alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (loopTransform.cpp)

This example Java source code file (loopTransform.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

addinode, boolnode, c\-, countedloopnode, node, null, op_iffalse, op_iftrue, phaseidealloop, product, subinode

The loopTransform.cpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/loopnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"

//------------------------------is_loop_exit-----------------------------------
// Given an IfNode, return the loop-exiting projection or NULL if both
// arms remain in the loop.
Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  PhaseIdealLoop *phase = _phase;
  // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  // we need loop unswitching instead of peeling.
  if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    return iff->raw_out(0);
  if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    return iff->raw_out(1);
  return NULL;
}


//=============================================================================


//------------------------------record_for_igvn----------------------------
// Put loop body on igvn work list
void IdealLoopTree::record_for_igvn() {
  for( uint i = 0; i < _body.size(); i++ ) {
    Node *n = _body.at(i);
    _phase->_igvn._worklist.push(n);
  }
}

//------------------------------compute_exact_trip_count-----------------------
// Compute loop exact trip count if possible. Do not recalculate trip count for
// split loops (pre-main-post) which have their limits and inits behind Opaque node.
void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  if (!_head->as_Loop()->is_valid_counted_loop()) {
    return;
  }
  CountedLoopNode* cl = _head->as_CountedLoop();
  // Trip count may become nonexact for iteration split loops since
  // RCE modifies limits. Note, _trip_count value is not reset since
  // it is used to limit unrolling of main loop.
  cl->set_nonexact_trip_count();

  // Loop's test should be part of loop.
  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    return; // Infinite loop

#ifdef ASSERT
  BoolTest::mask bt = cl->loopexit()->test_trip();
  assert(bt == BoolTest::lt || bt == BoolTest::gt ||
         bt == BoolTest::ne, "canonical test is expected");
#endif

  Node* init_n = cl->init_trip();
  Node* limit_n = cl->limit();
  if (init_n  != NULL &&  init_n->is_Con() &&
      limit_n != NULL && limit_n->is_Con()) {
    // Use longs to avoid integer overflow.
    int stride_con  = cl->stride_con();
    jlong init_con   = cl->init_trip()->get_int();
    jlong limit_con  = cl->limit()->get_int();
    int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
    if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
      // Set exact trip count.
      cl->set_exact_trip_count((uint)trip_count);
    }
  }
}

//------------------------------compute_profile_trip_cnt----------------------------
// Compute loop trip count from profile data as
//    (backedge_count + loop_exit_count) / loop_exit_count
void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
  if (!_head->is_CountedLoop()) {
    return;
  }
  CountedLoopNode* head = _head->as_CountedLoop();
  if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    return; // Already computed
  }
  float trip_cnt = (float)max_jint; // default is big

  Node* back = head->in(LoopNode::LoopBackControl);
  while (back != head) {
    if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
        back->in(0) &&
        back->in(0)->is_If() &&
        back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
        back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
      break;
    }
    back = phase->idom(back);
  }
  if (back != head) {
    assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
           back->in(0), "if-projection exists");
    IfNode* back_if = back->in(0)->as_If();
    float loop_back_cnt = back_if->_fcnt * back_if->_prob;

    // Now compute a loop exit count
    float loop_exit_cnt = 0.0f;
    for( uint i = 0; i < _body.size(); i++ ) {
      Node *n = _body[i];
      if( n->is_If() ) {
        IfNode *iff = n->as_If();
        if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
          Node *exit = is_loop_exit(iff);
          if( exit ) {
            float exit_prob = iff->_prob;
            if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
            if (exit_prob > PROB_MIN) {
              float exit_cnt = iff->_fcnt * exit_prob;
              loop_exit_cnt += exit_cnt;
            }
          }
        }
      }
    }
    if (loop_exit_cnt > 0.0f) {
      trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
    } else {
      // No exit count so use
      trip_cnt = loop_back_cnt;
    }
  }
#ifndef PRODUCT
  if (TraceProfileTripCount) {
    tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
  }
#endif
  head->set_profile_trip_cnt(trip_cnt);
}

//---------------------is_invariant_addition-----------------------------
// Return nonzero index of invariant operand for an Add or Sub
// of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
  int op = n->Opcode();
  if (op == Op_AddI || op == Op_SubI) {
    bool in1_invar = this->is_invariant(n->in(1));
    bool in2_invar = this->is_invariant(n->in(2));
    if (in1_invar && !in2_invar) return 1;
    if (!in1_invar && in2_invar) return 2;
  }
  return 0;
}

//---------------------reassociate_add_sub-----------------------------
// Reassociate invariant add and subtract expressions:
//
// inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
// (x + inv2) + inv1  =>  ( inv1 + inv2) + x
// inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
// inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
// (x + inv2) - inv1  =>  (-inv1 + inv2) + x
// (x - inv2) + inv1  =>  ( inv1 - inv2) + x
// (x - inv2) - inv1  =>  (-inv1 - inv2) + x
// inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
// inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
// (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
// (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
// inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
//
Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
  if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
  if (is_invariant(n1)) return NULL;
  int inv1_idx = is_invariant_addition(n1, phase);
  if (!inv1_idx) return NULL;
  // Don't mess with add of constant (igvn moves them to expression tree root.)
  if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
  Node* inv1 = n1->in(inv1_idx);
  Node* n2 = n1->in(3 - inv1_idx);
  int inv2_idx = is_invariant_addition(n2, phase);
  if (!inv2_idx) return NULL;
  Node* x    = n2->in(3 - inv2_idx);
  Node* inv2 = n2->in(inv2_idx);

  bool neg_x    = n2->is_Sub() && inv2_idx == 1;
  bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
  bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
  if (n1->is_Sub() && inv1_idx == 1) {
    neg_x    = !neg_x;
    neg_inv2 = !neg_inv2;
  }
  Node* inv1_c = phase->get_ctrl(inv1);
  Node* inv2_c = phase->get_ctrl(inv2);
  Node* n_inv1;
  if (neg_inv1) {
    Node *zero = phase->_igvn.intcon(0);
    phase->set_ctrl(zero, phase->C->root());
    n_inv1 = new (phase->C) SubINode(zero, inv1);
    phase->register_new_node(n_inv1, inv1_c);
  } else {
    n_inv1 = inv1;
  }
  Node* inv;
  if (neg_inv2) {
    inv = new (phase->C) SubINode(n_inv1, inv2);
  } else {
    inv = new (phase->C) AddINode(n_inv1, inv2);
  }
  phase->register_new_node(inv, phase->get_early_ctrl(inv));

  Node* addx;
  if (neg_x) {
    addx = new (phase->C) SubINode(inv, x);
  } else {
    addx = new (phase->C) AddINode(x, inv);
  }
  phase->register_new_node(addx, phase->get_ctrl(x));
  phase->_igvn.replace_node(n1, addx);
  assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
  _body.yank(n1);
  return addx;
}

//---------------------reassociate_invariants-----------------------------
// Reassociate invariant expressions:
void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
  for (int i = _body.size() - 1; i >= 0; i--) {
    Node *n = _body.at(i);
    for (int j = 0; j < 5; j++) {
      Node* nn = reassociate_add_sub(n, phase);
      if (nn == NULL) break;
      n = nn; // again
    };
  }
}

//------------------------------policy_peeling---------------------------------
// Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
// make some loop-invariant test (usually a null-check) happen before the loop.
bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
  Node *test = ((IdealLoopTree*)this)->tail();
  int  body_size = ((IdealLoopTree*)this)->_body.size();
  int  live_node_count = phase->C->live_nodes();
  // Peeling does loop cloning which can result in O(N^2) node construction
  if( body_size > 255 /* Prevent overflow for large body_size */
      || (body_size * body_size + live_node_count > MaxNodeLimit) ) {
    return false;           // too large to safely clone
  }
  while( test != _head ) {      // Scan till run off top of loop
    if( test->is_If() ) {       // Test?
      Node *ctrl = phase->get_ctrl(test->in(1));
      if (ctrl->is_top())
        return false;           // Found dead test on live IF?  No peeling!
      // Standard IF only has one input value to check for loop invariance
      assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
      // Condition is not a member of this loop?
      if( !is_member(phase->get_loop(ctrl)) &&
          is_loop_exit(test) )
        return true;            // Found reason to peel!
    }
    // Walk up dominators to loop _head looking for test which is
    // executed on every path thru loop.
    test = phase->idom(test);
  }
  return false;
}

//------------------------------peeled_dom_test_elim---------------------------
// If we got the effect of peeling, either by actually peeling or by making
// a pre-loop which must execute at least once, we can remove all
// loop-invariant dominated tests in the main body.
void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
  bool progress = true;
  while( progress ) {
    progress = false;           // Reset for next iteration
    Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
    Node *test = prev->in(0);
    while( test != loop->_head ) { // Scan till run off top of loop

      int p_op = prev->Opcode();
      if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
          test->is_If() &&      // Test?
          !test->in(1)->is_Con() && // And not already obvious?
          // Condition is not a member of this loop?
          !loop->is_member(get_loop(get_ctrl(test->in(1))))){
        // Walk loop body looking for instances of this test
        for( uint i = 0; i < loop->_body.size(); i++ ) {
          Node *n = loop->_body.at(i);
          if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
            // IfNode was dominated by version in peeled loop body
            progress = true;
            dominated_by( old_new[prev->_idx], n );
          }
        }
      }
      prev = test;
      test = idom(test);
    } // End of scan tests in loop

