alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (chaitin.cpp)

This example Java source code file (chaitin.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

block, c\-, end, indexsetiterator, lrg, node, not_product, null, optoreg::name, optoreg\:\:add, optoreg\:\:regname, product, regmask

The chaitin.cpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "compiler/oopMap.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/block.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/chaitin.hpp"
#include "opto/coalesce.hpp"
#include "opto/connode.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/indexSet.hpp"
#include "opto/machnode.hpp"
#include "opto/memnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/rootnode.hpp"

#ifndef PRODUCT
void LRG::dump() const {
  ttyLocker ttyl;
  tty->print("%d ",num_regs());
  _mask.dump();
  if( _msize_valid ) {
    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  } else {
    tty->print(", #?(%d) ",_mask.Size());
  }

  tty->print("EffDeg: ");
  if( _degree_valid ) tty->print( "%d ", _eff_degree );
  else tty->print("? ");

  if( is_multidef() ) {
    tty->print("MultiDef ");
    if (_defs != NULL) {
      tty->print("(");
      for (int i = 0; i < _defs->length(); i++) {
        tty->print("N%d ", _defs->at(i)->_idx);
      }
      tty->print(") ");
    }
  }
  else if( _def == 0 ) tty->print("Dead ");
  else tty->print("Def: N%d ",_def->_idx);

  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  // Flags
  if( _is_oop ) tty->print("Oop ");
  if( _is_float ) tty->print("Float ");
  if( _is_vector ) tty->print("Vector ");
  if( _was_spilled1 ) tty->print("Spilled ");
  if( _was_spilled2 ) tty->print("Spilled2 ");
  if( _direct_conflict ) tty->print("Direct_conflict ");
  if( _fat_proj ) tty->print("Fat ");
  if( _was_lo ) tty->print("Lo ");
  if( _has_copy ) tty->print("Copy ");
  if( _at_risk ) tty->print("Risk ");

  if( _must_spill ) tty->print("Must_spill ");
  if( _is_bound ) tty->print("Bound ");
  if( _msize_valid ) {
    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  }

  tty->cr();
}
#endif

// Compute score from cost and area.  Low score is best to spill.
static double raw_score( double cost, double area ) {
  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
}

double LRG::score() const {
  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
  // Bigger area lowers score, encourages spilling this live range.
  // Bigger cost raise score, prevents spilling this live range.
  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
  // to turn a divide by a constant into a multiply by the reciprical).
  double score = raw_score( _cost, _area);

  // Account for area.  Basically, LRGs covering large areas are better
  // to spill because more other LRGs get freed up.
  if( _area == 0.0 )            // No area?  Then no progress to spill
    return 1e35;

  if( _was_spilled2 )           // If spilled once before, we are unlikely
    return score + 1e30;        // to make progress again.

  if( _cost >= _area*3.0 )      // Tiny area relative to cost
    return score + 1e17;        // Probably no progress to spill

  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
    return score + 1e10;        // Likely no progress to spill

  return score;
}

#define NUMBUCKS 3

// Straight out of Tarjan's union-find algorithm
uint LiveRangeMap::find_compress(uint lrg) {
  uint cur = lrg;
  uint next = _uf_map.at(cur);
  while (next != cur) { // Scan chain of equivalences
    assert( next < cur, "always union smaller");
    cur = next; // until find a fixed-point
    next = _uf_map.at(cur);
  }

  // Core of union-find algorithm: update chain of
  // equivalences to be equal to the root.
  while (lrg != next) {
    uint tmp = _uf_map.at(lrg);
    _uf_map.at_put(lrg, next);
    lrg = tmp;
  }
  return lrg;
}

// Reset the Union-Find map to identity
void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
  _max_lrg_id= max_lrg_id;
  // Force the Union-Find mapping to be at least this large
  _uf_map.at_put_grow(_max_lrg_id, 0);
  // Initialize it to be the ID mapping.
  for (uint i = 0; i < _max_lrg_id; ++i) {
    _uf_map.at_put(i, i);
  }
}

// Make all Nodes map directly to their final live range; no need for
// the Union-Find mapping after this call.
void LiveRangeMap::compress_uf_map_for_nodes() {
  // For all Nodes, compress mapping
  uint unique = _names.length();
  for (uint i = 0; i < unique; ++i) {
    uint lrg = _names.at(i);
    uint compressed_lrg = find(lrg);
    if (lrg != compressed_lrg) {
      _names.at_put(i, compressed_lrg);
    }
  }
}

// Like Find above, but no path compress, so bad asymptotic behavior
uint LiveRangeMap::find_const(uint lrg) const {
  if (!lrg) {
    return lrg; // Ignore the zero LRG
  }

  // Off the end?  This happens during debugging dumps when you got
  // brand new live ranges but have not told the allocator yet.
  if (lrg >= _max_lrg_id) {
    return lrg;
  }

  uint next = _uf_map.at(lrg);
  while (next != lrg) { // Scan chain of equivalences
    assert(next < lrg, "always union smaller");
    lrg = next; // until find a fixed-point
    next = _uf_map.at(lrg);
  }
  return next;
}

PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
  : PhaseRegAlloc(unique, cfg, matcher,
#ifndef PRODUCT
       print_chaitin_statistics
#else
       NULL
#endif
       )
  , _lrg_map(Thread::current()->resource_area(), unique)
  , _live(0)
  , _spilled_once(Thread::current()->resource_area())
  , _spilled_twice(Thread::current()->resource_area())
  , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
  , _oldphi(unique)
#ifndef PRODUCT
  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
#endif
{
  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )

  _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());

  // Build a list of basic blocks, sorted by frequency
  _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
  // Experiment with sorting strategies to speed compilation
  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
  Block **buckets[NUMBUCKS];             // Array of buckets
  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
  for (uint i = 0; i < NUMBUCKS; i++) {
    buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
    buckcnt[i] = 0;
    // Bump by three orders of magnitude each time
    cutoff *= 0.001;
    buckval[i] = cutoff;
    for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
      buckets[i][j] = NULL;
    }
  }
  // Sort blocks into buckets
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    for (uint j = 0; j < NUMBUCKS; j++) {
      if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
        // Assign block to end of list for appropriate bucket
        buckets[j][buckcnt[j]++] = _cfg.get_block(i);
        break; // kick out of inner loop
      }
    }
  }
  // Dump buckets into final block array
  uint blkcnt = 0;
  for (uint i = 0; i < NUMBUCKS; i++) {
    for (uint j = 0; j < buckcnt[i]; j++) {
      _blks[blkcnt++] = buckets[i][j];
    }
  }

  assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
}

// union 2 sets together.
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
  uint src = _lrg_map.find(src_n);
  uint dst = _lrg_map.find(dst_n);
  assert(src, "");
  assert(dst, "");
  assert(src < _lrg_map.max_lrg_id(), "oob");
  assert(dst < _lrg_map.max_lrg_id(), "oob");
  assert(src < dst, "always union smaller");
  _lrg_map.uf_map(dst, src);
}

void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
  // Make the Node->LRG mapping
  _lrg_map.extend(x->_idx,lrg);
  // Make the Union-Find mapping an identity function
  _lrg_map.uf_extend(lrg, lrg);
}


int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
  assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
  DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
  int found_projs = 0;
  uint cnt = orig->outcnt();
  for (uint i = 0; i < cnt; i++) {
    Node* proj = orig->raw_out(i);
    if (proj->is_MachProj()) {
      assert(proj->outcnt() == 0, "only kill projections are expected here");
      assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
      found_projs++;
      // Copy kill projections after the cloned node
      Node* kills = proj->clone();
      kills->set_req(0, copy);
      b->insert_node(kills, idx++);
      _cfg.map_node_to_block(kills, b);
      new_lrg(kills, max_lrg_id++);
    }
  }
  return found_projs;
}

// Renumber the live ranges to compact them.  Makes the IFG smaller.
void PhaseChaitin::compact() {
  // Current the _uf_map contains a series of short chains which are headed
  // by a self-cycle.  All the chains run from big numbers to little numbers.
  // The Find() call chases the chains & shortens them for the next Find call.
  // We are going to change this structure slightly.  Numbers above a moving
  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
  // compacted live range with no further chaining.  There are no chains or
  // cycles below 'i', so the Find call no longer works.
  uint j=1;
  uint i;
  for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
    uint lr = _lrg_map.uf_live_range_id(i);
    // Ignore unallocated live ranges
    if (!lr) {
      continue;
    }
    assert(lr <= i, "");
    _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
  }
  // Now change the Node->LR mapping to reflect the compacted names
  uint unique = _lrg_map.size();
  for (i = 0; i < unique; i++) {
    uint lrg_id = _lrg_map.live_range_id(i);
    _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
  }

  // Reset the Union-Find mapping
  _lrg_map.reset_uf_map(j);
}

void PhaseChaitin::Register_Allocate() {

  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
  // slots in this area are called "arg_slots".  Above the NEW FP (and in
  // registers) is the outgoing argument area; above that is the spill/temp
  // area.  These are all "frame_slots".  Arg_slots start at the zero
  // stack_slots and count up to the known arg_size.  Frame_slots start at
  // the stack_slot #arg_size and go up.  After allocation I map stack
  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
  // by the frame_size; stack-slots in the frame_slot area are biased by 0.

