alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (divnode.cpp)

This example Java source code file (divnode.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

addlnode, init, node, null, phasetransform, rshiftlnode, type, type::top, type\:\:bottom, type\:\:doublecon, typeint, typelong, update

The divnode.cpp Java example source code

/*
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include <math.h>

//----------------------magic_int_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 32 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes.
static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
  int32_t p;
  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint32_t two31 = 0x80000000L;     // 2**31.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two31 + ((uint32_t)d >> 31);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 31;                 // Init. p.
  q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two31/ad;          // Init. q2 = 2**p/|d|.
  r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 32;             // shift amount to return.

  return true;
}

//--------------------------transform_int_divide-------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {

  // Check for invalid divisors
  assert( divisor != 0 && divisor != min_jint,
          "bad divisor for transforming to long multiply" );

  bool d_pos = divisor >= 0;
  jint d = d_pos ? divisor : -divisor;
  const int N = 32;

  // Result
  Node *q = NULL;

  if (d == 1) {
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
      q = new (phase->C) SubINode(phase->intcon(0), dividend);
    }
  } else if ( is_power_of_2(d) ) {
    // division by +/- a power of 2

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeInt *dti = dt->isa_int();
    if (dti && dti->_lo >= 0) {
      // we don't need to round a positive dividend
      needs_rounding = false;
    } else if( dividend->Opcode() == Op_AndI ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
      const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
      if( andconi_t && andconi_t->is_con() ) {
        jint andconi = andconi_t->get_con();
        if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
          if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
          needs_rounding = false;
        }
      }
    }

    // Add rounding to the shift to handle the sign bit
    int l = log2_intptr(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C) URShiftINode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C) AddINode(dividend, round));
    }

    // Shift for division
    q = new (phase->C) RShiftINode(dividend, phase->intcon(l));

    if (!d_pos) {
      q = new (phase->C) SubINode(phase->intcon(0), phase->transform(q));
    }
  } else {
    // Attempt the jint constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jint magic_const;
    jint shift_const;
    if (magic_int_divide_constants(d, magic_const, shift_const)) {
      Node *magic = phase->longcon(magic_const);
      Node *dividend_long = phase->transform(new (phase->C) ConvI2LNode(dividend));

      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(new (phase->C) MulLNode(dividend_long, magic));

      if (magic_const < 0) {
        mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N)));
        mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));

        // The magic multiplier is too large for a 32 bit constant. We've adjusted
        // it down by 2^32, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C) AddINode(dividend, mul_hi));

        // Shift over the (adjusted) mulhi
        if (shift_const != 0) {
          mul_hi = phase->transform(new (phase->C) RShiftINode(mul_hi, phase->intcon(shift_const)));
        }
      } else {
        // No add is required, we can merge the shifts together.
        mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
        mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C) SubINode(addend0, addend1);
    }
  }

  return q;
}

//---------------------magic_long_divide_constants-----------------------------
// Compute magic multiplier and shift constant for converting a 64 bit divide
// by constant into a multiply/shift/add series. Return false if calculations
// fail.
//
// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes.  Adjusted to 64 bit word width.
static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
  int64_t p;
  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint64_t two63 = 0x8000000000000000LL;     // 2**63.

  ad = ABS(d);
  if (d == 0 || d == 1) return false;
  t = two63 + ((uint64_t)d >> 63);
  anc = t - 1 - t%ad;     // Absolute value of nc.
  p = 63;                 // Init. p.
  q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
  r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
  q2 = two63/ad;          // Init. q2 = 2**p/|d|.
  r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
  do {
    p = p + 1;
    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    if (r1 >= anc) {      // (Must be an unsigned
      q1 = q1 + 1;        // comparison here).
      r1 = r1 - anc;
    }
    q2 = 2*q2;            // Update q2 = 2**p/|d|.
    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    if (r2 >= ad) {       // (Must be an unsigned
      q2 = q2 + 1;        // comparison here).
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));

  M = q2 + 1;
  if (d < 0) M = -M;      // Magic number and
  s = p - 64;             // shift amount to return.