  } // End of while( progress )
}

//------------------------------do_peeling-------------------------------------
// Peel the first iteration of the given loop.
// Step 1: Clone the loop body.  The clone becomes the peeled iteration.
//         The pre-loop illegally has 2 control users (old & new loops).
// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
//         Do this by making the old-loop fall-in edges act as if they came
//         around the loopback from the prior iteration (follow the old-loop
//         backedges) and then map to the new peeled iteration.  This leaves
//         the pre-loop with only 1 user (the new peeled iteration), but the
//         peeled-loop backedge has 2 users.
// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
//         extra backedge user.
//
//                   orig
//
//                  stmt1
//                    |
//                    v
//              loop predicate
//                    |
//                    v
//                   loop<----+
//                     |      |
//                   stmt2    |
//                     |      |
//                     v      |
//                    if      ^
//                   / \      |
//                  /   \     |
//                 v     v    |
//               false true   |
//               /       \    |
//              /         ----+
//             |
//             v
//           exit
//
//
//            after clone loop
//
//                   stmt1
//                     |
//                     v
//               loop predicate
//                 /       \
//        clone   /         \   orig
//               /           \
//              /             \
//             v               v
//   +---->loop clone          loop<----+
//   |      |                    |      |
//   |    stmt2 clone          stmt2    |
//   |      |                    |      |
//   |      v                    v      |
//   ^      if clone            If      ^
//   |      / \                / \      |
//   |     /   \              /   \     |
//   |    v     v            v     v    |
//   |    true  false      false true   |
//   |    /         \      /       \    |
//   +----           \    /         ----+
//                    \  /
//                    1v v2
//                  region
//                     |
//                     v
//                   exit
//
//
//         after peel and predicate move
//
//                   stmt1
//                    /
//                   /
//        clone     /            orig
//                 /
//                /              +----------+
//               /               |          |
//              /          loop predicate   |
//             /                 |          |
//            v                  v          |
//   TOP-->loop clone          loop<----+   |
//          |                    |      |   |
//        stmt2 clone          stmt2    |   |
//          |                    |      |   ^
//          v                    v      |   |
//          if clone            If      ^   |
//          / \                / \      |   |
//         /   \              /   \     |   |
//        v     v            v     v    |   |
//      true   false      false  true   |   |
//        |         \      /       \    |   |
//        |          \    /         ----+   ^
//        |           \  /                  |
//        |           1v v2                 |
//        v         region                  |
//        |            |                    |
//        |            v                    |
//        |          exit                   |
//        |                                 |
//        +--------------->-----------------+
//
//
//              final graph
//
//                  stmt1
//                    |
//                    v
//                  stmt2 clone
//                    |
//                    v
//                   if clone
//                  / |
//                 /  |
//                v   v
//            false  true
//             |      |
//             |      v
//             | loop predicate
//             |      |
//             |      v
//             |     loop<----+
//             |      |       |
//             |    stmt2     |
//             |      |       |
//             |      v       |
//             v      if      ^
//             |     /  \     |
//             |    /    \    |
//             |   v     v    |
//             | false  true  |
//             |  |        \  |
//             v  v         --+
//            region
//              |
//              v
//             exit
//
void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {

  C->set_major_progress();
  // Peeling a 'main' loop in a pre/main/post situation obfuscates the
  // 'pre' loop from the main and the 'pre' can no longer have it's
  // iterations adjusted.  Therefore, we need to declare this loop as
  // no longer a 'main' loop; it will need new pre and post loops before
  // we can do further RCE.
#ifndef PRODUCT
  if (TraceLoopOpts) {
    tty->print("Peel         ");
    loop->dump_head();
  }
#endif
  Node* head = loop->_head;
  bool counted_loop = head->is_CountedLoop();
  if (counted_loop) {
    CountedLoopNode *cl = head->as_CountedLoop();
    assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
    cl->set_trip_count(cl->trip_count() - 1);
    if (cl->is_main_loop()) {
      cl->set_normal_loop();
#ifndef PRODUCT
      if (PrintOpto && VerifyLoopOptimizations) {
        tty->print("Peeling a 'main' loop; resetting to 'normal' ");
        loop->dump_head();
      }
#endif
    }
  }
  Node* entry = head->in(LoopNode::EntryControl);

  // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
  //         The pre-loop illegally has 2 control users (old & new loops).
  clone_loop( loop, old_new, dom_depth(head) );

  // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
  //         Do this by making the old-loop fall-in edges act as if they came
  //         around the loopback from the prior iteration (follow the old-loop
  //         backedges) and then map to the new peeled iteration.  This leaves
  //         the pre-loop with only 1 user (the new peeled iteration), but the
  //         peeled-loop backedge has 2 users.
  Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
  _igvn.hash_delete(head);
  head->set_req(LoopNode::EntryControl, new_entry);
  for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
    Node* old = head->fast_out(j);
    if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
      Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
      if (!new_exit_value )     // Backedge value is ALSO loop invariant?
        // Then loop body backedge value remains the same.
        new_exit_value = old->in(LoopNode::LoopBackControl);
      _igvn.hash_delete(old);
      old->set_req(LoopNode::EntryControl, new_exit_value);
    }
  }


  // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
  //         extra backedge user.
  Node* new_head = old_new[head->_idx];
  _igvn.hash_delete(new_head);
  new_head->set_req(LoopNode::LoopBackControl, C->top());
  for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
    Node* use = new_head->fast_out(j2);
    if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
      _igvn.hash_delete(use);
      use->set_req(LoopNode::LoopBackControl, C->top());
    }
  }


  // Step 4: Correct dom-depth info.  Set to loop-head depth.
  int dd = dom_depth(head);
  set_idom(head, head->in(1), dd);
  for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
    Node *old = loop->_body.at(j3);
    Node *nnn = old_new[old->_idx];
    if (!has_ctrl(nnn))
      set_idom(nnn, idom(nnn), dd-1);
  }

  // Now force out all loop-invariant dominating tests.  The optimizer
  // finds some, but we _know_ they are all useless.
  peeled_dom_test_elim(loop,old_new);

  loop->record_for_igvn();
}

#define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop

//------------------------------policy_maximally_unroll------------------------
// Calculate exact loop trip count and return true if loop can be maximally
// unrolled.
bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
  CountedLoopNode *cl = _head->as_CountedLoop();
  assert(cl->is_normal_loop(), "");
  if (!cl->is_valid_counted_loop())
    return false; // Malformed counted loop

  if (!cl->has_exact_trip_count()) {
    // Trip count is not exact.
    return false;
  }

  uint trip_count = cl->trip_count();
  // Note, max_juint is used to indicate unknown trip count.
  assert(trip_count > 1, "one iteration loop should be optimized out already");
  assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");

  // Real policy: if we maximally unroll, does it get too big?
  // Allow the unrolled mess to get larger than standard loop
  // size.  After all, it will no longer be a loop.
  uint body_size    = _body.size();
  uint unroll_limit = (uint)LoopUnrollLimit * 4;
  assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
  if (trip_count > unroll_limit || body_size > unroll_limit) {
    return false;
  }

  // Fully unroll a loop with few iterations regardless next
  // conditions since following loop optimizations will split
  // such loop anyway (pre-main-post).
  if (trip_count <= 3)
    return true;

  // Take into account that after unroll conjoined heads and tails will fold,
  // otherwise policy_unroll() may allow more unrolling than max unrolling.
  uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
  uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
  if (body_size != tst_body_size) // Check for int overflow
    return false;
  if (new_body_size > unroll_limit ||
      // Unrolling can result in a large amount of node construction
      new_body_size >= MaxNodeLimit - (uint) phase->C->live_nodes()) {
    return false;
  }

  // Do not unroll a loop with String intrinsics code.
  // String intrinsics are large and have loops.
  for (uint k = 0; k < _body.size(); k++) {
    Node* n = _body.at(k);
    switch (n->Opcode()) {
      case Op_StrComp:
      case Op_StrEquals:
      case Op_StrIndexOf:
      case Op_EncodeISOArray:
      case Op_AryEq: {
        return false;
      }
    } // switch
  }

  return true; // Do maximally unroll
}


//------------------------------policy_unroll----------------------------------
// Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
// the loop is a CountedLoop and the body is small enough.
bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {

  CountedLoopNode *cl = _head->as_CountedLoop();
  assert(cl->is_normal_loop() || cl->is_main_loop(), "");

  if (!cl->is_valid_counted_loop())
    return false; // Malformed counted loop

  // Protect against over-unrolling.
  // After split at least one iteration will be executed in pre-loop.
  if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;

  int future_unroll_ct = cl->unrolled_count() * 2;
  if (future_unroll_ct > LoopMaxUnroll) return false;

  // Check for initial stride being a small enough constant
  if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;

  // Don't unroll if the next round of unrolling would push us
  // over the expected trip count of the loop.  One is subtracted
  // from the expected trip count because the pre-loop normally
  // executes 1 iteration.
  if (UnrollLimitForProfileCheck > 0 &&
      cl->profile_trip_cnt() != COUNT_UNKNOWN &&
      future_unroll_ct        > UnrollLimitForProfileCheck &&
      (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
    return false;
  }

  // When unroll count is greater than LoopUnrollMin, don't unroll if:
  //   the residual iterations are more than 10% of the trip count
  //   and rounds of "unroll,optimize" are not making significant progress
  //   Progress defined as current size less than 20% larger than previous size.
  if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
      future_unroll_ct > LoopUnrollMin &&
      (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
      1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
    return false;
  }

  Node *init_n = cl->init_trip();
  Node *limit_n = cl->limit();
  int stride_con = cl->stride_con();
  // Non-constant bounds.
  // Protect against over-unrolling when init or/and limit are not constant
  // (so that trip_count's init value is maxint) but iv range is known.
  if (init_n   == NULL || !init_n->is_Con()  ||
      limit_n  == NULL || !limit_n->is_Con()) {
    Node* phi = cl->phi();
    if (phi != NULL) {
      assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
      const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
      int next_stride = stride_con * 2; // stride after this unroll
      if (next_stride > 0) {
        if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
            iv_type->_lo + next_stride >  iv_type->_hi) {
          return false;  // over-unrolling
        }
      } else if (next_stride < 0) {
        if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
            iv_type->_hi + next_stride <  iv_type->_lo) {
          return false;  // over-unrolling
        }
      }
    }
  }

  // After unroll limit will be adjusted: new_limit = limit-stride.
  // Bailout if adjustment overflow.
  const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
  if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
      stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
    return false;  // overflow

  // Adjust body_size to determine if we unroll or not
  uint body_size = _body.size();
  // Key test to unroll loop in CRC32 java code
  int xors_in_loop = 0;
  // Also count ModL, DivL and MulL which expand mightly
  for (uint k = 0; k < _body.size(); k++) {
    Node* n = _body.at(k);
    switch (n->Opcode()) {
      case Op_XorI: xors_in_loop++; break; // CRC32 java code
      case Op_ModL: body_size += 30; break;
      case Op_DivL: body_size += 30; break;
      case Op_MulL: body_size += 10; break;
      case Op_FlagsProj:
        // Can't handle unrolling of loops containing
        // nodes that generate a FlagsProj at the moment
        return false;
      case Op_StrComp:
      case Op_StrEquals:
      case Op_StrIndexOf:
      case Op_EncodeISOArray:
      case Op_AryEq: {
        // Do not unroll a loop with String intrinsics code.
        // String intrinsics are large and have loops.
        return false;
      }
    } // switch
  }

  // Check for being too big
  if (body_size > (uint)LoopUnrollLimit) {
    if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
    // Normal case: loop too big
    return false;
  }

  // Unroll once!  (Each trip will soon do double iterations)
  return true;
}

//------------------------------policy_align-----------------------------------
// Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
// expression that does the alignment.  Note that only one array base can be
// aligned in a loop (unless the VM guarantees mutual alignment).  Note that
// if we vectorize short memory ops into longer memory ops, we may want to
// increase alignment.
bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
  return false;
}

//------------------------------policy_range_check-----------------------------
// Return TRUE or FALSE if the loop should be range-check-eliminated.
// Actually we do iteration-splitting, a more powerful form of RCE.
bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
  if (!RangeCheckElimination) return false;

  CountedLoopNode *cl = _head->as_CountedLoop();
  // If we unrolled with no intention of doing RCE and we later
  // changed our minds, we got no pre-loop.  Either we need to
  // make a new pre-loop, or we gotta disallow RCE.
  if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
  Node *trip_counter = cl->phi();

  // Check loop body for tests of trip-counter plus loop-invariant vs
  // loop-invariant.
  for (uint i = 0; i < _body.size(); i++) {
    Node *iff = _body[i];
    if (iff->Opcode() == Op_If) { // Test?