  _trip_cnt = 0;
  _alternate = 0;
  _matcher._allocation_started = true;

  ResourceArea split_arena;     // Arena for Split local resources
  ResourceArea live_arena;      // Arena for liveness & IFG info
  ResourceMark rm(&live_arena);

  // Need live-ness for the IFG; need the IFG for coalescing.  If the
  // liveness is JUST for coalescing, then I can get some mileage by renaming
  // all copy-related live ranges low and then using the max copy-related
  // live range as a cut-off for LIVE and the IFG.  In other words, I can
  // build a subset of LIVE and IFG just for copies.
  PhaseLive live(_cfg, _lrg_map.names(), &live_arena);

  // Need IFG for coalescing and coloring
  PhaseIFG ifg(&live_arena);
  _ifg = &ifg;

  // Come out of SSA world to the Named world.  Assign (virtual) registers to
  // Nodes.  Use the same register for all inputs and the output of PhiNodes
  // - effectively ending SSA form.  This requires either coalescing live
  // ranges or inserting copies.  For the moment, we insert "virtual copies"
  // - we pretend there is a copy prior to each Phi in predecessor blocks.
  // We will attempt to coalesce such "virtual copies" before we manifest
  // them for real.
  de_ssa();

#ifdef ASSERT
  // Veify the graph before RA.
  verify(&live_arena);
#endif

  {
    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
    _live = NULL;                 // Mark live as being not available
    rm.reset_to_mark();           // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
    gather_lrg_masks( false );    // Collect LRG masks
    live.compute(_lrg_map.max_lrg_id()); // Compute liveness
    _live = &live;                // Mark LIVE as being available
  }

  // Base pointers are currently "used" by instructions which define new
  // derived pointers.  This makes base pointers live up to the where the
  // derived pointer is made, but not beyond.  Really, they need to be live
  // across any GC point where the derived value is live.  So this code looks
  // at all the GC points, and "stretches" the live range of any base pointer
  // to the GC point.
  if (stretch_base_pointer_live_ranges(&live_arena)) {
    NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
    // Since some live range stretched, I need to recompute live
    _live = NULL;
    rm.reset_to_mark();         // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_lrg_map.max_lrg_id());
    gather_lrg_masks(false);
    live.compute(_lrg_map.max_lrg_id());
    _live = &live;
  }
  // Create the interference graph using virtual copies
  build_ifg_virtual();  // Include stack slots this time

  // Aggressive (but pessimistic) copy coalescing.
  // This pass works on virtual copies.  Any virtual copies which are not
  // coalesced get manifested as actual copies
  {
    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
    // faster.  Union requires a 'for all' operation which is slow on the
    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
    // meaning I can visit all the Nodes neighbors less than a Node in time
    // O(# of neighbors), but I have to visit all the Nodes greater than a
    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
    _ifg->SquareUp();

    PhaseAggressiveCoalesce coalesce(*this);
    coalesce.coalesce_driver();
    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
    // not match the Phi itself, insert a copy.
    coalesce.insert_copies(_matcher);
    if (C->failing()) {
      return;
    }
  }

  // After aggressive coalesce, attempt a first cut at coloring.
  // To color, we need the IFG and for that we need LIVE.
  {
    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
    _live = NULL;
    rm.reset_to_mark();           // Reclaim working storage
    IndexSet::reset_memory(C, &live_arena);
    ifg.init(_lrg_map.max_lrg_id());
    gather_lrg_masks( true );
    live.compute(_lrg_map.max_lrg_id());
    _live = &live;
  }

  // Build physical interference graph
  uint must_spill = 0;
  must_spill = build_ifg_physical(&live_arena);
  // If we have a guaranteed spill, might as well spill now
  if (must_spill) {
    if(!_lrg_map.max_lrg_id()) {
      return;
    }
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
    C->check_node_count(10*must_spill, "out of nodes before split");
    if (C->failing()) {
      return;
    }

    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
    _lrg_map.set_max_lrg_id(new_max_lrg_id);
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
    // or we failed to split
    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
    if (C->failing()) {
      return;
    }

    NOT_PRODUCT(C->verify_graph_edges();)

    compact();                  // Compact LRGs; return new lower max lrg

    {
      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
      _live = NULL;
      rm.reset_to_mark();         // Reclaim working storage
      IndexSet::reset_memory(C, &live_arena);
      ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
      gather_lrg_masks( true );   // Collect intersect mask
      live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
      _live = &live;
    }
    build_ifg_physical(&live_arena);
    _ifg->SquareUp();
    _ifg->Compute_Effective_Degree();
    // Only do conservative coalescing if requested
    if (OptoCoalesce) {
      // Conservative (and pessimistic) copy coalescing of those spills
      PhaseConservativeCoalesce coalesce(*this);
      // If max live ranges greater than cutoff, don't color the stack.
      // This cutoff can be larger than below since it is only done once.
      coalesce.coalesce_driver();
    }
    _lrg_map.compress_uf_map_for_nodes();

#ifdef ASSERT
    verify(&live_arena, true);
#endif
  } else {
    ifg.SquareUp();
    ifg.Compute_Effective_Degree();
#ifdef ASSERT
    set_was_low();
#endif
  }

  // Prepare for Simplify & Select
  cache_lrg_info();           // Count degree of LRGs

  // Simplify the InterFerence Graph by removing LRGs of low degree.
  // LRGs of low degree are trivially colorable.
  Simplify();

  // Select colors by re-inserting LRGs back into the IFG in reverse order.
  // Return whether or not something spills.
  uint spills = Select( );

  // If we spill, split and recycle the entire thing
  while( spills ) {
    if( _trip_cnt++ > 24 ) {
      DEBUG_ONLY( dump_for_spill_split_recycle(); )
      if( _trip_cnt > 27 ) {
        C->record_method_not_compilable("failed spill-split-recycle sanity check");
        return;
      }
    }

    if (!_lrg_map.max_lrg_id()) {
      return;
    }
    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
    _lrg_map.set_max_lrg_id(new_max_lrg_id);
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
    C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
    if (C->failing()) {
      return;
    }

    compact(); // Compact LRGs; return new lower max lrg

    // Nuke the live-ness and interference graph and LiveRanGe info
    {
      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
      _live = NULL;
      rm.reset_to_mark();         // Reclaim working storage
      IndexSet::reset_memory(C, &live_arena);
      ifg.init(_lrg_map.max_lrg_id());

      // Create LiveRanGe array.
      // Intersect register masks for all USEs and DEFs
      gather_lrg_masks(true);
      live.compute(_lrg_map.max_lrg_id());
      _live = &live;
    }
    must_spill = build_ifg_physical(&live_arena);
    _ifg->SquareUp();
    _ifg->Compute_Effective_Degree();

    // Only do conservative coalescing if requested
    if (OptoCoalesce) {
      // Conservative (and pessimistic) copy coalescing
      PhaseConservativeCoalesce coalesce(*this);
      // Check for few live ranges determines how aggressive coalesce is.
      coalesce.coalesce_driver();
    }
    _lrg_map.compress_uf_map_for_nodes();
#ifdef ASSERT
    verify(&live_arena, true);
#endif
    cache_lrg_info();           // Count degree of LRGs

    // Simplify the InterFerence Graph by removing LRGs of low degree.
    // LRGs of low degree are trivially colorable.
    Simplify();

    // Select colors by re-inserting LRGs back into the IFG in reverse order.
    // Return whether or not something spills.
    spills = Select();
  }

  // Count number of Simplify-Select trips per coloring success.
  _allocator_attempts += _trip_cnt + 1;
  _allocator_successes += 1;

  // Peephole remove copies
  post_allocate_copy_removal();

#ifdef ASSERT
  // Veify the graph after RA.
  verify(&live_arena);
#endif

  // max_reg is past the largest *register* used.
  // Convert that to a frame_slot number.
  if (_max_reg <= _matcher._new_SP) {
    _framesize = C->out_preserve_stack_slots();
  }
  else {
    _framesize = _max_reg -_matcher._new_SP;
  }
  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");

  // This frame must preserve the required fp alignment
  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
#ifndef PRODUCT
  _total_framesize += _framesize;
  if ((int)_framesize > _max_framesize) {
    _max_framesize = _framesize;
  }
#endif

  // Convert CISC spills
  fixup_spills();