  return true;
}

//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
  // If the architecture supports a 64x64 mulhi, there is
  // no need to synthesize it in ideal nodes.
  if (Matcher::has_match_rule(Op_MulHiL)) {
    Node* v = phase->longcon(magic_const);
    return new (phase->C) MulHiLNode(dividend, v);
  }

  // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
  // (http://www.hackersdelight.org/HDcode/mulhs.c)
  //
  // int mulhs(int u, int v) {
  //    unsigned u0, v0, w0;
  //    int u1, v1, w1, w2, t;
  //
  //    u0 = u & 0xFFFF;  u1 = u >> 16;
  //    v0 = v & 0xFFFF;  v1 = v >> 16;
  //    w0 = u0*v0;
  //    t  = u1*v0 + (w0 >> 16);
  //    w1 = t & 0xFFFF;
  //    w2 = t >> 16;
  //    w1 = u0*v1 + w1;
  //    return u1*v1 + w2 + (w1 >> 16);
  // }
  //
  // Note: The version above is for 32x32 multiplications, while the
  // following inline comments are adapted to 64x64.

  const int N = 64;

  // Dummy node to keep intermediate nodes alive during construction
  Node* hook = new (phase->C) Node(4);

  // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
  Node* u0 = phase->transform(new (phase->C) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
  Node* u1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N / 2)));
  hook->init_req(0, u0);
  hook->init_req(1, u1);

  // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
  Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
  Node* v1 = phase->longcon(magic_const >> (N / 2));

  // w0 = u0*v0;
  Node* w0 = phase->transform(new (phase->C) MulLNode(u0, v0));

  // t = u1*v0 + (w0 >> 32);
  Node* u1v0 = phase->transform(new (phase->C) MulLNode(u1, v0));
  Node* temp = phase->transform(new (phase->C) URShiftLNode(w0, phase->intcon(N / 2)));
  Node* t    = phase->transform(new (phase->C) AddLNode(u1v0, temp));
  hook->init_req(2, t);

  // w1 = t & 0xFFFFFFFF;
  Node* w1 = phase->transform(new (phase->C) AndLNode(t, phase->longcon(0xFFFFFFFF)));
  hook->init_req(3, w1);

  // w2 = t >> 32;
  Node* w2 = phase->transform(new (phase->C) RShiftLNode(t, phase->intcon(N / 2)));

  // w1 = u0*v1 + w1;
  Node* u0v1 = phase->transform(new (phase->C) MulLNode(u0, v1));
  w1         = phase->transform(new (phase->C) AddLNode(u0v1, w1));

  // return u1*v1 + w2 + (w1 >> 32);
  Node* u1v1  = phase->transform(new (phase->C) MulLNode(u1, v1));
  Node* temp1 = phase->transform(new (phase->C) AddLNode(u1v1, w2));
  Node* temp2 = phase->transform(new (phase->C) RShiftLNode(w1, phase->intcon(N / 2)));

  // Remove the bogus extra edges used to keep things alive
  PhaseIterGVN* igvn = phase->is_IterGVN();
  if (igvn != NULL) {
    igvn->remove_dead_node(hook);
  } else {
    for (int i = 0; i < 4; i++) {
      hook->set_req(i, NULL);
    }
  }

  return new (phase->C) AddLNode(temp1, temp2);
}


//--------------------------transform_long_divide------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
  // Check for invalid divisors
  assert( divisor != 0L && divisor != min_jlong,
          "bad divisor for transforming to long multiply" );

  bool d_pos = divisor >= 0;
  jlong d = d_pos ? divisor : -divisor;
  const int N = 64;

  // Result
  Node *q = NULL;

  if (d == 1) {
    // division by +/- 1
    if (!d_pos) {
      // Just negate the value
      q = new (phase->C) SubLNode(phase->longcon(0), dividend);
    }
  } else if ( is_power_of_2_long(d) ) {