      // Comparing trip+off vs limit
      Node *bol = iff->in(1);
      if (bol->req() != 2) continue; // dead constant test
      if (!bol->is_Bool()) {
        assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
        continue;
      }
      if (bol->as_Bool()->_test._test == BoolTest::ne)
        continue; // not RC

      Node *cmp = bol->in(1);
      if (cmp->is_FlagsProj()) {
        continue;
      }

      Node *rc_exp = cmp->in(1);
      Node *limit = cmp->in(2);

      Node *limit_c = phase->get_ctrl(limit);
      if( limit_c == phase->C->top() )
        return false;           // Found dead test on live IF?  No RCE!
      if( is_member(phase->get_loop(limit_c) ) ) {
        // Compare might have operands swapped; commute them
        rc_exp = cmp->in(2);
        limit  = cmp->in(1);
        limit_c = phase->get_ctrl(limit);
        if( is_member(phase->get_loop(limit_c) ) )
          continue;             // Both inputs are loop varying; cannot RCE
      }

      if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
        continue;
      }
      // Yeah!  Found a test like 'trip+off vs limit'
      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
      // we need loop unswitching instead of iteration splitting.
      if( is_loop_exit(iff) )
        return true;            // Found reason to split iterations
    } // End of is IF
  }

  return false;
}

//------------------------------policy_peel_only-------------------------------
// Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
// for unrolling loops with NO array accesses.
bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {

  for( uint i = 0; i < _body.size(); i++ )
    if( _body[i]->is_Mem() )
      return false;

  // No memory accesses at all!
  return true;
}

//------------------------------clone_up_backedge_goo--------------------------
// If Node n lives in the back_ctrl block and cannot float, we clone a private
// version of n in preheader_ctrl block and return that, otherwise return n.
Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
  if( get_ctrl(n) != back_ctrl ) return n;

  // Only visit once
  if (visited.test_set(n->_idx)) {
    Node *x = clones.find(n->_idx);
    if (x != NULL)
      return x;
    return n;
  }

  Node *x = NULL;               // If required, a clone of 'n'
  // Check for 'n' being pinned in the backedge.
  if( n->in(0) && n->in(0) == back_ctrl ) {
    assert(clones.find(n->_idx) == NULL, "dead loop");
    x = n->clone();             // Clone a copy of 'n' to preheader
    clones.push(x, n->_idx);
    x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
  }

  // Recursive fixup any other input edges into x.
  // If there are no changes we can just return 'n', otherwise
  // we need to clone a private copy and change it.
  for( uint i = 1; i < n->req(); i++ ) {
    Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
    if( g != n->in(i) ) {
      if( !x ) {
        assert(clones.find(n->_idx) == NULL, "dead loop");
        x = n->clone();
        clones.push(x, n->_idx);
      }
      x->set_req(i, g);
    }
  }
  if( x ) {                     // x can legally float to pre-header location
    register_new_node( x, preheader_ctrl );
    return x;
  } else {                      // raise n to cover LCA of uses
    set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
  }
  return n;
}

//------------------------------insert_pre_post_loops--------------------------
// Insert pre and post loops.  If peel_only is set, the pre-loop can not have
// more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
// alignment.  Useful to unroll loops that do no array accesses.
void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {

#ifndef PRODUCT
  if (TraceLoopOpts) {
    if (peel_only)
      tty->print("PeelMainPost ");
    else
      tty->print("PreMainPost  ");
    loop->dump_head();
  }
#endif
  C->set_major_progress();

  // Find common pieces of the loop being guarded with pre & post loops
  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
  assert( main_head->is_normal_loop(), "" );
  CountedLoopEndNode *main_end = main_head->loopexit();
  guarantee(main_end != NULL, "no loop exit node");
  assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
  uint dd_main_head = dom_depth(main_head);
  uint max = main_head->outcnt();

  Node *pre_header= main_head->in(LoopNode::EntryControl);
  Node *init      = main_head->init_trip();
  Node *incr      = main_end ->incr();
  Node *limit     = main_end ->limit();
  Node *stride    = main_end ->stride();
  Node *cmp       = main_end ->cmp_node();
  BoolTest::mask b_test = main_end->test_trip();

  // Need only 1 user of 'bol' because I will be hacking the loop bounds.
  Node *bol = main_end->in(CountedLoopEndNode::TestValue);
  if( bol->outcnt() != 1 ) {
    bol = bol->clone();
    register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
    _igvn.hash_delete(main_end);
    main_end->set_req(CountedLoopEndNode::TestValue, bol);
  }
  // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
  if( cmp->outcnt() != 1 ) {
    cmp = cmp->clone();
    register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
    _igvn.hash_delete(bol);
    bol->set_req(1, cmp);
  }

  //------------------------------
  // Step A: Create Post-Loop.
  Node* main_exit = main_end->proj_out(false);
  assert( main_exit->Opcode() == Op_IfFalse, "" );
  int dd_main_exit = dom_depth(main_exit);

  // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
  // loop pre-header illegally has 2 control users (old & new loops).
  clone_loop( loop, old_new, dd_main_exit );
  assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
  CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
  post_head->set_post_loop(main_head);

  // Reduce the post-loop trip count.
  CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
  post_end->_prob = PROB_FAIR;

  // Build the main-loop normal exit.
  IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
  _igvn.register_new_node_with_optimizer( new_main_exit );
  set_idom(new_main_exit, main_end, dd_main_exit );
  set_loop(new_main_exit, loop->_parent);

  // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
  // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
  // (the main-loop trip-counter exit value) because we will be changing
  // the exit value (via unrolling) so we cannot constant-fold away the zero
  // trip guard until all unrolling is done.
  Node *zer_opaq = new (C) Opaque1Node(C, incr);
  Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
  Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
  register_new_node( zer_opaq, new_main_exit );
  register_new_node( zer_cmp , new_main_exit );
  register_new_node( zer_bol , new_main_exit );

  // Build the IfNode
  IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
  _igvn.register_new_node_with_optimizer( zer_iff );
  set_idom(zer_iff, new_main_exit, dd_main_exit);
  set_loop(zer_iff, loop->_parent);

  // Plug in the false-path, taken if we need to skip post-loop
  _igvn.replace_input_of(main_exit, 0, zer_iff);
  set_idom(main_exit, zer_iff, dd_main_exit);
  set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
  // Make the true-path, must enter the post loop
  Node *zer_taken = new (C) IfTrueNode( zer_iff );
  _igvn.register_new_node_with_optimizer( zer_taken );
  set_idom(zer_taken, zer_iff, dd_main_exit);
  set_loop(zer_taken, loop->_parent);
  // Plug in the true path
  _igvn.hash_delete( post_head );
  post_head->set_req(LoopNode::EntryControl, zer_taken);
  set_idom(post_head, zer_taken, dd_main_exit);

  Arena *a = Thread::current()->resource_area();
  VectorSet visited(a);
  Node_Stack clones(a, main_head->back_control()->outcnt());
  // Step A3: Make the fall-in values to the post-loop come from the
  // fall-out values of the main-loop.
  for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
    Node* main_phi = main_head->fast_out(i);
    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
      Node *post_phi = old_new[main_phi->_idx];
      Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
                                              post_head->init_control(),
                                              main_phi->in(LoopNode::LoopBackControl),
                                              visited, clones);
      _igvn.hash_delete(post_phi);
      post_phi->set_req( LoopNode::EntryControl, fallmain );
    }
  }

  // Update local caches for next stanza
  main_exit = new_main_exit;


  //------------------------------
  // Step B: Create Pre-Loop.

  // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
  // loop pre-header illegally has 2 control users (old & new loops).
  clone_loop( loop, old_new, dd_main_head );
  CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
  CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
  pre_head->set_pre_loop(main_head);
  Node *pre_incr = old_new[incr->_idx];

  // Reduce the pre-loop trip count.
  pre_end->_prob = PROB_FAIR;

  // Find the pre-loop normal exit.
  Node* pre_exit = pre_end->proj_out(false);
  assert( pre_exit->Opcode() == Op_IfFalse, "" );
  IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
  _igvn.register_new_node_with_optimizer( new_pre_exit );
  set_idom(new_pre_exit, pre_end, dd_main_head);
  set_loop(new_pre_exit, loop->_parent);

  // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  // pre-loop, the main-loop may not execute at all.  Later in life this
  // zero-trip guard will become the minimum-trip guard when we unroll
  // the main-loop.
  Node *min_opaq = new (C) Opaque1Node(C, limit);
  Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
  Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
  register_new_node( min_opaq, new_pre_exit );
  register_new_node( min_cmp , new_pre_exit );
  register_new_node( min_bol , new_pre_exit );

  // Build the IfNode (assume the main-loop is executed always).
  IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  _igvn.register_new_node_with_optimizer( min_iff );
  set_idom(min_iff, new_pre_exit, dd_main_head);
  set_loop(min_iff, loop->_parent);

  // Plug in the false-path, taken if we need to skip main-loop
  _igvn.hash_delete( pre_exit );
  pre_exit->set_req(0, min_iff);
  set_idom(pre_exit, min_iff, dd_main_head);
  set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  // Make the true-path, must enter the main loop
  Node *min_taken = new (C) IfTrueNode( min_iff );
  _igvn.register_new_node_with_optimizer( min_taken );
  set_idom(min_taken, min_iff, dd_main_head);
  set_loop(min_taken, loop->_parent);
  // Plug in the true path
  _igvn.hash_delete( main_head );
  main_head->set_req(LoopNode::EntryControl, min_taken);
  set_idom(main_head, min_taken, dd_main_head);

  visited.Clear();
  clones.clear();
  // Step B3: Make the fall-in values to the main-loop come from the
  // fall-out values of the pre-loop.
  for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
    Node* main_phi = main_head->fast_out(i2);
    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
      Node *pre_phi = old_new[main_phi->_idx];
      Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
                                             main_head->init_control(),
                                             pre_phi->in(LoopNode::LoopBackControl),
                                             visited, clones);
      _igvn.hash_delete(main_phi);
      main_phi->set_req( LoopNode::EntryControl, fallpre );
    }
  }

  // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  // RCE and alignment may change this later.
  Node *cmp_end = pre_end->cmp_node();
  assert( cmp_end->in(2) == limit, "" );
  Node *pre_limit = new (C) AddINode( init, stride );

  // Save the original loop limit in this Opaque1 node for
  // use by range check elimination.
  Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);

  register_new_node( pre_limit, pre_head->in(0) );
  register_new_node( pre_opaq , pre_head->in(0) );

  // Since no other users of pre-loop compare, I can hack limit directly
  assert( cmp_end->outcnt() == 1, "no other users" );
  _igvn.hash_delete(cmp_end);
  cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);

  // Special case for not-equal loop bounds:
  // Change pre loop test, main loop test, and the
  // main loop guard test to use lt or gt depending on stride
  // direction:
  // positive stride use <
  // negative stride use >
  //
  // not-equal test is kept for post loop to handle case
  // when init > limit when stride > 0 (and reverse).

  if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {

    BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
    // Modify pre loop end condition
    Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
    BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
    register_new_node( new_bol0, pre_head->in(0) );
    _igvn.hash_delete(pre_end);
    pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
    // Modify main loop guard condition
    assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
    BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
    register_new_node( new_bol1, new_pre_exit );
    _igvn.hash_delete(min_iff);
    min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
    // Modify main loop end condition
    BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
    BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
    register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
    _igvn.hash_delete(main_end);
    main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  }

  // Flag main loop
  main_head->set_main_loop();
  if( peel_only ) main_head->set_main_no_pre_loop();

  // Subtract a trip count for the pre-loop.
  main_head->set_trip_count(main_head->trip_count() - 1);

  // It's difficult to be precise about the trip-counts
  // for the pre/post loops.  They are usually very short,
  // so guess that 4 trips is a reasonable value.
  post_head->set_profile_trip_cnt(4.0);
  pre_head->set_profile_trip_cnt(4.0);

  // Now force out all loop-invariant dominating tests.  The optimizer
  // finds some, but we _know_ they are all useless.
  peeled_dom_test_elim(loop,old_new);
}

//------------------------------is_invariant-----------------------------
// Return true if n is invariant
bool IdealLoopTree::is_invariant(Node* n) const {
  Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  if (n_c->is_top()) return false;
  return !is_member(_phase->get_loop(n_c));
}


//------------------------------do_unroll--------------------------------------
// Unroll the loop body one step - make each trip do 2 iterations.
void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  assert(LoopUnrollLimit, "");
  CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  CountedLoopEndNode *loop_end = loop_head->loopexit();
  assert(loop_end, "");
#ifndef PRODUCT
  if (PrintOpto && VerifyLoopOptimizations) {
    tty->print("Unrolling ");
    loop->dump_head();
  } else if (TraceLoopOpts) {
    if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
      tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
    } else {
      tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
    }
    loop->dump_head();
  }
#endif

  // Remember loop node count before unrolling to detect
  // if rounds of unroll,optimize are making progress
  loop_head->set_node_count_before_unroll(loop->_body.size());

  Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  Node *limit = loop_head->limit();
  Node *init  = loop_head->init_trip();
  Node *stride = loop_head->stride();

  Node *opaq = NULL;
  if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
    // Search for zero-trip guard.
    assert( loop_head->is_main_loop(), "" );
    assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
    Node *iff = ctrl->in(0);
    assert( iff->Opcode() == Op_If, "" );
    Node *bol = iff->in(1);
    assert( bol->Opcode() == Op_Bool, "" );
    Node *cmp = bol->in(1);
    assert( cmp->Opcode() == Op_CmpI, "" );
    opaq = cmp->in(2);
    // Occasionally it's possible for a zero-trip guard Opaque1 node to be
    // optimized away and then another round of loop opts attempted.
    // We can not optimize this particular loop in that case.
    if (opaq->Opcode() != Op_Opaque1)
      return; // Cannot find zero-trip guard!  Bail out!
    // Zero-trip test uses an 'opaque' node which is not shared.
    assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  }

  C->set_major_progress();

  Node* new_limit = NULL;
  if (UnrollLimitCheck) {
    int stride_con = stride->get_int();
    int stride_p = (stride_con > 0) ? stride_con : -stride_con;
    uint old_trip_count = loop_head->trip_count();
    // Verify that unroll policy result is still valid.
    assert(old_trip_count > 1 &&
           (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");

    // Adjust loop limit to keep valid iterations number after unroll.
    // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
    // which may overflow.
    if (!adjust_min_trip) {
      assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
             "odd trip count for maximally unroll");
      // Don't need to adjust limit for maximally unroll since trip count is even.
    } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
      // Loop's limit is constant. Loop's init could be constant when pre-loop
      // become peeled iteration.
      jlong init_con = init->get_int();
      // We can keep old loop limit if iterations count stays the same:
      //   old_trip_count == new_trip_count * 2
      // Note: since old_trip_count >= 2 then new_trip_count >= 1
      // so we also don't need to adjust zero trip test.
      jlong limit_con  = limit->get_int();
      // (stride_con*2) not overflow since stride_con <= 8.
      int new_stride_con = stride_con * 2;
      int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
      jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
      // New trip count should satisfy next conditions.
      assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
      uint new_trip_count = (uint)trip_count;
      adjust_min_trip = (old_trip_count != new_trip_count*2);
    }

    if (adjust_min_trip) {
      // Step 2: Adjust the trip limit if it is called for.
      // The adjustment amount is -stride. Need to make sure if the
      // adjustment underflows or overflows, then the main loop is skipped.
      Node* cmp = loop_end->cmp_node();
      assert(cmp->in(2) == limit, "sanity");
      assert(opaq != NULL && opaq->in(1) == limit, "sanity");

      // Verify that policy_unroll result is still valid.
      const TypeInt* limit_type = _igvn.type(limit)->is_int();
      assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
             stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");

      if (limit->is_Con()) {
        // The check in policy_unroll and the assert above guarantee
        // no underflow if limit is constant.
        new_limit = _igvn.intcon(limit->get_int() - stride_con);
        set_ctrl(new_limit, C->root());
      } else {
        // Limit is not constant.
        if (loop_head->unrolled_count() == 1) { // only for first unroll
          // Separate limit by Opaque node in case it is an incremented
          // variable from previous loop to avoid using pre-incremented
          // value which could increase register pressure.
          // Otherwise reorg_offsets() optimization will create a separate
          // Opaque node for each use of trip-counter and as result
          // zero trip guard limit will be different from loop limit.
          assert(has_ctrl(opaq), "should have it");
          Node* opaq_ctrl = get_ctrl(opaq);
          limit = new (C) Opaque2Node( C, limit );
          register_new_node( limit, opaq_ctrl );
        }
        if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
                   stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
          // No underflow.
          new_limit = new (C) SubINode(limit, stride);
        } else {
          // (limit - stride) may underflow.
          // Clamp the adjustment value with MININT or MAXINT:
          //
          //   new_limit = limit-stride
          //   if (stride > 0)
          //     new_limit = (limit < new_limit) ? MININT : new_limit;
          //   else
          //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
          //
          BoolTest::mask bt = loop_end->test_trip();
          assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
          Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
          set_ctrl(adj_max, C->root());
          Node* old_limit = NULL;
          Node* adj_limit = NULL;
          Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
          if (loop_head->unrolled_count() > 1 &&
              limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
              limit->in(CMoveNode::IfTrue) == adj_max &&
              bol->as_Bool()->_test._test == bt &&
              bol->in(1)->Opcode() == Op_CmpI &&
              bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
            // Loop was unrolled before.
            // Optimize the limit to avoid nested CMove:
            // use original limit as old limit.
            old_limit = bol->in(1)->in(1);
            // Adjust previous adjusted limit.
            adj_limit = limit->in(CMoveNode::IfFalse);
            adj_limit = new (C) SubINode(adj_limit, stride);
          } else {
            old_limit = limit;
            adj_limit = new (C) SubINode(limit, stride);
          }
          assert(old_limit != NULL && adj_limit != NULL, "");
          register_new_node( adj_limit, ctrl ); // adjust amount
          Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
          register_new_node( adj_cmp, ctrl );
          Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
          register_new_node( adj_bool, ctrl );
          new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
        }
        register_new_node(new_limit, ctrl);
      }
      assert(new_limit != NULL, "");
      // Replace in loop test.
      assert(loop_end->in(1)->in(1) == cmp, "sanity");
      if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
        // Don't need to create new test since only one user.
        _igvn.hash_delete(cmp);
        cmp->set_req(2, new_limit);
      } else {
        // Create new test since it is shared.
        Node* ctrl2 = loop_end->in(0);
        Node* cmp2  = cmp->clone();
        cmp2->set_req(2, new_limit);
        register_new_node(cmp2, ctrl2);
        Node* bol2 = loop_end->in(1)->clone();
        bol2->set_req(1, cmp2);
        register_new_node(bol2, ctrl2);
        _igvn.hash_delete(loop_end);
        loop_end->set_req(1, bol2);
      }
      // Step 3: Find the min-trip test guaranteed before a 'main' loop.
      // Make it a 1-trip test (means at least 2 trips).

