return kit.transfer_exceptions_into_jvms();
  }

  // Finish the diamond.
  kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
  RegionNode* region = new (kit.C) RegionNode(3);
  region->init_req(1, kit.control());
  region->init_req(2, slow_map->control());
  kit.set_control(gvn.transform(region));
  Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
  iophi->set_req(2, slow_map->i_o());
  kit.set_i_o(gvn.transform(iophi));
  kit.merge_memory(slow_map->merged_memory(), region, 2);
  uint tos = kit.jvms()->stkoff() + kit.sp();
  uint limit = slow_map->req();
  for (uint i = TypeFunc::Parms; i < limit; i++) {
    // Skip unused stack slots; fast forward to monoff();
    if (i == tos) {
      i = kit.jvms()->monoff();
      if( i >= limit ) break;
    }
    Node* m = kit.map()->in(i);
    Node* n = slow_map->in(i);
    if (m != n) {
      const Type* t = gvn.type(m)->meet(gvn.type(n));
      Node* phi = PhiNode::make(region, m, t);
      phi->set_req(2, n);
      kit.map()->set_req(i, gvn.transform(phi));
    }
  }
  return kit.transfer_exceptions_into_jvms();
}

//-------------------------UncommonTrapCallGenerator-----------------------------
// Internal class which handles all out-of-line calls checking receiver type.
class UncommonTrapCallGenerator : public CallGenerator {
  Deoptimization::DeoptReason _reason;
  Deoptimization::DeoptAction _action;

public:
  UncommonTrapCallGenerator(ciMethod* m,
                            Deoptimization::DeoptReason reason,
                            Deoptimization::DeoptAction action)
    : CallGenerator(m)
  {
    _reason = reason;
    _action = action;
  }

  virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
  virtual bool      is_trap() const             { return true; }

  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
};


CallGenerator*
CallGenerator::for_uncommon_trap(ciMethod* m,
                                 Deoptimization::DeoptReason reason,
                                 Deoptimization::DeoptAction action) {
  return new UncommonTrapCallGenerator(m, reason, action);
}


JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms, Parse* parent_parser) {
  GraphKit kit(jvms);
  // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
  int nargs = method()->arg_size();
  kit.inc_sp(nargs);
  assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
  if (_reason == Deoptimization::Reason_class_check &&
      _action == Deoptimization::Action_maybe_recompile) {
    // Temp fix for 6529811
    // Don't allow uncommon_trap to override our decision to recompile in the event
    // of a class cast failure for a monomorphic call as it will never let us convert
    // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
    bool keep_exact_action = true;
    kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
  } else {
    kit.uncommon_trap(_reason, _action);
  }
  return kit.transfer_exceptions_into_jvms();
}

// (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)

// (Node:  Merged hook_up_exits into ParseGenerator::generate.)

#define NODES_OVERHEAD_PER_METHOD (30.0)
#define NODES_PER_BYTECODE (9.5)

void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
  int call_count = profile.count();
  int code_size = call_method->code_size();

  // Expected execution count is based on the historical count:
  _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);

  // Expected profit from inlining, in units of simple call-overheads.
  _profit = 1.0;

  // Expected work performed by the call in units of call-overheads.
  // %%% need an empirical curve fit for "work" (time in call)
  float bytecodes_per_call = 3;
  _work = 1.0 + code_size / bytecodes_per_call;

  // Expected size of compilation graph:
  // -XX:+PrintParseStatistics once reported:
  //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
  //  Histogram of 144298 parsed bytecodes:
  // %%% Need an better predictor for graph size.
  _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
}

// is_cold:  Return true if the node should never be inlined.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_cold() const {
  if (count()  <  WarmCallMinCount)        return true;
  if (profit() <  WarmCallMinProfit)       return true;
  if (work()   >  WarmCallMaxWork)         return true;
  if (size()   >  WarmCallMaxSize)         return true;
  return false;
}

// is_hot:  Return true if the node should be inlined immediately.
// This is true if any of the key metrics are extreme.
bool WarmCallInfo::is_hot() const {
  assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
  if (count()  >= HotCallCountThreshold)   return true;
  if (profit() >= HotCallProfitThreshold)  return true;
  if (work()   <= HotCallTrivialWork)      return true;
  if (size()   <= HotCallTrivialSize)      return true;
  return false;
}

// compute_heat:
float WarmCallInfo::compute_heat() const {
  assert(!is_cold(), "compute heat only on warm nodes");
  assert(!is_hot(),  "compute heat only on warm nodes");
  int min_size = MAX2(0,   (int)HotCallTrivialSize);
  int max_size = MIN2(500, (int)WarmCallMaxSize);
  float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
  float size_factor;
  if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
  else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
  else if (method_size < 0.5)   size_factor = 1;   // better than avg.
  else                          size_factor = 0.5; // worse than avg.
  return (count() * profit() * size_factor);
}

bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
  assert(this != that, "compare only different WCIs");
  assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
  if (this->heat() > that->heat())   return true;
  if (this->heat() < that->heat())   return false;
  assert(this->heat() == that->heat(), "no NaN heat allowed");
  // Equal heat.  Break the tie some other way.
  if (!this->call() || !that->call())  return (address)this > (address)that;
  return this->call()->_idx > that->call()->_idx;
}

//#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
#define UNINIT_NEXT ((WarmCallInfo*)NULL)

WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
  assert(next() == UNINIT_NEXT, "not yet on any list");
  WarmCallInfo* prev_p = NULL;
  WarmCallInfo* next_p = head;
  while (next_p != NULL && next_p->warmer_than(this)) {
    prev_p = next_p;
    next_p = prev_p->next();
  }
  // Install this between prev_p and next_p.
  this->set_next(next_p);
  if (prev_p == NULL)
    head = this;
  else
    prev_p->set_next(this);
  return head;
}

WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
  WarmCallInfo* prev_p = NULL;
  WarmCallInfo* next_p = head;
  while (next_p != this) {
    assert(next_p != NULL, "this must be in the list somewhere");
    prev_p = next_p;
    next_p = prev_p->next();
  }
  next_p = this->next();
  debug_only(this->set_next(UNINIT_NEXT));
  // Remove this from between prev_p and next_p.
  if (prev_p == NULL)
    head = next_p;
  else
    prev_p->set_next(next_p);
  return head;
}

WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
                                       WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
                                        WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());

WarmCallInfo* WarmCallInfo::always_hot() {
  assert(_always_hot.is_hot(), "must always be hot");
  return &_always_hot;
}

WarmCallInfo* WarmCallInfo::always_cold() {
  assert(_always_cold.is_cold(), "must always be cold");
  return &_always_cold;
}


#ifndef PRODUCT

void WarmCallInfo::print() const {
  tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
             is_cold() ? "cold" : is_hot() ? "hot " : "warm",
             count(), profit(), work(), size(), compute_heat(), next());
  tty->cr();
  if (call() != NULL)  call()->dump();
}

void print_wci(WarmCallInfo* ci) {
  ci->print();
}

void WarmCallInfo::print_all() const {
  for (const WarmCallInfo* p = this; p != NULL; p = p->next())
    p->print();
}

int WarmCallInfo::count_all() const {
  int cnt = 0;
  for (const WarmCallInfo* p = this; p != NULL; p = p->next())
    cnt++;
  return cnt;
}

#endif //PRODUCT

Other Java examples (source code examples)

Here is a short list of links related to this Java callGenerator.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.