    // division by +/- a power of 2

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeLong *dtl = dt->isa_long();

    if (dtl && dtl->_lo > 0) {
      // we don't need to round a positive dividend
      needs_rounding = false;
    } else if( dividend->Opcode() == Op_AndL ) {
      // An AND mask of sufficient size clears the low bits and
      // I can avoid rounding.
      const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
      if( andconl_t && andconl_t->is_con() ) {
        jlong andconl = andconl_t->get_con();
        if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
          if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
            dividend = dividend->in(1);
          needs_rounding = false;
        }
      }
    }

    // Add rounding to the shift to handle the sign bit
    int l = log2_long(d-1)+1;
    if (needs_rounding) {
      // Divide-by-power-of-2 can be made into a shift, but you have to do
      // more math for the rounding.  You need to add 0 for positive
      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
      // shift is by 2.  You need to add 3 to negative dividends and 0 to
      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
      // (-2+3)>>2 becomes 0, etc.

      // Compute 0 or -1, based on sign bit
      Node *sign = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N - 1)));
      // Mask sign bit to the low sign bits
      Node *round = phase->transform(new (phase->C) URShiftLNode(sign, phase->intcon(N - l)));
      // Round up before shifting
      dividend = phase->transform(new (phase->C) AddLNode(dividend, round));
    }

    // Shift for division
    q = new (phase->C) RShiftLNode(dividend, phase->intcon(l));

    if (!d_pos) {
      q = new (phase->C) SubLNode(phase->longcon(0), phase->transform(q));
    }
  } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
                                                       // it is faster than code generated below.
    // Attempt the jlong constant divide -> multiply transform found in
    //   "Division by Invariant Integers using Multiplication"
    //     by Granlund and Montgomery
    // See also "Hacker's Delight", chapter 10 by Warren.

    jlong magic_const;
    jint shift_const;
    if (magic_long_divide_constants(d, magic_const, shift_const)) {
      // Compute the high half of the dividend x magic multiplication
      Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));

      // The high half of the 128-bit multiply is computed.
      if (magic_const < 0) {
        // The magic multiplier is too large for a 64 bit constant. We've adjusted
        // it down by 2^64, but have to add 1 dividend back in after the multiplication.
        // This handles the "overflow" case described by Granlund and Montgomery.
        mul_hi = phase->transform(new (phase->C) AddLNode(dividend, mul_hi));
      }

      // Shift over the (adjusted) mulhi
      if (shift_const != 0) {
        mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(shift_const)));
      }

      // Get a 0 or -1 from the sign of the dividend.
      Node *addend0 = mul_hi;
      Node *addend1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N-1)));

      // If the divisor is negative, swap the order of the input addends;
      // this has the effect of negating the quotient.
      if (!d_pos) {
        Node *temp = addend0; addend0 = addend1; addend1 = temp;
      }

      // Adjust the final quotient by subtracting -1 (adding 1)
      // from the mul_hi.
      q = new (phase->C) SubLNode(addend0, addend1);
    }
  }

  return q;
}

//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivINode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Divides can be changed to multiplies and/or shifts
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  const Type *t = phase->type( in(2) );
  if( t == TypeInt::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeInt *ti = t->isa_int();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
  jint i = ti->get_con();       // Get divisor

  if (i == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jint ) return NULL;

  return transform_int_divide( phase, in(1), i );
}

//------------------------------Value------------------------------------------
// A DivINode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeInt::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    int32 d = i2->get_con(); // Divisor
    jint lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == -1 && i1->_lo == min_jint ) {
        // 'min_jint/-1' throws arithmetic exception during compilation
        lo = min_jint;
        // do not support holes, 'hi' must go to either min_jint or max_jint:
        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
        hi = i1->_hi == min_jint ? min_jint : max_jint;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeInt::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    int32 d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jint ) {
        //  (-min_jint) == min_jint == (min_jint / -1)
        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
      } else {
        return TypeInt::make(d, -d, widen);
      }
    }
    return TypeInt::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeInt::INT;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivLNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Dividing by a power of 2 is a shift.
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  const Type *t = phase->type( in(2) );
  if( t == TypeLong::ONE )      // Identity?
    return NULL;                // Skip it

  const TypeLong *tl = t->isa_long();
  if( !tl ) return NULL;
  if( !tl->is_con() ) return NULL;
  jlong l = tl->get_con();      // Get divisor