  // Log regalloc results
  CompileLog* log = Compile::current()->log();
  if (log != NULL) {
    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
  }

  if (C->failing()) {
    return;
  }

  NOT_PRODUCT(C->verify_graph_edges();)

  // Move important info out of the live_arena to longer lasting storage.
  alloc_node_regs(_lrg_map.size());
  for (uint i=0; i < _lrg_map.size(); i++) {
    if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
      LRG &lrg = lrgs(_lrg_map.live_range_id(i));
      if (!lrg.alive()) {
        set_bad(i);
      } else if (lrg.num_regs() == 1) {
        set1(i, lrg.reg());
      } else {                  // Must be a register-set
        if (!lrg._fat_proj) {   // Must be aligned adjacent register set
          // Live ranges record the highest register in their mask.
          // We want the low register for the AD file writer's convenience.
          OptoReg::Name hi = lrg.reg(); // Get hi register
          OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
          // We have to use pair [lo,lo+1] even for wide vectors because
          // the rest of code generation works only with pairs. It is safe
          // since for registers encoding only 'lo' is used.
          // Second reg from pair is used in ScheduleAndBundle on SPARC where
          // vector max size is 8 which corresponds to registers pair.
          // It is also used in BuildOopMaps but oop operations are not
          // vectorized.
          set2(i, lo);
        } else {                // Misaligned; extract 2 bits
          OptoReg::Name hi = lrg.reg(); // Get hi register
          lrg.Remove(hi);       // Yank from mask
          int lo = lrg.mask().find_first_elem(); // Find lo
          set_pair(i, hi, lo);
        }
      }
      if( lrg._is_oop ) _node_oops.set(i);
    } else {
      set_bad(i);
    }
  }

  // Done!
  _live = NULL;
  _ifg = NULL;
  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
}

void PhaseChaitin::de_ssa() {
  // Set initial Names for all Nodes.  Most Nodes get the virtual register
  // number.  A few get the ZERO live range number.  These do not
  // get allocated, but instead rely on correct scheduling to ensure that
  // only one instance is simultaneously live at a time.
  uint lr_counter = 1;
  for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
    Block* block = _cfg.get_block(i);
    uint cnt = block->number_of_nodes();

    // Handle all the normal Nodes in the block
    for( uint j = 0; j < cnt; j++ ) {
      Node *n = block->get_node(j);
      // Pre-color to the zero live range, or pick virtual register
      const RegMask &rm = n->out_RegMask();
      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
    }
  }

  // Reset the Union-Find mapping to be identity
  _lrg_map.reset_uf_map(lr_counter);
}


// Gather LiveRanGe information, including register masks.  Modification of
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {

  // Nail down the frame pointer live range
  uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite

  // For all blocks
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    Block* block = _cfg.get_block(i);

    // For all instructions
    for (uint j = 1; j < block->number_of_nodes(); j++) {
      Node* n = block->get_node(j);
      uint input_edge_start =1; // Skip control most nodes
      if (n->is_Mach()) {
        input_edge_start = n->as_Mach()->oper_input_base();
      }
      uint idx = n->is_Copy();

      // Get virtual register number, same as LiveRanGe index
      uint vreg = _lrg_map.live_range_id(n);
      LRG& lrg = lrgs(vreg);
      if (vreg) {              // No vreg means un-allocable (e.g. memory)

        // Collect has-copy bit
        if (idx) {
          lrg._has_copy = 1;
          uint clidx = _lrg_map.live_range_id(n->in(idx));
          LRG& copy_src = lrgs(clidx);
          copy_src._has_copy = 1;
        }

        // Check for float-vs-int live range (used in register-pressure
        // calculations)
        const Type *n_type = n->bottom_type();
        if (n_type->is_floatingpoint()) {
          lrg._is_float = 1;
        }

        // Check for twice prior spilling.  Once prior spilling might have
        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
        // further spilling is unlikely to make progress.
        if (_spilled_once.test(n->_idx)) {
          lrg._was_spilled1 = 1;
          if (_spilled_twice.test(n->_idx)) {
            lrg._was_spilled2 = 1;
          }
        }

#ifndef PRODUCT
        if (trace_spilling() && lrg._def != NULL) {
          // collect defs for MultiDef printing
          if (lrg._defs == NULL) {
            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
            lrg._defs->append(lrg._def);
          }
          lrg._defs->append(n);
        }
#endif

        // Check for a single def LRG; these can spill nicely
        // via rematerialization.  Flag as NULL for no def found
        // yet, or 'n' for single def or -1 for many defs.
        lrg._def = lrg._def ? NodeSentinel : n;

        // Limit result register mask to acceptable registers
        const RegMask &rm = n->out_RegMask();
        lrg.AND( rm );

        int ireg = n->ideal_reg();
        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
                "oops must be in Op_RegP's" );

        // Check for vector live range (only if vector register is used).
        // On SPARC vector uses RegD which could be misaligned so it is not
        // processes as vector in RA.
        if (RegMask::is_vector(ireg))
          lrg._is_vector = 1;
        assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
               "vector must be in vector registers");

        // Check for bound register masks
        const RegMask &lrgmask = lrg.mask();
        if (lrgmask.is_bound(ireg)) {
          lrg._is_bound = 1;
        }

        // Check for maximum frequency value
        if (lrg._maxfreq < block->_freq) {
          lrg._maxfreq = block->_freq;
        }

        // Check for oop-iness, or long/double
        // Check for multi-kill projection
        switch (ireg) {
        case MachProjNode::fat_proj:
          // Fat projections have size equal to number of registers killed
          lrg.set_num_regs(rm.Size());
          lrg.set_reg_pressure(lrg.num_regs());
          lrg._fat_proj = 1;
          lrg._is_bound = 1;
          break;
        case Op_RegP:
#ifdef _LP64
          lrg.set_num_regs(2);  // Size is 2 stack words
#else
          lrg.set_num_regs(1);  // Size is 1 stack word
#endif
          // Register pressure is tracked relative to the maximum values
          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
          // and relative to other types which compete for the same regs.
          //
          // The following table contains suggested values based on the
          // architectures as defined in each .ad file.
          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
          // compile-speed or performance.
          // Note1:
          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
          // since .ad registers are defined as high and low halves.
          // These reg_pressure values remain compatible with the code
          // in is_high_pressure() which relates get_invalid_mask_size(),
          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
          // Note2:
          // SPARC -d32 has 24 registers available for integral values,
          // but only 10 of these are safe for 64-bit longs.
          // Using set_reg_pressure(2) for both int and long means
          // the allocator will believe it can fit 26 longs into
          // registers.  Using 2 for longs and 1 for ints means the
          // allocator will attempt to put 52 integers into registers.
          // The settings below limit this problem to methods with
          // many long values which are being run on 32-bit SPARC.
          //
          // ------------------- reg_pressure --------------------
          // Each entry is reg_pressure_per_value,number_of_regs
          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
          // IA32     2     1     1          1    1          6           6
          // IA64     1     1     1          1    1         50          41
          // SPARC    2     2     2          2    2         48 (24)     52 (26)
          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
          // AMD64    1     1     1          1    1         14          15
          // -----------------------------------------------------
#if defined(SPARC)
          lrg.set_reg_pressure(2);  // use for v9 as well
#else
          lrg.set_reg_pressure(1);  // normally one value per register
#endif
          if( n_type->isa_oop_ptr() ) {
            lrg._is_oop = 1;
          }
          break;
        case Op_RegL:           // Check for long or double
        case Op_RegD:
          lrg.set_num_regs(2);
          // Define platform specific register pressure
#if defined(SPARC) || defined(ARM)
          lrg.set_reg_pressure(2);
#elif defined(IA32)
          if( ireg == Op_RegL ) {
            lrg.set_reg_pressure(2);
          } else {
            lrg.set_reg_pressure(1);
          }
#else
          lrg.set_reg_pressure(1);  // normally one value per register
#endif
          // If this def of a double forces a mis-aligned double,
          // flag as '_fat_proj' - really flag as allowing misalignment
          // AND changes how we count interferences.  A mis-aligned
          // double can interfere with TWO aligned pairs, or effectively
          // FOUR registers!
          if (rm.is_misaligned_pair()) {
            lrg._fat_proj = 1;
            lrg._is_bound = 1;
          }
          break;
        case Op_RegF:
        case Op_RegI:
        case Op_RegN:
        case Op_RegFlags:
        case 0:                 // not an ideal register
          lrg.set_num_regs(1);
#ifdef SPARC
          lrg.set_reg_pressure(2);
#else
          lrg.set_reg_pressure(1);
#endif
          break;
        case Op_VecS:
          assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
          assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
          lrg.set_num_regs(RegMask::SlotsPerVecS);
          lrg.set_reg_pressure(1);
          break;
        case Op_VecD:
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
          assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
          lrg.set_num_regs(RegMask::SlotsPerVecD);
          lrg.set_reg_pressure(1);
          break;
        case Op_VecX:
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
          assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
          lrg.set_num_regs(RegMask::SlotsPerVecX);
          lrg.set_reg_pressure(1);
          break;
        case Op_VecY:
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
          assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
          lrg.set_num_regs(RegMask::SlotsPerVecY);
          lrg.set_reg_pressure(1);
          break;
        default:
          ShouldNotReachHere();
        }
      }