      // Guard test uses an 'opaque' node which is not shared.  Hence I
      // can edit it's inputs directly.  Hammer in the new limit for the
      // minimum-trip guard.
      assert(opaq->outcnt() == 1, "");
      _igvn.hash_delete(opaq);
      opaq->set_req(1, new_limit);
    }

    // Adjust max trip count. The trip count is intentionally rounded
    // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
    // the main, unrolled, part of the loop will never execute as it is protected
    // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
    // and later determined that part of the unrolled loop was dead.
    loop_head->set_trip_count(old_trip_count / 2);

    // Double the count of original iterations in the unrolled loop body.
    loop_head->double_unrolled_count();

  } else { // LoopLimitCheck

    // Adjust max trip count. The trip count is intentionally rounded
    // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
    // the main, unrolled, part of the loop will never execute as it is protected
    // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
    // and later determined that part of the unrolled loop was dead.
    loop_head->set_trip_count(loop_head->trip_count() / 2);

    // Double the count of original iterations in the unrolled loop body.
    loop_head->double_unrolled_count();

    // -----------
    // Step 2: Cut back the trip counter for an unroll amount of 2.
    // Loop will normally trip (limit - init)/stride_con.  Since it's a
    // CountedLoop this is exact (stride divides limit-init exactly).
    // We are going to double the loop body, so we want to knock off any
    // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
    Node *span = new (C) SubINode( limit, init );
    register_new_node( span, ctrl );
    Node *trip = new (C) DivINode( 0, span, stride );
    register_new_node( trip, ctrl );
    Node *mtwo = _igvn.intcon(-2);
    set_ctrl(mtwo, C->root());
    Node *rond = new (C) AndINode( trip, mtwo );
    register_new_node( rond, ctrl );
    Node *spn2 = new (C) MulINode( rond, stride );
    register_new_node( spn2, ctrl );
    new_limit = new (C) AddINode( spn2, init );
    register_new_node( new_limit, ctrl );

    // Hammer in the new limit
    Node *ctrl2 = loop_end->in(0);
    Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
    register_new_node( cmp2, ctrl2 );
    Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
    register_new_node( bol2, ctrl2 );
    _igvn.hash_delete(loop_end);
    loop_end->set_req(CountedLoopEndNode::TestValue, bol2);

    // Step 3: Find the min-trip test guaranteed before a 'main' loop.
    // Make it a 1-trip test (means at least 2 trips).
    if( adjust_min_trip ) {
      assert( new_limit != NULL, "" );
      // Guard test uses an 'opaque' node which is not shared.  Hence I
      // can edit it's inputs directly.  Hammer in the new limit for the
      // minimum-trip guard.
      assert( opaq->outcnt() == 1, "" );
      _igvn.hash_delete(opaq);
      opaq->set_req(1, new_limit);
    }
  } // LoopLimitCheck

  // ---------
  // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  // represents the odd iterations; since the loop trips an even number of
  // times its backedge is never taken.  Kill the backedge.
  uint dd = dom_depth(loop_head);
  clone_loop( loop, old_new, dd );

  // Make backedges of the clone equal to backedges of the original.
  // Make the fall-in from the original come from the fall-out of the clone.
  for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
    Node* phi = loop_head->fast_out(j);
    if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
      Node *newphi = old_new[phi->_idx];
      _igvn.hash_delete( phi );
      _igvn.hash_delete( newphi );

      phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
      newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
      phi   ->set_req(LoopNode::LoopBackControl, C->top());
    }
  }
  Node *clone_head = old_new[loop_head->_idx];
  _igvn.hash_delete( clone_head );
  loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  loop->_head = clone_head;     // New loop header

  set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);

  // Kill the clone's backedge
  Node *newcle = old_new[loop_end->_idx];
  _igvn.hash_delete( newcle );
  Node *one = _igvn.intcon(1);
  set_ctrl(one, C->root());
  newcle->set_req(1, one);
  // Force clone into same loop body
  uint max = loop->_body.size();
  for( uint k = 0; k < max; k++ ) {
    Node *old = loop->_body.at(k);
    Node *nnn = old_new[old->_idx];
    loop->_body.push(nnn);
    if (!has_ctrl(old))
      set_loop(nnn, loop);
  }

  loop->record_for_igvn();
}

//------------------------------do_maximally_unroll----------------------------

void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  CountedLoopNode *cl = loop->_head->as_CountedLoop();
  assert(cl->has_exact_trip_count(), "trip count is not exact");
  assert(cl->trip_count() > 0, "");
#ifndef PRODUCT
  if (TraceLoopOpts) {
    tty->print("MaxUnroll  %d ", cl->trip_count());
    loop->dump_head();
  }
#endif

  // If loop is tripping an odd number of times, peel odd iteration
  if ((cl->trip_count() & 1) == 1) {
    do_peeling(loop, old_new);
  }

  // Now its tripping an even number of times remaining.  Double loop body.
  // Do not adjust pre-guards; they are not needed and do not exist.
  if (cl->trip_count() > 0) {
    assert((cl->trip_count() & 1) == 0, "missed peeling");
    do_unroll(loop, old_new, false);
  }
}

//------------------------------dominates_backedge---------------------------------
// Returns true if ctrl is executed on every complete iteration
bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  assert(ctrl->is_CFG(), "must be control");
  Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
}

//------------------------------adjust_limit-----------------------------------
// Helper function for add_constraint().
Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
  // Compute "I :: (limit-offset)/scale"
  Node *con = new (C) SubINode(rc_limit, offset);
  register_new_node(con, pre_ctrl);
  Node *X = new (C) DivINode(0, con, scale);
  register_new_node(X, pre_ctrl);

  // Adjust loop limit
  loop_limit = (stride_con > 0)
               ? (Node*)(new (C) MinINode(loop_limit, X))
               : (Node*)(new (C) MaxINode(loop_limit, X));
  register_new_node(loop_limit, pre_ctrl);
  return loop_limit;
}

//------------------------------add_constraint---------------------------------
// Constrain the main loop iterations so the conditions:
//    low_limit <= scale_con * I + offset  <  upper_limit
// always holds true.  That is, either increase the number of iterations in
// the pre-loop or the post-loop until the condition holds true in the main
// loop.  Stride, scale, offset and limit are all loop invariant.  Further,
// stride and scale are constants (offset and limit often are).
void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  // For positive stride, the pre-loop limit always uses a MAX function
  // and the main loop a MIN function.  For negative stride these are
  // reversed.

  // Also for positive stride*scale the affine function is increasing, so the
  // pre-loop must check for underflow and the post-loop for overflow.
  // Negative stride*scale reverses this; pre-loop checks for overflow and
  // post-loop for underflow.

  Node *scale = _igvn.intcon(scale_con);
  set_ctrl(scale, C->root());

  if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
    // The overflow limit: scale*I+offset < upper_limit
    // For main-loop compute
    //   ( if (scale > 0) /* and stride > 0 */
    //       I < (upper_limit-offset)/scale
    //     else /* scale < 0 and stride < 0 */
    //       I > (upper_limit-offset)/scale
    //   )
    //
    // (upper_limit-offset) may overflow or underflow.
    // But it is fine since main loop will either have
    // less iterations or will be skipped in such case.
    *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);

    // The underflow limit: low_limit <= scale*I+offset.
    // For pre-loop compute
    //   NOT(scale*I+offset >= low_limit)
    //   scale*I+offset < low_limit
    //   ( if (scale > 0) /* and stride > 0 */
    //       I < (low_limit-offset)/scale
    //     else /* scale < 0 and stride < 0 */
    //       I > (low_limit-offset)/scale
    //   )

    if (low_limit->get_int() == -max_jint) {
      if (!RangeLimitCheck) return;
      // We need this guard when scale*pre_limit+offset >= limit
      // due to underflow. So we need execute pre-loop until
      // scale*I+offset >= min_int. But (min_int-offset) will
      // underflow when offset > 0 and X will be > original_limit
      // when stride > 0. To avoid it we replace positive offset with 0.
      //
      // Also (min_int+1 == -max_int) is used instead of min_int here
      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
      Node* shift = _igvn.intcon(31);
      set_ctrl(shift, C->root());
      Node* sign = new (C) RShiftINode(offset, shift);
      register_new_node(sign, pre_ctrl);
      offset = new (C) AndINode(offset, sign);
      register_new_node(offset, pre_ctrl);
    } else {
      assert(low_limit->get_int() == 0, "wrong low limit for range check");
      // The only problem we have here when offset == min_int
      // since (0-min_int) == min_int. It may be fine for stride > 0
      // but for stride < 0 X will be < original_limit. To avoid it
      // max(pre_limit, original_limit) is used in do_range_check().
    }
    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
    *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);

  } else { // stride_con*scale_con < 0
    // For negative stride*scale pre-loop checks for overflow and
    // post-loop for underflow.
    //
    // The overflow limit: scale*I+offset < upper_limit
    // For pre-loop compute
    //   NOT(scale*I+offset < upper_limit)
    //   scale*I+offset >= upper_limit
    //   scale*I+offset+1 > upper_limit
    //   ( if (scale < 0) /* and stride > 0 */
    //       I < (upper_limit-(offset+1))/scale
    //     else /* scale > 0 and stride < 0 */
    //       I > (upper_limit-(offset+1))/scale
    //   )
    //
    // (upper_limit-offset-1) may underflow or overflow.
    // To avoid it min(pre_limit, original_limit) is used
    // in do_range_check() for stride > 0 and max() for < 0.
    Node *one  = _igvn.intcon(1);
    set_ctrl(one, C->root());

    Node *plus_one = new (C) AddINode(offset, one);
    register_new_node( plus_one, pre_ctrl );
    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
    *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);

    if (low_limit->get_int() == -max_jint) {
      if (!RangeLimitCheck) return;
      // We need this guard when scale*main_limit+offset >= limit
      // due to underflow. So we need execute main-loop while
      // scale*I+offset+1 > min_int. But (min_int-offset-1) will
      // underflow when (offset+1) > 0 and X will be < main_limit
      // when scale < 0 (and stride > 0). To avoid it we replace
      // positive (offset+1) with 0.
      //
      // Also (min_int+1 == -max_int) is used instead of min_int here
      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
      Node* shift = _igvn.intcon(31);
      set_ctrl(shift, C->root());
      Node* sign = new (C) RShiftINode(plus_one, shift);
      register_new_node(sign, pre_ctrl);
      plus_one = new (C) AndINode(plus_one, sign);
      register_new_node(plus_one, pre_ctrl);
    } else {
      assert(low_limit->get_int() == 0, "wrong low limit for range check");
      // The only problem we have here when offset == max_int
      // since (max_int+1) == min_int and (0-min_int) == min_int.
      // But it is fine since main loop will either have
      // less iterations or will be skipped in such case.
    }
    // The underflow limit: low_limit <= scale*I+offset.
    // For main-loop compute
    //   scale*I+offset+1 > low_limit
    //   ( if (scale < 0) /* and stride > 0 */
    //       I < (low_limit-(offset+1))/scale
    //     else /* scale > 0 and stride < 0 */
    //       I > (low_limit-(offset+1))/scale
    //   )

    *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
  }
}


//------------------------------is_scaled_iv---------------------------------
// Return true if exp is a constant times an induction var
bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  if (exp == iv) {
    if (p_scale != NULL) {
      *p_scale = 1;
    }
    return true;
  }
  int opc = exp->Opcode();
  if (opc == Op_MulI) {
    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
      if (p_scale != NULL) {
        *p_scale = exp->in(2)->get_int();
      }
      return true;
    }
    if (exp->in(2) == iv && exp->in(1)->is_Con()) {
      if (p_scale != NULL) {
        *p_scale = exp->in(1)->get_int();
      }
      return true;
    }
  } else if (opc == Op_LShiftI) {
    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
      if (p_scale != NULL) {
        *p_scale = 1 << exp->in(2)->get_int();
      }
      return true;
    }
  }
  return false;
}