  if (l == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MINLONG does not optimize as a power-of-2 shift.
  if( l == min_jlong ) return NULL;

  return transform_long_divide( phase, in(1), l );
}

//------------------------------Value------------------------------------------
// A DivLNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeLong::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    jlong d = i2->get_con();    // Divisor
    jlong lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
        // 'min_jlong/-1' throws arithmetic exception during compilation
        lo = min_jlong;
        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeLong::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    jlong d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jlong ) {
        //  (-min_jlong) == min_jlong == (min_jlong / -1)
        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
      } else {
        return TypeLong::make(d, -d, widen);
      }
    }
    return TypeLong::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeLong::LONG;
}


//=============================================================================
//------------------------------Value------------------------------------------
// An DivFNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
      return TypeF::ONE;

  if( t2 == TypeF::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::FloatCon &&
      t2->base() == Type::FloatCon &&
      t2->getf() != 0.0 ) // could be negative zero
    return TypeF::make( t1->getf()/t2->getf() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero

  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
    return TypeF::ZERO;

  // Otherwise we give up all hope
  return Type::FLOAT;
}

//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivFNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
}


//------------------------------Idealize---------------------------------------
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeF::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeF *tf = t2->isa_float_constant();
  if( !tf ) return NULL;
  if( tf->base() != Type::FloatCon ) return NULL;

  // Check for out of range values
  if( tf->is_nan() || !tf->is_finite() ) return NULL;

  // Get the value
  float f = tf->getf();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp((double)f, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -126 || exp > 126 ) return NULL;

  // Compute the reciprocal
  float reciprocal = ((float)1.0) / f;

  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
}

//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
      return TypeD::ONE;

  if( t2 == TypeD::ONE )
    return t1;

#if defined(IA32)
  if (!phase->C->method()->is_strict())
    // Can't trust native compilers to properly fold strict double
    // division with round-to-zero on this platform.
#endif
    {
      // If divisor is a constant and not zero, divide them numbers
      if( t1->base() == Type::DoubleCon &&
          t2->base() == Type::DoubleCon &&
          t2->getd() != 0.0 ) // could be negative zero
        return TypeD::make( t1->getd()/t2->getd() );
    }

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero
  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
    return TypeD::ZERO;

  // Otherwise we give up all hope
  return Type::DOUBLE;
}


//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivDNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeD::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeD *td = t2->isa_double_constant();
  if( !td ) return NULL;
  if( td->base() != Type::DoubleCon ) return NULL;

  // Check for out of range values
  if( td->is_nan() || !td->is_finite() ) return NULL;

  // Get the value
  double d = td->getd();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp(d, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -1021 || exp > 1022 ) return NULL;

  // Compute the reciprocal
  double reciprocal = 1.0 / d;

  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
}

//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeInt *ti = t->is_int();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jint con = ti->get_con();

  Node *hook = new (phase->C) Node(1);

  // First, special check for modulo 2^k-1
  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
    uint k = exact_log2(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
        Node *xl = phase->transform( new (phase->C) AndINode(x,divisor) );
        Node *xh = phase->transform( new (phase->C) RShiftINode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C) AddINode(xh,xl) );
        hook->set_req(0, x);
      }

      // Generate sign-fixup code.  Was original value positive?
      // int hack_res = (i >= 0) ? divisor : 1;
      Node *cmp1 = phase->transform( new (phase->C) CmpINode( in(1), phase->intcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C) SubINode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C) CmpINode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C) CMoveINode(bol2, x, sub, TypeInt::INT);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jint ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jint pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C) ConINode(TypeInt::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2(pos_con) ) {
    log2_con = log2_intptr((intptr_t)pos_con);

    const Type *dt = phase->type(in(1));
    const TypeInt *dti = dt->isa_int();

    // See if this can be masked, if the dividend is non-negative
    if( dti && dti->_lo >= 0 )
      return ( new (phase->C) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
  Node *result = transform_int_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);

    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;