      // Now do the same for inputs
      uint cnt = n->req();
      // Setup for CISC SPILLING
      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
      if( UseCISCSpill && after_aggressive ) {
        inp = n->cisc_operand();
        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
          // Convert operand number to edge index number
          inp = n->as_Mach()->operand_index(inp);
      }
      // Prepare register mask for each input
      for( uint k = input_edge_start; k < cnt; k++ ) {
        uint vreg = _lrg_map.live_range_id(n->in(k));
        if (!vreg) {
          continue;
        }

        // If this instruction is CISC Spillable, add the flags
        // bit to its appropriate input
        if( UseCISCSpill && after_aggressive && inp == k ) {
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("  use_cisc_RegMask: ");
            n->dump();
          }
#endif
          n->as_Mach()->use_cisc_RegMask();
        }

        LRG &lrg = lrgs(vreg);
        // // Testing for floating point code shape
        // Node *test = n->in(k);
        // if( test->is_Mach() ) {
        //   MachNode *m = test->as_Mach();
        //   int  op = m->ideal_Opcode();
        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
        //     int zzz = 1;
        //   }
        // }

        // Limit result register mask to acceptable registers.
        // Do not limit registers from uncommon uses before
        // AggressiveCoalesce.  This effectively pre-virtual-splits
        // around uncommon uses of common defs.
        const RegMask &rm = n->in_RegMask(k);
        if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
          // Since we are BEFORE aggressive coalesce, leave the register
          // mask untrimmed by the call.  This encourages more coalescing.
          // Later, AFTER aggressive, this live range will have to spill
          // but the spiller handles slow-path calls very nicely.
        } else {
          lrg.AND( rm );
        }

        // Check for bound register masks
        const RegMask &lrgmask = lrg.mask();
        int kreg = n->in(k)->ideal_reg();
        bool is_vect = RegMask::is_vector(kreg);
        assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
               is_vect || kreg == Op_RegD,
               "vector must be in vector registers");
        if (lrgmask.is_bound(kreg))
          lrg._is_bound = 1;

        // If this use of a double forces a mis-aligned double,
        // flag as '_fat_proj' - really flag as allowing misalignment
        // AND changes how we count interferences.  A mis-aligned
        // double can interfere with TWO aligned pairs, or effectively
        // FOUR registers!
#ifdef ASSERT
        if (is_vect) {
          assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
          assert(!lrg._fat_proj, "sanity");
          assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
        }
#endif
        if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
          lrg._fat_proj = 1;
          lrg._is_bound = 1;
        }
        // if the LRG is an unaligned pair, we will have to spill
        // so clear the LRG's register mask if it is not already spilled
        if (!is_vect && !n->is_SpillCopy() &&
            (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
            lrgmask.is_misaligned_pair()) {
          lrg.Clear();
        }

        // Check for maximum frequency value
        if (lrg._maxfreq < block->_freq) {
          lrg._maxfreq = block->_freq;
        }

      } // End for all allocated inputs
    } // end for all instructions
  } // end for all blocks

  // Final per-liverange setup
  for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
    LRG &lrg = lrgs(i2);
    assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
    if (lrg.num_regs() > 1 && !lrg._fat_proj) {
      lrg.clear_to_sets();
    }
    lrg.compute_set_mask_size();
    if (lrg.not_free()) {      // Handle case where we lose from the start
      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
      lrg._direct_conflict = 1;
    }
    lrg.set_degree(0);          // no neighbors in IFG yet
  }
}

// Set the was-lo-degree bit.  Conservative coalescing should not change the
// colorability of the graph.  If any live range was of low-degree before
// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
// The bit is checked in Simplify.
void PhaseChaitin::set_was_low() {
#ifdef ASSERT
  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
    int size = lrgs(i).num_regs();
    uint old_was_lo = lrgs(i)._was_lo;
    lrgs(i)._was_lo = 0;
    if( lrgs(i).lo_degree() ) {
      lrgs(i)._was_lo = 1;      // Trivially of low degree
    } else {                    // Else check the Brigg's assertion
      // Brigg's observation is that the lo-degree neighbors of a
      // hi-degree live range will not interfere with the color choices
      // of said hi-degree live range.  The Simplify reverse-stack-coloring
      // order takes care of the details.  Hence you do not have to count
      // low-degree neighbors when determining if this guy colors.
      int briggs_degree = 0;
      IndexSet *s = _ifg->neighbors(i);
      IndexSetIterator elements(s);
      uint lidx;
      while((lidx = elements.next()) != 0) {
        if( !lrgs(lidx).lo_degree() )
          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
      }
      if( briggs_degree < lrgs(i).degrees_of_freedom() )
        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
    }
    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  }
#endif
}

#define REGISTER_CONSTRAINED 16

// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
void PhaseChaitin::cache_lrg_info( ) {

  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
    LRG &lrg = lrgs(i);

    // Check for being of low degree: means we can be trivially colored.
    // Low degree, dead or must-spill guys just get to simplify right away
    if( lrg.lo_degree() ||
       !lrg.alive() ||
        lrg._must_spill ) {
      // Split low degree list into those guys that must get a
      // register and those that can go to register or stack.
      // The idea is LRGs that can go register or stack color first when
      // they have a good chance of getting a register.  The register-only
      // lo-degree live ranges always get a register.
      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
        lrg._next = _lo_stk_degree;
        _lo_stk_degree = i;
      } else {
        lrg._next = _lo_degree;
        _lo_degree = i;
      }
    } else {                    // Else high degree
      lrgs(_hi_degree)._prev = i;
      lrg._next = _hi_degree;
      lrg._prev = 0;
      _hi_degree = i;
    }
  }
}

// Simplify the IFG by removing LRGs of low degree that have NO copies
void PhaseChaitin::Pre_Simplify( ) {

  // Warm up the lo-degree no-copy list
  int lo_no_copy = 0;
  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
    if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
        !lrgs(i).alive() ||
        lrgs(i)._must_spill) {
      lrgs(i)._next = lo_no_copy;
      lo_no_copy = i;
    }
  }

  while( lo_no_copy ) {
    uint lo = lo_no_copy;
    lo_no_copy = lrgs(lo)._next;
    int size = lrgs(lo).num_regs();

    // Put the simplified guy on the simplified list.
    lrgs(lo)._next = _simplified;
    _simplified = lo;

    // Yank this guy from the IFG.
    IndexSet *adj = _ifg->remove_node( lo );

    // If any neighbors' degrees fall below their number of
    // allowed registers, then put that neighbor on the low degree
    // list.  Note that 'degree' can only fall and 'numregs' is
    // unchanged by this action.  Thus the two are equal at most once,
    // so LRGs hit the lo-degree worklists at most once.
    IndexSetIterator elements(adj);
    uint neighbor;
    while ((neighbor = elements.next()) != 0) {
      LRG *n = &lrgs(neighbor);
      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );

      // Check for just becoming of-low-degree
      if( n->just_lo_degree() && !n->_has_copy ) {
        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
        // Put on lo-degree list
        n->_next = lo_no_copy;
        lo_no_copy = neighbor;
      }
    }
  } // End of while lo-degree no_copy worklist not empty

  // No more lo-degree no-copy live ranges to simplify
}

// Simplify the IFG by removing LRGs of low degree.
void PhaseChaitin::Simplify( ) {

  while( 1 ) {                  // Repeat till simplified it all
    // May want to explore simplifying lo_degree before _lo_stk_degree.
    // This might result in more spills coloring into registers during
    // Select().
    while( _lo_degree || _lo_stk_degree ) {
      // If possible, pull from lo_stk first
      uint lo;
      if( _lo_degree ) {
        lo = _lo_degree;
        _lo_degree = lrgs(lo)._next;
      } else {
        lo = _lo_stk_degree;
        _lo_stk_degree = lrgs(lo)._next;
      }

      // Put the simplified guy on the simplified list.
      lrgs(lo)._next = _simplified;
      _simplified = lo;
      // If this guy is "at risk" then mark his current neighbors
      if( lrgs(lo)._at_risk ) {
        IndexSetIterator elements(_ifg->neighbors(lo));
        uint datum;
        while ((datum = elements.next()) != 0) {
          lrgs(datum)._risk_bias = lo;
        }
      }

      // Yank this guy from the IFG.
      IndexSet *adj = _ifg->remove_node( lo );