//-----------------------------is_scaled_iv_plus_offset------------------------------
// Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  if (is_scaled_iv(exp, iv, p_scale)) {
    if (p_offset != NULL) {
      Node *zero = _igvn.intcon(0);
      set_ctrl(zero, C->root());
      *p_offset = zero;
    }
    return true;
  }
  int opc = exp->Opcode();
  if (opc == Op_AddI) {
    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
      if (p_offset != NULL) {
        *p_offset = exp->in(2);
      }
      return true;
    }
    if (exp->in(2)->is_Con()) {
      Node* offset2 = NULL;
      if (depth < 2 &&
          is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
                                   p_offset != NULL ? &offset2 : NULL, depth+1)) {
        if (p_offset != NULL) {
          Node *ctrl_off2 = get_ctrl(offset2);
          Node* offset = new (C) AddINode(offset2, exp->in(2));
          register_new_node(offset, ctrl_off2);
          *p_offset = offset;
        }
        return true;
      }
    }
  } else if (opc == Op_SubI) {
    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
      if (p_offset != NULL) {
        Node *zero = _igvn.intcon(0);
        set_ctrl(zero, C->root());
        Node *ctrl_off = get_ctrl(exp->in(2));
        Node* offset = new (C) SubINode(zero, exp->in(2));
        register_new_node(offset, ctrl_off);
        *p_offset = offset;
      }
      return true;
    }
    if (is_scaled_iv(exp->in(2), iv, p_scale)) {
      if (p_offset != NULL) {
        *p_scale *= -1;
        *p_offset = exp->in(1);
      }
      return true;
    }
  }
  return false;
}

//------------------------------do_range_check---------------------------------
// Eliminate range-checks and other trip-counter vs loop-invariant tests.
void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
#ifndef PRODUCT
  if (PrintOpto && VerifyLoopOptimizations) {
    tty->print("Range Check Elimination ");
    loop->dump_head();
  } else if (TraceLoopOpts) {
    tty->print("RangeCheck   ");
    loop->dump_head();
  }
#endif
  assert(RangeCheckElimination, "");
  CountedLoopNode *cl = loop->_head->as_CountedLoop();
  assert(cl->is_main_loop(), "");

  // protect against stride not being a constant
  if (!cl->stride_is_con())
    return;

  // Find the trip counter; we are iteration splitting based on it
  Node *trip_counter = cl->phi();
  // Find the main loop limit; we will trim it's iterations
  // to not ever trip end tests
  Node *main_limit = cl->limit();

  // Need to find the main-loop zero-trip guard
  Node *ctrl  = cl->in(LoopNode::EntryControl);
  assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  Node *iffm = ctrl->in(0);
  assert(iffm->Opcode() == Op_If, "");
  Node *bolzm = iffm->in(1);
  assert(bolzm->Opcode() == Op_Bool, "");
  Node *cmpzm = bolzm->in(1);
  assert(cmpzm->is_Cmp(), "");
  Node *opqzm = cmpzm->in(2);
  // Can not optimize a loop if zero-trip Opaque1 node is optimized
  // away and then another round of loop opts attempted.
  if (opqzm->Opcode() != Op_Opaque1)
    return;
  assert(opqzm->in(1) == main_limit, "do not understand situation");

  // Find the pre-loop limit; we will expand it's iterations to
  // not ever trip low tests.
  Node *p_f = iffm->in(0);
  assert(p_f->Opcode() == Op_IfFalse, "");
  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  assert(pre_end->loopnode()->is_pre_loop(), "");
  Node *pre_opaq1 = pre_end->limit();
  // Occasionally it's possible for a pre-loop Opaque1 node to be
  // optimized away and then another round of loop opts attempted.
  // We can not optimize this particular loop in that case.
  if (pre_opaq1->Opcode() != Op_Opaque1)
    return;
  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  Node *pre_limit = pre_opaq->in(1);

  // Where do we put new limit calculations
  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);

  // Ensure the original loop limit is available from the
  // pre-loop Opaque1 node.
  Node *orig_limit = pre_opaq->original_loop_limit();
  if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
    return;

  // Must know if its a count-up or count-down loop

  int stride_con = cl->stride_con();
  Node *zero = _igvn.intcon(0);
  Node *one  = _igvn.intcon(1);
  // Use symmetrical int range [-max_jint,max_jint]
  Node *mini = _igvn.intcon(-max_jint);
  set_ctrl(zero, C->root());
  set_ctrl(one,  C->root());
  set_ctrl(mini, C->root());

  // Range checks that do not dominate the loop backedge (ie.
  // conditionally executed) can lengthen the pre loop limit beyond
  // the original loop limit. To prevent this, the pre limit is
  // (for stride > 0) MINed with the original loop limit (MAXed
  // stride < 0) when some range_check (rc) is conditionally
  // executed.
  bool conditional_rc = false;

  // Check loop body for tests of trip-counter plus loop-invariant vs
  // loop-invariant.
  for( uint i = 0; i < loop->_body.size(); i++ ) {
    Node *iff = loop->_body[i];
    if( iff->Opcode() == Op_If ) { // Test?

      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
      // we need loop unswitching instead of iteration splitting.
      Node *exit = loop->is_loop_exit(iff);
      if( !exit ) continue;
      int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;

      // Get boolean condition to test
      Node *i1 = iff->in(1);
      if( !i1->is_Bool() ) continue;
      BoolNode *bol = i1->as_Bool();
      BoolTest b_test = bol->_test;
      // Flip sense of test if exit condition is flipped
      if( flip )
        b_test = b_test.negate();

      // Get compare
      Node *cmp = bol->in(1);

      // Look for trip_counter + offset vs limit
      Node *rc_exp = cmp->in(1);
      Node *limit  = cmp->in(2);
      jint scale_con= 1;        // Assume trip counter not scaled

      Node *limit_c = get_ctrl(limit);
      if( loop->is_member(get_loop(limit_c) ) ) {
        // Compare might have operands swapped; commute them
        b_test = b_test.commute();
        rc_exp = cmp->in(2);
        limit  = cmp->in(1);
        limit_c = get_ctrl(limit);
        if( loop->is_member(get_loop(limit_c) ) )
          continue;             // Both inputs are loop varying; cannot RCE
      }
      // Here we know 'limit' is loop invariant

      // 'limit' maybe pinned below the zero trip test (probably from a
      // previous round of rce), in which case, it can't be used in the
      // zero trip test expression which must occur before the zero test's if.
      if( limit_c == ctrl ) {
        continue;  // Don't rce this check but continue looking for other candidates.
      }

      // Check for scaled induction variable plus an offset
      Node *offset = NULL;

      if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
        continue;
      }

      Node *offset_c = get_ctrl(offset);
      if( loop->is_member( get_loop(offset_c) ) )
        continue;               // Offset is not really loop invariant
      // Here we know 'offset' is loop invariant.

      // As above for the 'limit', the 'offset' maybe pinned below the
      // zero trip test.
      if( offset_c == ctrl ) {
        continue; // Don't rce this check but continue looking for other candidates.
      }
#ifdef ASSERT
      if (TraceRangeLimitCheck) {
        tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
        bol->dump(2);
      }
#endif
      // At this point we have the expression as:
      //   scale_con * trip_counter + offset :: limit
      // where scale_con, offset and limit are loop invariant.  Trip_counter
      // monotonically increases by stride_con, a constant.  Both (or either)
      // stride_con and scale_con can be negative which will flip about the
      // sense of the test.

      // Adjust pre and main loop limits to guard the correct iteration set
      if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
        if( b_test._test == BoolTest::lt ) { // Range checks always use lt
          // The underflow and overflow limits: 0 <= scale*I+offset < limit
          add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
          if (!conditional_rc) {
            // (0-offset)/scale could be outside of loop iterations range.
            conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
          }
        } else {
#ifndef PRODUCT
          if( PrintOpto )
            tty->print_cr("missed RCE opportunity");
#endif
          continue;             // In release mode, ignore it
        }
      } else {                  // Otherwise work on normal compares
        switch( b_test._test ) {
        case BoolTest::gt:
          // Fall into GE case
        case BoolTest::ge:
          // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
          scale_con = -scale_con;
          offset = new (C) SubINode( zero, offset );
          register_new_node( offset, pre_ctrl );
          limit  = new (C) SubINode( zero, limit  );
          register_new_node( limit, pre_ctrl );
          // Fall into LE case
        case BoolTest::le:
          if (b_test._test != BoolTest::gt) {
            // Convert X <= Y to X < Y+1
            limit = new (C) AddINode( limit, one );
            register_new_node( limit, pre_ctrl );
          }
          // Fall into LT case
        case BoolTest::lt:
          // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
          // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
          // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
          add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
          if (!conditional_rc) {
            // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
            // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
            // still be outside of loop range.
            conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
          }
          break;
        default:
#ifndef PRODUCT
          if( PrintOpto )
            tty->print_cr("missed RCE opportunity");
#endif
          continue;             // Unhandled case
        }
      }

      // Kill the eliminated test
      C->set_major_progress();
      Node *kill_con = _igvn.intcon( 1-flip );
      set_ctrl(kill_con, C->root());
      _igvn.replace_input_of(iff, 1, kill_con);
      // Find surviving projection
      assert(iff->is_If(), "");
      ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
      // Find loads off the surviving projection; remove their control edge
      for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
        Node* cd = dp->fast_out(i); // Control-dependent node
        if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
          // Allow the load to float around in the loop, or before it
          // but NOT before the pre-loop.
          _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
          --i;
          --imax;
        }
      }

    } // End of is IF

  }

  // Update loop limits
  if (conditional_rc) {
    pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
                                 : (Node*)new (C) MaxINode(pre_limit, orig_limit);
    register_new_node(pre_limit, pre_ctrl);
  }
  _igvn.hash_delete(pre_opaq);
  pre_opaq->set_req(1, pre_limit);

  // Note:: we are making the main loop limit no longer precise;
  // need to round up based on stride.
  cl->set_nonexact_trip_count();
  if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
    // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
    // Hopefully, compiler will optimize for powers of 2.
    Node *ctrl = get_ctrl(main_limit);
    Node *stride = cl->stride();
    Node *init = cl->init_trip();
    Node *span = new (C) SubINode(main_limit,init);
    register_new_node(span,ctrl);
    Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
    Node *add = new (C) AddINode(span,rndup);
    register_new_node(add,ctrl);
    Node *div = new (C) DivINode(0,add,stride);
    register_new_node(div,ctrl);
    Node *mul = new (C) MulINode(div,stride);
    register_new_node(mul,ctrl);
    Node *newlim = new (C) AddINode(mul,init);
    register_new_node(newlim,ctrl);
    main_limit = newlim;
  }