    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C) LShiftINode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C) MulINode( divide, phase->intcon( pos_con ) ) );

    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C) SubINode( in(1), mult );
  }

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= 0 && i2->_lo >= 0 )
      return TypeInt::POS;
    // If both numbers are not constants, we know little.
    return TypeInt::INT;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeInt::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jint && i2->get_con() == -1 )
    return TypeInt::ZERO;

  return TypeInt::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeLong *tl = t->is_long();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !tl->is_con() ) return NULL;
  jlong con = tl->get_con();

  Node *hook = new (phase->C) Node(1);

  // Expand mod
  if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
    uint k = exact_log2_long(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
    // Used to help a popular random number generator which does a long-mod
    // of 2^31-1 and shows up in SpecJBB and SciMark.
    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
        Node *xl = phase->transform( new (phase->C) AndLNode(x,divisor) );
        Node *xh = phase->transform( new (phase->C) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C) AddLNode(xh,xl) );
        hook->set_req(0, x);    // Add a use to x to prevent him from dying
      }

      // Generate sign-fixup code.  Was original value positive?
      // long hack_res = (i >= 0) ? divisor : CONST64(1);
      Node *cmp1 = phase->transform( new (phase->C) CmpLNode( in(1), phase->longcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C) SubLNode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C) CmpLNode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C) CMoveLNode(bol2, x, sub, TypeLong::LONG);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jlong isn't handled by the transform
  if( con == 0 || con == min_jlong ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jlong pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C) ConLNode(TypeLong::ZERO);

  int log2_con = -1;

  // If this is a power of two, then maybe we can mask it
  if( is_power_of_2_long(pos_con) ) {
    log2_con = exact_log2_long(pos_con);

    const Type *dt = phase->type(in(1));
    const TypeLong *dtl = dt->isa_long();

    // See if this can be masked, if the dividend is non-negative
    if( dtl && dtl->_lo >= 0 )
      return ( new (phase->C) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivL to MulL
  Node *result = transform_long_divide( phase, in(1), pos_con );
  if (result != NULL) {
    Node *divide = phase->transform(result);

    // Re-multiply, using a shift if this is a power of two
    Node *mult = NULL;

    if( log2_con >= 0 )
      mult = phase->transform( new (phase->C) LShiftLNode( divide, phase->intcon( log2_con ) ) );
    else
      mult = phase->transform( new (phase->C) MulLNode( divide, phase->longcon( pos_con ) ) );

    // Finally, subtract the multiplied divided value from the original
    result = new (phase->C) SubLNode( in(1), mult );
  }

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
      return TypeLong::POS;
    // If both numbers are not constants, we know little.
    return TypeLong::LONG;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeLong::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
    return TypeLong::ZERO;

  return TypeLong::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
    return Type::FLOAT;         // note: x%x can be either NaN or 0
  }

  float f1 = t1->getf();
  float f2 = t2->getf();
  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  jint  x2 = jint_cast(f2);

  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;

  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
    return Type::FLOAT;

  // We must be modulo'ing 2 float constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jint xr = jint_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jint;
  }

  return TypeF::make(jfloat_cast(xr));
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
    return Type::DOUBLE;        // note: x%x can be either NaN or 0
  }

  double f1 = t1->getd();
  double f2 = t2->getd();
  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  jlong  x2 = jlong_cast(f2);

  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;

  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
    return Type::DOUBLE;

  // We must be modulo'ing 2 double constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jlong xr = jlong_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jlong;
  }

  return TypeD::make(jdouble_cast(xr));
}

//=============================================================================

DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  init_req(0, c);
  init_req(1, dividend);
  init_req(2, divisor);
}

//------------------------------make------------------------------------------
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
         "only div or mod input pattern accepted");

  DivModINode* divmod = new (C) DivModINode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------make------------------------------------------
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
         "only div or mod input pattern accepted");

  DivModLNode* divmod = new (C) DivModLNode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divI_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modI_proj_mask();
  }
  return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
}


//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divL_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modL_proj_mask();
  }
  return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
}

Other Java examples (source code examples)

Here is a short list of links related to this Java divnode.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.