      // If any neighbors' degrees fall below their number of
      // allowed registers, then put that neighbor on the low degree
      // list.  Note that 'degree' can only fall and 'numregs' is
      // unchanged by this action.  Thus the two are equal at most once,
      // so LRGs hit the lo-degree worklist at most once.
      IndexSetIterator elements(adj);
      uint neighbor;
      while ((neighbor = elements.next()) != 0) {
        LRG *n = &lrgs(neighbor);
#ifdef ASSERT
        if( VerifyOpto || VerifyRegisterAllocator ) {
          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
        }
#endif

        // Check for just becoming of-low-degree just counting registers.
        // _must_spill live ranges are already on the low degree list.
        if( n->just_lo_degree() && !n->_must_spill ) {
          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
          // Pull from hi-degree list
          uint prev = n->_prev;
          uint next = n->_next;
          if( prev ) lrgs(prev)._next = next;
          else _hi_degree = next;
          lrgs(next)._prev = prev;
          n->_next = _lo_degree;
          _lo_degree = neighbor;
        }
      }
    } // End of while lo-degree/lo_stk_degree worklist not empty

    // Check for got everything: is hi-degree list empty?
    if( !_hi_degree ) break;

    // Time to pick a potential spill guy
    uint lo_score = _hi_degree;
    double score = lrgs(lo_score).score();
    double area = lrgs(lo_score)._area;
    double cost = lrgs(lo_score)._cost;
    bool bound = lrgs(lo_score)._is_bound;

    // Find cheapest guy
    debug_only( int lo_no_simplify=0; );
    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
      assert( !(*_ifg->_yanked)[i], "" );
      // It's just vaguely possible to move hi-degree to lo-degree without
      // going through a just-lo-degree stage: If you remove a double from
      // a float live range it's degree will drop by 2 and you can skip the
      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
      if( lrgs(i).lo_degree() ) {
        lo_score = i;
        break;
      }
      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
      double iscore = lrgs(i).score();
      double iarea = lrgs(i)._area;
      double icost = lrgs(i)._cost;
      bool ibound = lrgs(i)._is_bound;

      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
      // wins.  Ties happen because all live ranges in question have spilled
      // a few times before and the spill-score adds a huge number which
      // washes out the low order bits.  We are choosing the lesser of 2
      // evils; in this case pick largest area to spill.
      // Ties also happen when live ranges are defined and used only inside
      // one block. In which case their area is 0 and score set to max.
      // In such case choose bound live range over unbound to free registers
      // or with smaller cost to spill.
      if( iscore < score ||
          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
          (iscore == score && iarea == area &&
           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
        lo_score = i;
        score = iscore;
        area = iarea;
        cost = icost;
        bound = ibound;
      }
    }
    LRG *lo_lrg = &lrgs(lo_score);
    // The live range we choose for spilling is either hi-degree, or very
    // rarely it can be low-degree.  If we choose a hi-degree live range
    // there better not be any lo-degree choices.
    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );

    // Pull from hi-degree list
    uint prev = lo_lrg->_prev;
    uint next = lo_lrg->_next;
    if( prev ) lrgs(prev)._next = next;
    else _hi_degree = next;
    lrgs(next)._prev = prev;
    // Jam him on the lo-degree list, despite his high degree.
    // Maybe he'll get a color, and maybe he'll spill.
    // Only Select() will know.
    lrgs(lo_score)._at_risk = true;
    _lo_degree = lo_score;
    lo_lrg->_next = 0;

  } // End of while not simplified everything

}

// Is 'reg' register legal for 'lrg'?
static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
      lrg.mask().Member(OptoReg::add(reg,-chunk))) {
    // RA uses OptoReg which represent the highest element of a registers set.
    // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
    // in which XMMd is used by RA to represent such vectors. A double value
    // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
    // The register mask uses largest bits set of overlapping register sets.
    // On x86 with AVX it uses 8 bits for each XMM registers set.
    //
    // The 'lrg' already has cleared-to-set register mask (done in Select()
    // before calling choose_color()). Passing mask.Member(reg) check above
    // indicates that the size (num_regs) of 'reg' set is less or equal to
    // 'lrg' set size.
    // For set size 1 any register which is member of 'lrg' mask is legal.
    if (lrg.num_regs()==1)
      return true;
    // For larger sets only an aligned register with the same set size is legal.
    int mask = lrg.num_regs()-1;
    if ((reg&mask) == mask)
      return true;
  }
  return false;
}

// Choose a color using the biasing heuristic
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {

  // Check for "at_risk" LRG's
  uint risk_lrg = _lrg_map.find(lrg._risk_bias);
  if( risk_lrg != 0 ) {
    // Walk the colored neighbors of the "at_risk" candidate
    // Choose a color which is both legal and already taken by a neighbor
    // of the "at_risk" candidate in order to improve the chances of the
    // "at_risk" candidate of coloring
    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
    uint datum;
    while ((datum = elements.next()) != 0) {
      OptoReg::Name reg = lrgs(datum).reg();
      // If this LRG's register is legal for us, choose it
      if (is_legal_reg(lrg, reg, chunk))
        return reg;
    }
  }

  uint copy_lrg = _lrg_map.find(lrg._copy_bias);
  if( copy_lrg != 0 ) {
    // If he has a color,
    if( !(*(_ifg->_yanked))[copy_lrg] ) {
      OptoReg::Name reg = lrgs(copy_lrg).reg();
      //  And it is legal for you,
      if (is_legal_reg(lrg, reg, chunk))
        return reg;
    } else if( chunk == 0 ) {
      // Choose a color which is legal for him
      RegMask tempmask = lrg.mask();
      tempmask.AND(lrgs(copy_lrg).mask());
      tempmask.clear_to_sets(lrg.num_regs());
      OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
      if (OptoReg::is_valid(reg))
        return reg;
    }
  }

  // If no bias info exists, just go with the register selection ordering
  if (lrg._is_vector || lrg.num_regs() == 2) {
    // Find an aligned set
    return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  }

  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  // copy removal to remove many more copies, by preventing a just-assigned
  // register from being repeatedly assigned.
  OptoReg::Name reg = lrg.mask().find_first_elem();
  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
    // This 'Remove; find; Insert' idiom is an expensive way to find the
    // SECOND element in the mask.
    lrg.Remove(reg);
    OptoReg::Name reg2 = lrg.mask().find_first_elem();
    lrg.Insert(reg);
    if( OptoReg::is_reg(reg2))
      reg = reg2;
  }
  return OptoReg::add( reg, chunk );
}

// Choose a color in the current chunk
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");

  if( lrg.num_regs() == 1 ||    // Common Case
      !lrg._fat_proj )          // Aligned+adjacent pairs ok
    // Use a heuristic to "bias" the color choice
    return bias_color(lrg, chunk);

  assert(!lrg._is_vector, "should be not vector here" );
  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );

  // Fat-proj case or misaligned double argument.
  assert(lrg.compute_mask_size() == lrg.num_regs() ||
         lrg.num_regs() == 2,"fat projs exactly color" );
  assert( !chunk, "always color in 1st chunk" );
  // Return the highest element in the set.
  return lrg.mask().find_last_elem();
}

// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
// in reverse order of removal.  As long as nothing of hi-degree was yanked,
// everything going back is guaranteed a color.  Select that color.  If some
// hi-degree LRG cannot get a color then we record that we must spill.
uint PhaseChaitin::Select( ) {
  uint spill_reg = LRG::SPILL_REG;
  _max_reg = OptoReg::Name(0);  // Past max register used
  while( _simplified ) {
    // Pull next LRG from the simplified list - in reverse order of removal
    uint lidx = _simplified;
    LRG *lrg = &lrgs(lidx);
    _simplified = lrg->_next;


#ifndef PRODUCT
    if (trace_spilling()) {
      ttyLocker ttyl;
      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
                    lrg->degrees_of_freedom());
      lrg->dump();
    }
#endif

    // Re-insert into the IFG
    _ifg->re_insert(lidx);
    if( !lrg->alive() ) continue;
    // capture allstackedness flag before mask is hacked
    const int is_allstack = lrg->mask().is_AllStack();

    // Yeah, yeah, yeah, I know, I know.  I can refactor this
    // to avoid the GOTO, although the refactored code will not
    // be much clearer.  We arrive here IFF we have a stack-based
    // live range that cannot color in the current chunk, and it
    // has to move into the next free stack chunk.
    int chunk = 0;              // Current chunk is first chunk
    retry_next_chunk:

    // Remove neighbor colors
    IndexSet *s = _ifg->neighbors(lidx);

    debug_only(RegMask orig_mask = lrg->mask();)
    IndexSetIterator elements(s);
    uint neighbor;
    while ((neighbor = elements.next()) != 0) {
      // Note that neighbor might be a spill_reg.  In this case, exclusion
      // of its color will be a no-op, since the spill_reg chunk is in outer
      // space.  Also, if neighbor is in a different chunk, this exclusion
      // will be a no-op.  (Later on, if lrg runs out of possible colors in
      // its chunk, a new chunk of color may be tried, in which case
      // examination of neighbors is started again, at retry_next_chunk.)
      LRG &nlrg = lrgs(neighbor);
      OptoReg::Name nreg = nlrg.reg();
      // Only subtract masks in the same chunk
      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
#ifndef PRODUCT
        uint size = lrg->mask().Size();
        RegMask rm = lrg->mask();
#endif
        lrg->SUBTRACT(nlrg.mask());
#ifndef PRODUCT
        if (trace_spilling() && lrg->mask().Size() != size) {
          ttyLocker ttyl;
          tty->print("L%d ", lidx);
          rm.dump();
          tty->print(" intersected L%d ", neighbor);
          nlrg.mask().dump();
          tty->print(" removed ");
          rm.SUBTRACT(lrg->mask());
          rm.dump();
          tty->print(" leaving ");
          lrg->mask().dump();
          tty->cr();
        }
#endif
      }
    }
    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
    // Aligned pairs need aligned masks
    assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
    if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
      lrg->clear_to_sets();
    }

    // Check if a color is available and if so pick the color
    OptoReg::Name reg = choose_color( *lrg, chunk );
#ifdef SPARC
    debug_only(lrg->compute_set_mask_size());
    assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
#endif

    //---------------
    // If we fail to color and the AllStack flag is set, trigger
    // a chunk-rollover event
    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
      // Bump register mask up to next stack chunk
      chunk += RegMask::CHUNK_SIZE;
      lrg->Set_All();

      goto retry_next_chunk;
    }

    //---------------
    // Did we get a color?
    else if( OptoReg::is_valid(reg)) {
#ifndef PRODUCT
      RegMask avail_rm = lrg->mask();
#endif

      // Record selected register
      lrg->set_reg(reg);

      if( reg >= _max_reg )     // Compute max register limit
        _max_reg = OptoReg::add(reg,1);
      // Fold reg back into normal space
      reg = OptoReg::add(reg,-chunk);

      // If the live range is not bound, then we actually had some choices
      // to make.  In this case, the mask has more bits in it than the colors
      // chosen.  Restrict the mask to just what was picked.
      int n_regs = lrg->num_regs();
      assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
      if (n_regs == 1 || !lrg->_fat_proj) {
        assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
        lrg->Clear();           // Clear the mask
        lrg->Insert(reg);       // Set regmask to match selected reg
        // For vectors and pairs, also insert the low bit of the pair
        for (int i = 1; i < n_regs; i++)
          lrg->Insert(OptoReg::add(reg,-i));
        lrg->set_mask_size(n_regs);
      } else {                  // Else fatproj
        // mask must be equal to fatproj bits, by definition
      }
#ifndef PRODUCT
      if (trace_spilling()) {
        ttyLocker ttyl;
        tty->print("L%d selected ", lidx);
        lrg->mask().dump();
        tty->print(" from ");
        avail_rm.dump();
        tty->cr();
      }
#endif
      // Note that reg is the highest-numbered register in the newly-bound mask.
    } // end color available case

    //---------------
    // Live range is live and no colors available
    else {
      assert( lrg->alive(), "" );
      assert( !lrg->_fat_proj || lrg->is_multidef() ||
              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );

      // Assign the special spillreg register
      lrg->set_reg(OptoReg::Name(spill_reg++));
      // Do not empty the regmask; leave mask_size lying around
      // for use during Spilling
#ifndef PRODUCT
      if( trace_spilling() ) {
        ttyLocker ttyl;
        tty->print("L%d spilling with neighbors: ", lidx);
        s->dump();
        debug_only(tty->print(" original mask: "));
        debug_only(orig_mask.dump());
        dump_lrg(lidx);
      }
#endif
    } // end spill case

  }

  return spill_reg-LRG::SPILL_REG;      // Return number of spills
}

// Copy 'was_spilled'-edness from the source Node to the dst Node.
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  if( _spilled_once.test(src->_idx) ) {
    _spilled_once.set(dst->_idx);
    lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
    if( _spilled_twice.test(src->_idx) ) {
      _spilled_twice.set(dst->_idx);
      lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
    }
  }
}

// Set the 'spilled_once' or 'spilled_twice' flag on a node.
void PhaseChaitin::set_was_spilled( Node *n ) {
  if( _spilled_once.test_set(n->_idx) )
    _spilled_twice.set(n->_idx);
}

// Convert Ideal spill instructions into proper FramePtr + offset Loads and
// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
void PhaseChaitin::fixup_spills() {
  // This function does only cisc spill work.
  if( !UseCISCSpill ) return;

  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )

  // Grab the Frame Pointer
  Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);

  // For all blocks
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    Block* block = _cfg.get_block(i);

    // For all instructions in block
    uint last_inst = block->end_idx();
    for (uint j = 1; j <= last_inst; j++) {
      Node* n = block->get_node(j);

      // Dead instruction???
      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
              C->top() == n ||  // Or the random TOP node
              n->is_Proj(),     // Or a fat-proj kill node
              "No dead instructions after post-alloc" );

      int inp = n->cisc_operand();
      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
        // Convert operand number to edge index number
        MachNode *mach = n->as_Mach();
        inp = mach->operand_index(inp);
        Node *src = n->in(inp);   // Value to load or store
        LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
        OptoReg::Name src_reg = lrg_cisc.reg();
        // Doubles record the HIGH register of an adjacent pair.
        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
          // This is a CISC Spill, get stack offset and construct new node
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    reg-instr:  ");
            n->dump();
          }
#endif
          int stk_offset = reg2offset(src_reg);
          // Bailout if we might exceed node limit when spilling this instruction
          C->check_node_count(0, "out of nodes fixing spills");
          if (C->failing())  return;
          // Transform node
          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
          cisc->set_req(inp,fp);          // Base register is frame pointer
          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
            assert( cisc->oper_input_base() == 2, "Only adding one edge");
            cisc->ins_req(1,src);         // Requires a memory edge
          }
          block->map_node(cisc, j);          // Insert into basic block
          n->subsume_by(cisc, C); // Correct graph
          //
          ++_used_cisc_instructions;
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    cisc-instr: ");
            cisc->dump();
          }
#endif
        } else {
#ifndef PRODUCT
          if( TraceCISCSpill ) {
            tty->print("    using reg-instr: ");
            n->dump();
          }
#endif
          ++_unused_cisc_instructions;    // input can be on stack
        }
      }

    } // End of for all instructions

  } // End of for all blocks
}

// Helper to stretch above; recursively discover the base Node for a
// given derived Node.  Easy for AddP-related machine nodes, but needs
// to be recursive for derived Phis.
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  // See if already computed; if so return it
  if( derived_base_map[derived->_idx] )
    return derived_base_map[derived->_idx];

  // See if this happens to be a base.
  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  // pointers derived from NULL!  These are always along paths that
  // can't happen at run-time but the optimizer cannot deduce it so
  // we have to handle it gracefully.
  assert(!derived->bottom_type()->isa_narrowoop() ||
          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  const TypePtr *tj = derived->bottom_type()->isa_ptr();
  // If its an OOP with a non-zero offset, then it is derived.
  if( tj == NULL || tj->_offset == 0 ) {
    derived_base_map[derived->_idx] = derived;
    return derived;
  }
  // Derived is NULL+offset?  Base is NULL!
  if( derived->is_Con() ) {
    Node *base = _matcher.mach_null();
    assert(base != NULL, "sanity");
    if (base->in(0) == NULL) {
      // Initialize it once and make it shared:
      // set control to _root and place it into Start block
      // (where top() node is placed).
      base->init_req(0, _cfg.get_root_node());
      Block *startb = _cfg.get_block_for_node(C->top());
      startb->insert_node(base, startb->find_node(C->top()));
      _cfg.map_node_to_block(base, startb);
      assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
    }
    if (_lrg_map.live_range_id(base) == 0) {
      new_lrg(base, maxlrg++);
    }
    assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Check for AddP-related opcodes
  if (!derived->is_Phi()) {
    assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
    Node *base = derived->in(AddPNode::Base);
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Recursively find bases for Phis.
  // First check to see if we can avoid a base Phi here.
  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  uint i;
  for( i = 2; i < derived->req(); i++ )
    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
      break;
  // Went to the end without finding any different bases?
  if( i == derived->req() ) {   // No need for a base Phi here
    derived_base_map[derived->_idx] = base;
    return base;
  }