  Node *main_cle = cl->loopexit();
  Node *main_bol = main_cle->in(1);
  // Hacking loop bounds; need private copies of exit test
  if( main_bol->outcnt() > 1 ) {// BoolNode shared?
    _igvn.hash_delete(main_cle);
    main_bol = main_bol->clone();// Clone a private BoolNode
    register_new_node( main_bol, main_cle->in(0) );
    main_cle->set_req(1,main_bol);
  }
  Node *main_cmp = main_bol->in(1);
  if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
    _igvn.hash_delete(main_bol);
    main_cmp = main_cmp->clone();// Clone a private CmpNode
    register_new_node( main_cmp, main_cle->in(0) );
    main_bol->set_req(1,main_cmp);
  }
  // Hack the now-private loop bounds
  _igvn.replace_input_of(main_cmp, 2, main_limit);
  // The OpaqueNode is unshared by design
  assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  _igvn.replace_input_of(opqzm, 1, main_limit);
}

//------------------------------DCE_loop_body----------------------------------
// Remove simplistic dead code from loop body
void IdealLoopTree::DCE_loop_body() {
  for( uint i = 0; i < _body.size(); i++ )
    if( _body.at(i)->outcnt() == 0 )
      _body.map( i--, _body.pop() );
}


//------------------------------adjust_loop_exit_prob--------------------------
// Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
// Replace with a 1-in-10 exit guess.
void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  Node *test = tail();
  while( test != _head ) {
    uint top = test->Opcode();
    if( top == Op_IfTrue || top == Op_IfFalse ) {
      int test_con = ((ProjNode*)test)->_con;
      assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
      IfNode *iff = test->in(0)->as_If();
      if( iff->outcnt() == 2 ) {        // Ignore dead tests
        Node *bol = iff->in(1);
        if( bol && bol->req() > 1 && bol->in(1) &&
            ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
             (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
             (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
             (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
             (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
             (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
             (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
          return;               // Allocation loops RARELY take backedge
        // Find the OTHER exit path from the IF
        Node* ex = iff->proj_out(1-test_con);
        float p = iff->_prob;
        if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
          if( top == Op_IfTrue ) {
            if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
              iff->_prob = PROB_STATIC_FREQUENT;
            }
          } else {
            if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
              iff->_prob = PROB_STATIC_INFREQUENT;
            }
          }
        }
      }
    }
    test = phase->idom(test);
  }
}


//------------------------------policy_do_remove_empty_loop--------------------
// Micro-benchmark spamming.  Policy is to always remove empty loops.
// The 'DO' part is to replace the trip counter with the value it will
// have on the last iteration.  This will break the loop.
bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  // Minimum size must be empty loop
  if (_body.size() > EMPTY_LOOP_SIZE)
    return false;

  if (!_head->is_CountedLoop())
    return false;     // Dead loop
  CountedLoopNode *cl = _head->as_CountedLoop();
  if (!cl->is_valid_counted_loop())
    return false; // Malformed loop
  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    return false;             // Infinite loop

#ifdef ASSERT
  // Ensure only one phi which is the iv.
  Node* iv = NULL;
  for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
    Node* n = cl->fast_out(i);
    if (n->Opcode() == Op_Phi) {
      assert(iv == NULL, "Too many phis" );
      iv = n;
    }
  }
  assert(iv == cl->phi(), "Wrong phi" );
#endif

  // main and post loops have explicitly created zero trip guard
  bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  if (needs_guard) {
    // Skip guard if values not overlap.
    const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
    const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
    int  stride_con = cl->stride_con();
    if (stride_con > 0) {
      needs_guard = (init_t->_hi >= limit_t->_lo);
    } else {
      needs_guard = (init_t->_lo <= limit_t->_hi);
    }
  }
  if (needs_guard) {
    // Check for an obvious zero trip guard.
    Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
    if (inctrl->Opcode() == Op_IfTrue) {
      // The test should look like just the backedge of a CountedLoop
      Node* iff = inctrl->in(0);
      if (iff->is_If()) {
        Node* bol = iff->in(1);
        if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
          Node* cmp = bol->in(1);
          if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
            needs_guard = false;
          }
        }
      }
    }
  }

#ifndef PRODUCT
  if (PrintOpto) {
    tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
    this->dump_head();
  } else if (TraceLoopOpts) {
    tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
    this->dump_head();
  }
#endif

  if (needs_guard) {
    // Peel the loop to ensure there's a zero trip guard
    Node_List old_new;
    phase->do_peeling(this, old_new);
  }

  // Replace the phi at loop head with the final value of the last
  // iteration.  Then the CountedLoopEnd will collapse (backedge never
  // taken) and all loop-invariant uses of the exit values will be correct.
  Node *phi = cl->phi();
  Node *exact_limit = phase->exact_limit(this);
  if (exact_limit != cl->limit()) {
    // We also need to replace the original limit to collapse loop exit.
    Node* cmp = cl->loopexit()->cmp_node();
    assert(cl->limit() == cmp->in(2), "sanity");
    phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
    phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
  }
  // Note: the final value after increment should not overflow since
  // counted loop has limit check predicate.
  Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
  phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  phase->_igvn.replace_node(phi,final);
  phase->C->set_major_progress();
  return true;
}

//------------------------------policy_do_one_iteration_loop-------------------
// Convert one iteration loop into normal code.
bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  if (!_head->as_Loop()->is_valid_counted_loop())
    return false; // Only for counted loop

  CountedLoopNode *cl = _head->as_CountedLoop();
  if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
    return false;
  }

#ifndef PRODUCT
  if(TraceLoopOpts) {
    tty->print("OneIteration ");
    this->dump_head();
  }
#endif

  Node *init_n = cl->init_trip();
#ifdef ASSERT
  // Loop boundaries should be constant since trip count is exact.
  assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
#endif
  // Replace the phi at loop head with the value of the init_trip.
  // Then the CountedLoopEnd will collapse (backedge will not be taken)
  // and all loop-invariant uses of the exit values will be correct.
  phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  phase->C->set_major_progress();
  return true;
}

//=============================================================================
//------------------------------iteration_split_impl---------------------------
bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  // Compute exact loop trip count if possible.
  compute_exact_trip_count(phase);

  // Convert one iteration loop into normal code.
  if (policy_do_one_iteration_loop(phase))
    return true;

  // Check and remove empty loops (spam micro-benchmarks)
  if (policy_do_remove_empty_loop(phase))
    return true;  // Here we removed an empty loop

  bool should_peel = policy_peeling(phase); // Should we peel?

  bool should_unswitch = policy_unswitching(phase);

  // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  // This removes loop-invariant tests (usually null checks).
  if (!_head->is_CountedLoop()) { // Non-counted loop
    if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
      // Partial peel succeeded so terminate this round of loop opts
      return false;
    }
    if (should_peel) {            // Should we peel?
#ifndef PRODUCT
      if (PrintOpto) tty->print_cr("should_peel");
#endif
      phase->do_peeling(this,old_new);
    } else if (should_unswitch) {
      phase->do_unswitching(this, old_new);
    }
    return true;
  }
  CountedLoopNode *cl = _head->as_CountedLoop();

  if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops

  // Do nothing special to pre- and post- loops
  if (cl->is_pre_loop() || cl->is_post_loop()) return true;

  // Compute loop trip count from profile data
  compute_profile_trip_cnt(phase);

  // Before attempting fancy unrolling, RCE or alignment, see if we want
  // to completely unroll this loop or do loop unswitching.
  if (cl->is_normal_loop()) {
    if (should_unswitch) {
      phase->do_unswitching(this, old_new);
      return true;
    }
    bool should_maximally_unroll =  policy_maximally_unroll(phase);
    if (should_maximally_unroll) {
      // Here we did some unrolling and peeling.  Eventually we will
      // completely unroll this loop and it will no longer be a loop.
      phase->do_maximally_unroll(this,old_new);
      return true;
    }
  }

  // Skip next optimizations if running low on nodes. Note that
  // policy_unswitching and policy_maximally_unroll have this check.
  uint nodes_left = MaxNodeLimit - (uint) phase->C->live_nodes();
  if ((2 * _body.size()) > nodes_left) {
    return true;
  }

  // Counted loops may be peeled, may need some iterations run up
  // front for RCE, and may want to align loop refs to a cache
  // line.  Thus we clone a full loop up front whose trip count is
  // at least 1 (if peeling), but may be several more.

  // The main loop will start cache-line aligned with at least 1
  // iteration of the unrolled body (zero-trip test required) and
  // will have some range checks removed.

  // A post-loop will finish any odd iterations (leftover after
  // unrolling), plus any needed for RCE purposes.

  bool should_unroll = policy_unroll(phase);

  bool should_rce = policy_range_check(phase);

  bool should_align = policy_align(phase);

  // If not RCE'ing (iteration splitting) or Aligning, then we do not
  // need a pre-loop.  We may still need to peel an initial iteration but
  // we will not be needing an unknown number of pre-iterations.
  //
  // Basically, if may_rce_align reports FALSE first time through,
  // we will not be able to later do RCE or Aligning on this loop.
  bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;

  // If we have any of these conditions (RCE, alignment, unrolling) met, then
  // we switch to the pre-/main-/post-loop model.  This model also covers
  // peeling.
  if (should_rce || should_align || should_unroll) {
    if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
      phase->insert_pre_post_loops(this,old_new, !may_rce_align);

    // Adjust the pre- and main-loop limits to let the pre and post loops run
    // with full checks, but the main-loop with no checks.  Remove said
    // checks from the main body.
    if (should_rce)
      phase->do_range_check(this,old_new);

    // Double loop body for unrolling.  Adjust the minimum-trip test (will do
    // twice as many iterations as before) and the main body limit (only do
    // an even number of trips).  If we are peeling, we might enable some RCE
    // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
    // peeling.
    if (should_unroll && !should_peel)
      phase->do_unroll(this,old_new, true);

    // Adjust the pre-loop limits to align the main body
    // iterations.
    if (should_align)
      Unimplemented();

  } else {                      // Else we have an unchanged counted loop
    if (should_peel)           // Might want to peel but do nothing else
      phase->do_peeling(this,old_new);
  }
  return true;
}


//=============================================================================
//------------------------------iteration_split--------------------------------
bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  // Recursively iteration split nested loops
  if (_child && !_child->iteration_split(phase, old_new))
    return false;

  // Clean out prior deadwood
  DCE_loop_body();


  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  // Replace with a 1-in-10 exit guess.
  if (_parent /*not the root loop*/ &&
      !_irreducible &&
      // Also ignore the occasional dead backedge
      !tail()->is_top()) {
    adjust_loop_exit_prob(phase);
  }

  // Gate unrolling, RCE and peeling efforts.
  if (!_child &&                // If not an inner loop, do not split
      !_irreducible &&
      _allow_optimizations &&
      !tail()->is_top()) {     // Also ignore the occasional dead backedge
    if (!_has_call) {
        if (!iteration_split_impl(phase, old_new)) {
          return false;
        }
    } else if (policy_unswitching(phase)) {
      phase->do_unswitching(this, old_new);
    }
  }

  // Minor offset re-organization to remove loop-fallout uses of
  // trip counter when there was no major reshaping.
  phase->reorg_offsets(this);

  if (_next && !_next->iteration_split(phase, old_new))
    return false;
  return true;
}


//=============================================================================
// Process all the loops in the loop tree and replace any fill
// patterns with an intrisc version.
bool PhaseIdealLoop::do_intrinsify_fill() {
  bool changed = false;
  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
    IdealLoopTree* lpt = iter.current();
    changed |= intrinsify_fill(lpt);
  }
  return changed;
}


// Examine an inner loop looking for a a single store of an invariant
// value in a unit stride loop,
bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
                                     Node*& shift, Node*& con) {
  const char* msg = NULL;
  Node* msg_node = NULL;

  store_value = NULL;
  con = NULL;
  shift = NULL;

  // Process the loop looking for stores.  If there are multiple
  // stores or extra control flow give at this point.
  CountedLoopNode* head = lpt->_head->as_CountedLoop();
  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
    Node* n = lpt->_body.at(i);
    if (n->outcnt() == 0) continue; // Ignore dead
    if (n->is_Store()) {
      if (store != NULL) {
        msg = "multiple stores";
        break;
      }
      int opc = n->Opcode();
      if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
        msg = "oop fills not handled";
        break;
      }
      Node* value = n->in(MemNode::ValueIn);
      if (!lpt->is_invariant(value)) {
        msg  = "variant store value";
      } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
        msg = "not array address";
      }
      store = n;
      store_value = value;
    } else if (n->is_If() && n != head->loopexit()) {
      msg = "extra control flow";
      msg_node = n;
    }
  }

  if (store == NULL) {
    // No store in loop
    return false;
  }

  if (msg == NULL && head->stride_con() != 1) {
    // could handle negative strides too
    if (head->stride_con() < 0) {
      msg = "negative stride";
    } else {
      msg = "non-unit stride";
    }
  }

  if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
    msg = "can't handle store address";
    msg_node = store->in(MemNode::Address);
  }

  if (msg == NULL &&
      (!store->in(MemNode::Memory)->is_Phi() ||
       store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
    msg = "store memory isn't proper phi";
    msg_node = store->in(MemNode::Memory);
  }

  // Make sure there is an appropriate fill routine
  BasicType t = store->as_Mem()->memory_type();
  const char* fill_name;
  if (msg == NULL &&
      StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
    msg = "unsupported store";
    msg_node = store;
  }

  if (msg != NULL) {
#ifndef PRODUCT
    if (TraceOptimizeFill) {
      tty->print_cr("not fill intrinsic candidate: %s", msg);
      if (msg_node != NULL) msg_node->dump();
    }
#endif
    return false;
  }

  // Make sure the address expression can be handled.  It should be
  // head->phi * elsize + con.  head->phi might have a ConvI2L.
  Node* elements[4];
  Node* conv = NULL;
  bool found_index = false;
  int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  for (int e = 0; e < count; e++) {
    Node* n = elements[e];
    if (n->is_Con() && con == NULL) {
      con = n;
    } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
      Node* value = n->in(1);
#ifdef _LP64
      if (value->Opcode() == Op_ConvI2L) {
        conv = value;
        value = value->in(1);
      }
#endif
      if (value != head->phi()) {
        msg = "unhandled shift in address";
      } else {
        if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
          msg = "scale doesn't match";
        } else {
          found_index = true;
          shift = n;
        }
      }
    } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
      if (n->in(1) == head->phi()) {
        found_index = true;
        conv = n;
      } else {
        msg = "unhandled input to ConvI2L";
      }
    } else if (n == head->phi()) {
      // no shift, check below for allowed cases
      found_index = true;
    } else {
      msg = "unhandled node in address";
      msg_node = n;
    }
  }

  if (count == -1) {
    msg = "malformed address expression";
    msg_node = store;
  }

  if (!found_index) {
    msg = "missing use of index";
  }

  // byte sized items won't have a shift
  if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
    msg = "can't find shift";
    msg_node = store;
  }

  if (msg != NULL) {
#ifndef PRODUCT
    if (TraceOptimizeFill) {
      tty->print_cr("not fill intrinsic: %s", msg);
      if (msg_node != NULL) msg_node->dump();
    }
#endif
    return false;
  }

  // No make sure all the other nodes in the loop can be handled
  VectorSet ok(Thread::current()->resource_area());

  // store related values are ok
  ok.set(store->_idx);
  ok.set(store->in(MemNode::Memory)->_idx);

  CountedLoopEndNode* loop_exit = head->loopexit();
  guarantee(loop_exit != NULL, "no loop exit node");

  // Loop structure is ok
  ok.set(head->_idx);
  ok.set(loop_exit->_idx);
  ok.set(head->phi()->_idx);
  ok.set(head->incr()->_idx);
  ok.set(loop_exit->cmp_node()->_idx);
  ok.set(loop_exit->in(1)->_idx);

  // Address elements are ok
  if (con)   ok.set(con->_idx);
  if (shift) ok.set(shift->_idx);
  if (conv)  ok.set(conv->_idx);

  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
    Node* n = lpt->_body.at(i);
    if (n->outcnt() == 0) continue; // Ignore dead
    if (ok.test(n->_idx)) continue;
    // Backedge projection is ok
    if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
    if (!n->is_AddP()) {
      msg = "unhandled node";
      msg_node = n;
      break;
    }
  }

  // Make sure no unexpected values are used outside the loop
  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
    Node* n = lpt->_body.at(i);
    // These values can be replaced with other nodes if they are used
    // outside the loop.
    if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
    for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
      Node* use = iter.get();
      if (!lpt->_body.contains(use)) {
        msg = "node is used outside loop";
        // lpt->_body.dump();
        msg_node = n;
        break;
      }
    }
  }

#ifdef ASSERT
  if (TraceOptimizeFill) {
    if (msg != NULL) {
      tty->print_cr("no fill intrinsic: %s", msg);
      if (msg_node != NULL) msg_node->dump();
    } else {
      tty->print_cr("fill intrinsic for:");
    }
    store->dump();
    if (Verbose) {
      lpt->_body.dump();
    }
  }
#endif

  return msg == NULL;
}



bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  // Only for counted inner loops
  if (!lpt->is_counted() || !lpt->is_inner()) {
    return false;
  }

  // Must have constant stride
  CountedLoopNode* head = lpt->_head->as_CountedLoop();
  if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
    return false;
  }

  // Check that the body only contains a store of a loop invariant
  // value that is indexed by the loop phi.
  Node* store = NULL;
  Node* store_value = NULL;
  Node* shift = NULL;
  Node* offset = NULL;
  if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
    return false;
  }

#ifndef PRODUCT
  if (TraceLoopOpts) {
    tty->print("ArrayFill    ");
    lpt->dump_head();
  }
#endif

  // Now replace the whole loop body by a call to a fill routine that
  // covers the same region as the loop.
  Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);

  // Build an expression for the beginning of the copy region
  Node* index = head->init_trip();
#ifdef _LP64
  index = new (C) ConvI2LNode(index);
  _igvn.register_new_node_with_optimizer(index);
#endif
  if (shift != NULL) {
    // byte arrays don't require a shift but others do.
    index = new (C) LShiftXNode(index, shift->in(2));
    _igvn.register_new_node_with_optimizer(index);
  }
  index = new (C) AddPNode(base, base, index);
  _igvn.register_new_node_with_optimizer(index);
  Node* from = new (C) AddPNode(base, index, offset);
  _igvn.register_new_node_with_optimizer(from);
  // Compute the number of elements to copy
  Node* len = new (C) SubINode(head->limit(), head->init_trip());
  _igvn.register_new_node_with_optimizer(len);

  BasicType t = store->as_Mem()->memory_type();
  bool aligned = false;
  if (offset != NULL && head->init_trip()->is_Con()) {
    int element_size = type2aelembytes(t);
    aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  }

  // Build a call to the fill routine
  const char* fill_name;
  address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  assert(fill != NULL, "what?");

  // Convert float/double to int/long for fill routines
  if (t == T_FLOAT) {
    store_value = new (C) MoveF2INode(store_value);
    _igvn.register_new_node_with_optimizer(store_value);
  } else if (t == T_DOUBLE) {
    store_value = new (C) MoveD2LNode(store_value);
    _igvn.register_new_node_with_optimizer(store_value);
  }

  Node* mem_phi = store->in(MemNode::Memory);
  Node* result_ctrl;
  Node* result_mem;
  const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
                                                fill_name, TypeAryPtr::get_array_body_type(t));
  call->init_req(TypeFunc::Parms+0, from);
  call->init_req(TypeFunc::Parms+1, store_value);
#ifdef _LP64
  len = new (C) ConvI2LNode(len);
  _igvn.register_new_node_with_optimizer(len);
#endif
  call->init_req(TypeFunc::Parms+2, len);
#ifdef _LP64
  call->init_req(TypeFunc::Parms+3, C->top());
#endif
  call->init_req( TypeFunc::Control, head->init_control());
  call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  _igvn.register_new_node_with_optimizer(call);
  result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  _igvn.register_new_node_with_optimizer(result_ctrl);
  result_mem = new (C) ProjNode(call,TypeFunc::Memory);
  _igvn.register_new_node_with_optimizer(result_mem);

/* Disable following optimization until proper fix (add missing checks).

  // If this fill is tightly coupled to an allocation and overwrites
  // the whole body, allow it to take over the zeroing.
  AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  if (alloc != NULL && alloc->is_AllocateArray()) {
    Node* length = alloc->as_AllocateArray()->Ideal_length();
    if (head->limit() == length &&
        head->init_trip() == _igvn.intcon(0)) {
      if (TraceOptimizeFill) {
        tty->print_cr("Eliminated zeroing in allocation");
      }
      alloc->maybe_set_complete(&_igvn);
    } else {
#ifdef ASSERT
      if (TraceOptimizeFill) {
        tty->print_cr("filling array but bounds don't match");
        alloc->dump();
        head->init_trip()->dump();
        head->limit()->dump();
        length->dump();
      }
#endif
    }
  }
*/

  // Redirect the old control and memory edges that are outside the loop.
  Node* exit = head->loopexit()->proj_out(0);
  // Sometimes the memory phi of the head is used as the outgoing
  // state of the loop.  It's safe in this case to replace it with the
  // result_mem.
  _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  _igvn.replace_node(exit, result_ctrl);
  _igvn.replace_node(store, result_mem);
  // Any uses the increment outside of the loop become the loop limit.
  _igvn.replace_node(head->incr(), head->limit());

  // Disconnect the head from the loop.
  for (uint i = 0; i < lpt->_body.size(); i++) {
    Node* n = lpt->_body.at(i);
    _igvn.replace_node(n, C->top());
  }

  return true;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java loopTransform.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.