  // Now we see we need a base-Phi here to merge the bases
  const Type *t = base->bottom_type();
  base = new (C) PhiNode( derived->in(0), t );
  for( i = 1; i < derived->req(); i++ ) {
    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
    t = t->meet(base->in(i)->bottom_type());
  }
  base->as_Phi()->set_type(t);

  // Search the current block for an existing base-Phi
  Block *b = _cfg.get_block_for_node(derived);
  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
    Node *phi = b->get_node(i);
    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
      b->insert_node(base,  i); // Must insert created Phi here as base
      _cfg.map_node_to_block(base, b);
      new_lrg(base,maxlrg++);
      break;
    }
    // See if Phi matches.
    uint j;
    for( j = 1; j < base->req(); j++ )
      if( phi->in(j) != base->in(j) &&
          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
        break;
    if( j == base->req() ) {    // All inputs match?
      base = phi;               // Then use existing 'phi' and drop 'base'
      break;
    }
  }


  // Cache info for later passes
  derived_base_map[derived->_idx] = base;
  return base;
}

// At each Safepoint, insert extra debug edges for each pair of derived value/
// base pointer that is live across the Safepoint for oopmap building.  The
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
// required edge set.
bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
  int must_recompute_live = false;
  uint maxlrg = _lrg_map.max_lrg_id();
  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );

  // For all blocks in RPO do...
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    Block* block = _cfg.get_block(i);
    // Note use of deep-copy constructor.  I cannot hammer the original
    // liveout bits, because they are needed by the following coalesce pass.
    IndexSet liveout(_live->live(block));

    for (uint j = block->end_idx() + 1; j > 1; j--) {
      Node* n = block->get_node(j - 1);

      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
      // like to see in the same register.  Compare uses the loop-phi and so
      // extends its live range BUT cannot be part of the cycle.  If this
      // extended live range overlaps with the update of the loop-phi value
      // we need both alive at the same time -- which requires at least 1
      // copy.  But because Intel has only 2-address registers we end up with
      // at least 2 copies, one before the loop-phi update instruction and
      // one after.  Instead we split the input to the compare just after the
      // phi.
      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
        Node *phi = n->in(1);
        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
          Block *phi_block = _cfg.get_block_for_node(phi);
          if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
            insert_proj( phi_block, 1, spill, maxlrg++ );
            n->set_req(1,spill);
            must_recompute_live = true;
          }
        }
      }

      // Get value being defined
      uint lidx = _lrg_map.live_range_id(n);
      // Ignore the occasional brand-new live range
      if (lidx && lidx < _lrg_map.max_lrg_id()) {
        // Remove from live-out set
        liveout.remove(lidx);

        // Copies do not define a new value and so do not interfere.
        // Remove the copies source from the liveout set before interfering.
        uint idx = n->is_Copy();
        if (idx) {
          liveout.remove(_lrg_map.live_range_id(n->in(idx)));
        }
      }

      // Found a safepoint?
      JVMState *jvms = n->jvms();
      if( jvms ) {
        // Now scan for a live derived pointer
        IndexSetIterator elements(&liveout);
        uint neighbor;
        while ((neighbor = elements.next()) != 0) {
          // Find reaching DEF for base and derived values
          // This works because we are still in SSA during this call.
          Node *derived = lrgs(neighbor)._def;
          const TypePtr *tj = derived->bottom_type()->isa_ptr();
          assert(!derived->bottom_type()->isa_narrowoop() ||
                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
          // If its an OOP with a non-zero offset, then it is derived.
          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
            Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
            assert(base->_idx < _lrg_map.size(), "");
            // Add reaching DEFs of derived pointer and base pointer as a
            // pair of inputs
            n->add_req(derived);
            n->add_req(base);

            // See if the base pointer is already live to this point.
            // Since I'm working on the SSA form, live-ness amounts to
            // reaching def's.  So if I find the base's live range then
            // I know the base's def reaches here.
            if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
                 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
                 (_lrg_map.live_range_id(base) > 0) && // not a constant
                 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
              // Base pointer is not currently live.  Since I stretched
              // the base pointer to here and it crosses basic-block
              // boundaries, the global live info is now incorrect.
              // Recompute live.
              must_recompute_live = true;
            } // End of if base pointer is not live to debug info
          }
        } // End of scan all live data for derived ptrs crossing GC point
      } // End of if found a GC point

      // Make all inputs live
      if (!n->is_Phi()) {      // Phi function uses come from prior block
        for (uint k = 1; k < n->req(); k++) {
          uint lidx = _lrg_map.live_range_id(n->in(k));
          if (lidx < _lrg_map.max_lrg_id()) {
            liveout.insert(lidx);
          }
        }
      }

    } // End of forall instructions in block
    liveout.clear();  // Free the memory used by liveout.

  } // End of forall blocks
  _lrg_map.set_max_lrg_id(maxlrg);

  // If I created a new live range I need to recompute live
  if (maxlrg != _ifg->_maxlrg) {
    must_recompute_live = true;
  }

  return must_recompute_live != 0;
}

// Extend the node to LRG mapping

void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
  _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
}

#ifndef PRODUCT
void PhaseChaitin::dump(const Node *n) const {
  uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
  tty->print("L%d",r);
  if (r && n->Opcode() != Op_Phi) {
    if( _node_regs ) {          // Got a post-allocation copy of allocation?
      tty->print("[");
      OptoReg::Name second = get_reg_second(n);
      if( OptoReg::is_valid(second) ) {
        if( OptoReg::is_reg(second) )
          tty->print("%s:",Matcher::regName[second]);
        else
          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
      }
      OptoReg::Name first = get_reg_first(n);
      if( OptoReg::is_reg(first) )
        tty->print("%s]",Matcher::regName[first]);
      else
         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
    } else
    n->out_RegMask().dump();
  }
  tty->print("/N%d\t",n->_idx);
  tty->print("%s === ", n->Name());
  uint k;
  for (k = 0; k < n->req(); k++) {
    Node *m = n->in(k);
    if (!m) {
      tty->print("_ ");
    }
    else {
      uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
      tty->print("L%d",r);
      // Data MultiNode's can have projections with no real registers.
      // Don't die while dumping them.
      int op = n->Opcode();
      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
        if( _node_regs ) {
          tty->print("[");
          OptoReg::Name second = get_reg_second(n->in(k));
          if( OptoReg::is_valid(second) ) {
            if( OptoReg::is_reg(second) )
              tty->print("%s:",Matcher::regName[second]);
            else
              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
                         reg2offset_unchecked(second));
          }
          OptoReg::Name first = get_reg_first(n->in(k));
          if( OptoReg::is_reg(first) )
            tty->print("%s]",Matcher::regName[first]);
          else
            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
                       reg2offset_unchecked(first));
        } else
          n->in_RegMask(k).dump();
      }
      tty->print("/N%d ",m->_idx);
    }
  }
  if( k < n->len() && n->in(k) ) tty->print("| ");
  for( ; k < n->len(); k++ ) {
    Node *m = n->in(k);
    if(!m) {
      break;
    }
    uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
    tty->print("L%d",r);
    tty->print("/N%d ",m->_idx);
  }
  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  else n->dump_spec(tty);
  if( _spilled_once.test(n->_idx ) ) {
    tty->print(" Spill_1");
    if( _spilled_twice.test(n->_idx ) )
      tty->print(" Spill_2");
  }
  tty->print("\n");
}

void PhaseChaitin::dump(const Block *b) const {
  b->dump_head(&_cfg);

  // For all instructions
  for( uint j = 0; j < b->number_of_nodes(); j++ )
    dump(b->get_node(j));
  // Print live-out info at end of block
  if( _live ) {
    tty->print("Liveout: ");
    IndexSet *live = _live->live(b);
    IndexSetIterator elements(live);
    tty->print("{");
    uint i;
    while ((i = elements.next()) != 0) {
      tty->print("L%d ", _lrg_map.find_const(i));
    }
    tty->print_cr("}");
  }
  tty->print("\n");
}

void PhaseChaitin::dump() const {
  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
              _matcher._new_SP, _framesize );

  // For all blocks
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    dump(_cfg.get_block(i));
  }
  // End of per-block dump
  tty->print("\n");

  if (!_ifg) {
    tty->print("(No IFG.)\n");
    return;
  }

  // Dump LRG array
  tty->print("--- Live RanGe Array ---\n");
  for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
    tty->print("L%d: ",i2);
    if (i2 < _ifg->_maxlrg) {
      lrgs(i2).dump();
    }
    else {
      tty->print_cr("new LRG");
    }
  }
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Lo degree: ");
  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
    tty->print("L%d ",i3);
  tty->print_cr("");

  // Dump lo-stk-degree list
  tty->print("Lo stk degree: ");
  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
    tty->print("L%d ",i4);
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Hi degree: ");
  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
    tty->print("L%d ",i5);
  tty->print_cr("");
}

void PhaseChaitin::dump_degree_lists() const {
  // Dump lo-degree list
  tty->print("Lo degree: ");
  for( uint i = _lo_degree; i; i = lrgs(i)._next )
    tty->print("L%d ",i);
  tty->print_cr("");

  // Dump lo-stk-degree list
  tty->print("Lo stk degree: ");
  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
    tty->print("L%d ",i2);
  tty->print_cr("");

  // Dump lo-degree list
  tty->print("Hi degree: ");
  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
    tty->print("L%d ",i3);
  tty->print_cr("");
}

void PhaseChaitin::dump_simplified() const {
  tty->print("Simplified: ");
  for( uint i = _simplified; i; i = lrgs(i)._next )
    tty->print("L%d ",i);
  tty->print_cr("");
}

static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  if ((int)reg < 0)
    sprintf(buf, "<OptoReg::%d>", (int)reg);
  else if (OptoReg::is_reg(reg))
    strcpy(buf, Matcher::regName[reg]);
  else
    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
            pc->reg2offset(reg));
  return buf+strlen(buf);
}

// Dump a register name into a buffer.  Be intelligent if we get called
// before allocation is complete.
char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  if( !this ) {                 // Not got anything?
    sprintf(buf,"N%d",n->_idx); // Then use Node index
  } else if( _node_regs ) {
    // Post allocation, use direct mappings, no LRG info available
    print_reg( get_reg_first(n), this, buf );
  } else {
    uint lidx = _lrg_map.find_const(n); // Grab LRG number
    if( !_ifg ) {
      sprintf(buf,"L%d",lidx);  // No register binding yet
    } else if( !lidx ) {        // Special, not allocated value
      strcpy(buf,"Special");
    } else {
      if (lrgs(lidx)._is_vector) {
        if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
          print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
        else
          sprintf(buf,"L%d",lidx); // No register binding yet
      } else if( (lrgs(lidx).num_regs() == 1)
                 ? lrgs(lidx).mask().is_bound1()
                 : lrgs(lidx).mask().is_bound_pair() ) {
        // Hah!  We have a bound machine register
        print_reg( lrgs(lidx).reg(), this, buf );
      } else {
        sprintf(buf,"L%d",lidx); // No register binding yet
      }
    }
  }
  return buf+strlen(buf);
}

void PhaseChaitin::dump_for_spill_split_recycle() const {
  if( WizardMode && (PrintCompilation || PrintOpto) ) {
    // Display which live ranges need to be split and the allocator's state
    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
    for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
        tty->print("L%d: ", bidx);
        lrgs(bidx).dump();
      }
    }
    tty->cr();
    dump();
  }
}

void PhaseChaitin::dump_frame() const {
  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  const TypeTuple *domain = C->tf()->domain();
  const int        argcnt = domain->cnt() - TypeFunc::Parms;

  // Incoming arguments in registers dump
  for( int k = 0; k < argcnt; k++ ) {
    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
    if( OptoReg::is_reg(parmreg))  {
      const char *reg_name = OptoReg::regname(parmreg);
      tty->print("#r%3.3d %s", parmreg, reg_name);
      parmreg = _matcher._parm_regs[k].second();
      if( OptoReg::is_reg(parmreg))  {
        tty->print(":%s", OptoReg::regname(parmreg));
      }
      tty->print("   : parm %d: ", k);
      domain->field_at(k + TypeFunc::Parms)->dump();
      tty->print_cr("");
    }
  }

  // Check for un-owned padding above incoming args
  OptoReg::Name reg = _matcher._new_SP;
  if( reg > _matcher._in_arg_limit ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  }

  // Incoming argument area dump
  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  while( reg > begin_in_arg ) {
    reg = OptoReg::add(reg, -1);
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
    int j;
    for( j = 0; j < argcnt; j++) {
      if( _matcher._parm_regs[j].first() == reg ||
          _matcher._parm_regs[j].second() == reg ) {
        tty->print("parm %d: ",j);
        domain->field_at(j + TypeFunc::Parms)->dump();
        tty->print_cr("");
        break;
      }
    }
    if( j >= argcnt )
      tty->print_cr("HOLE, owned by SELF");
  }

  // Old outgoing preserve area
  while( reg > _matcher._old_SP ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  }

  // Old SP
  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);

  // Preserve area dump
  int fixed_slots = C->fixed_slots();
  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  OptoReg::Name return_addr = _matcher.return_addr();

  reg = OptoReg::add(reg, -1);
  while (OptoReg::is_stack(reg)) {
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
    if (return_addr == reg) {
      tty->print_cr("return address");
    } else if (reg >= begin_in_preserve) {
      // Preserved slots are present on x86
      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
        tty->print_cr("saved fp register");
      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
               VerifyStackAtCalls)
        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
      else
        tty->print_cr("in_preserve");
    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
    } else {
      tty->print_cr("pad2, stack alignment");
    }
    reg = OptoReg::add(reg, -1);
  }

  // Spill area dump
  reg = OptoReg::add(_matcher._new_SP, _framesize );
  while( reg > _matcher._out_arg_limit ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  }

  // Outgoing argument area dump
  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  }

  // Outgoing new preserve area
  while( reg > _matcher._new_SP ) {
    reg = OptoReg::add(reg, -1);
    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  }
  tty->print_cr("#");
}

void PhaseChaitin::dump_bb( uint pre_order ) const {
  tty->print_cr("---dump of B%d---",pre_order);
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    Block* block = _cfg.get_block(i);
    if (block->_pre_order == pre_order) {
      dump(block);
    }
  }
}

void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  tty->print_cr("---dump of L%d---",lidx);

  if (_ifg) {
    if (lidx >= _lrg_map.max_lrg_id()) {
      tty->print("Attempt to print live range index beyond max live range.\n");
      return;
    }
    tty->print("L%d: ",lidx);
    if (lidx < _ifg->_maxlrg) {
      lrgs(lidx).dump();
    } else {
      tty->print_cr("new LRG");
    }
  }
  if( _ifg && lidx < _ifg->_maxlrg) {
    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
    _ifg->neighbors(lidx)->dump();
    tty->cr();
  }
  // For all blocks
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    Block* block = _cfg.get_block(i);
    int dump_once = 0;

    // For all instructions
    for( uint j = 0; j < block->number_of_nodes(); j++ ) {
      Node *n = block->get_node(j);
      if (_lrg_map.find_const(n) == lidx) {
        if (!dump_once++) {
          tty->cr();
          block->dump_head(&_cfg);
        }
        dump(n);
        continue;
      }
      if (!defs_only) {
        uint cnt = n->req();
        for( uint k = 1; k < cnt; k++ ) {
          Node *m = n->in(k);
          if (!m)  {
            continue;  // be robust in the dumper
          }
          if (_lrg_map.find_const(m) == lidx) {
            if (!dump_once++) {
              tty->cr();
              block->dump_head(&_cfg);
            }
            dump(n);
          }
        }
      }
    }
  } // End of per-block dump
  tty->cr();
}
#endif // not PRODUCT

int PhaseChaitin::_final_loads  = 0;
int PhaseChaitin::_final_stores = 0;
int PhaseChaitin::_final_memoves= 0;
int PhaseChaitin::_final_copies = 0;
double PhaseChaitin::_final_load_cost  = 0;
double PhaseChaitin::_final_store_cost = 0;
double PhaseChaitin::_final_memove_cost= 0;
double PhaseChaitin::_final_copy_cost  = 0;
int PhaseChaitin::_conserv_coalesce = 0;
int PhaseChaitin::_conserv_coalesce_pair = 0;
int PhaseChaitin::_conserv_coalesce_trie = 0;
int PhaseChaitin::_conserv_coalesce_quad = 0;
int PhaseChaitin::_post_alloc = 0;
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
int PhaseChaitin::_used_cisc_instructions   = 0;
int PhaseChaitin::_unused_cisc_instructions = 0;
int PhaseChaitin::_allocator_attempts       = 0;
int PhaseChaitin::_allocator_successes      = 0;

#ifndef PRODUCT
uint PhaseChaitin::_high_pressure           = 0;
uint PhaseChaitin::_low_pressure            = 0;

void PhaseChaitin::print_chaitin_statistics() {
  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  tty->print_cr("Adjusted spill cost = %7.0f.",
                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
                _final_copy_cost*1.0 + _final_memove_cost*12.0);
  tty->print("Conservatively coalesced %d copies, %d pairs",
                _conserv_coalesce, _conserv_coalesce_pair);
  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  tty->print_cr(", %d post alloc.", _post_alloc);
  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  if( _used_cisc_instructions || _unused_cisc_instructions )
    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
                   _used_cisc_instructions, _unused_cisc_instructions);
  if( _allocator_successes != 0 )
    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
}
#endif // not PRODUCT

Other Java examples (source code examples)

Here is a short list of links related to this Java chaitin.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.