alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (machnode.hpp)

This example Java source code file (machnode.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

jvmstate, machbranchnode, machidealnode, machnode, machoper, name, node, null, phaseregalloc, product, regmask, size, type, typeptr

The machnode.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OPTO_MACHNODE_HPP
#define SHARE_VM_OPTO_MACHNODE_HPP

#include "opto/callnode.hpp"
#include "opto/matcher.hpp"
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/regmask.hpp"

class BufferBlob;
class CodeBuffer;
class JVMState;
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
class MachEpilogNode;
class MachIfNode;
class MachNullCheckNode;
class MachOper;
class MachProjNode;
class MachPrologNode;
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class Matcher;
class PhaseRegAlloc;
class RegMask;
class State;

//---------------------------MachOper------------------------------------------
class MachOper : public ResourceObj {
public:
  // Allocate right next to the MachNodes in the same arena
  void *operator new( size_t x, Compile* C ) throw() { return C->node_arena()->Amalloc_D(x); }

  // Opcode
  virtual uint opcode() const = 0;

  // Number of input edges.
  // Generally at least 1
  virtual uint num_edges() const { return 1; }
  // Array of Register masks
  virtual const RegMask *in_RegMask(int index) const;

  // Methods to output the encoding of the operand

  // Negate conditional branches.  Error for non-branch Nodes
  virtual void negate();

  // Return the value requested
  // result register lookup, corresponding to int_format
  virtual int  reg(PhaseRegAlloc *ra_, const Node *node)   const;
  // input register lookup, corresponding to ext_format
  virtual int  reg(PhaseRegAlloc *ra_, const Node *node, int idx)   const;

  // helpers for MacroAssembler generation from ADLC
  Register  as_Register(PhaseRegAlloc *ra_, const Node *node)   const {
    return ::as_Register(reg(ra_, node));
  }
  Register  as_Register(PhaseRegAlloc *ra_, const Node *node, int idx)   const {
    return ::as_Register(reg(ra_, node, idx));
  }
  FloatRegister  as_FloatRegister(PhaseRegAlloc *ra_, const Node *node)   const {
    return ::as_FloatRegister(reg(ra_, node));
  }
  FloatRegister  as_FloatRegister(PhaseRegAlloc *ra_, const Node *node, int idx)   const {
    return ::as_FloatRegister(reg(ra_, node, idx));
  }

#if defined(IA32) || defined(AMD64)
  XMMRegister  as_XMMRegister(PhaseRegAlloc *ra_, const Node *node)   const {
    return ::as_XMMRegister(reg(ra_, node));
  }
  XMMRegister  as_XMMRegister(PhaseRegAlloc *ra_, const Node *node, int idx)   const {
    return ::as_XMMRegister(reg(ra_, node, idx));
  }
#endif

  virtual intptr_t  constant() const;
  virtual relocInfo::relocType constant_reloc() const;
  virtual jdouble constantD() const;
  virtual jfloat  constantF() const;
  virtual jlong   constantL() const;
  virtual TypeOopPtr *oop() const;
  virtual int  ccode() const;
  // A zero, default, indicates this value is not needed.
  // May need to lookup the base register, as done in int_ and ext_format
  virtual int  base (PhaseRegAlloc *ra_, const Node *node, int idx) const;
  virtual int  index(PhaseRegAlloc *ra_, const Node *node, int idx) const;
  virtual int  scale() const;
  // Parameters needed to support MEMORY_INTERFACE access to stackSlot
  virtual int  disp (PhaseRegAlloc *ra_, const Node *node, int idx) const;
  // Check for PC-Relative displacement
  virtual relocInfo::relocType disp_reloc() const;
  virtual int  constant_disp() const;   // usu. 0, may return Type::OffsetBot
  virtual int  base_position()  const;  // base edge position, or -1
  virtual int  index_position() const;  // index edge position, or -1

  // Access the TypeKlassPtr of operands with a base==RegI and disp==RegP
  // Only returns non-null value for i486.ad's indOffset32X
  virtual const TypePtr *disp_as_type() const { return NULL; }

  // Return the label
  virtual Label *label() const;

  // Return the method's address
  virtual intptr_t  method() const;

  // Hash and compare over operands are currently identical
  virtual uint  hash() const;
  virtual uint  cmp( const MachOper &oper ) const;

  // Virtual clone, since I do not know how big the MachOper is.
  virtual MachOper *clone(Compile* C) const = 0;

  // Return ideal Type from simple operands.  Fail for complex operands.
  virtual const Type *type() const;

  // Set an integer offset if we have one, or error otherwise
  virtual void set_con( jint c0 ) { ShouldNotReachHere();  }

#ifndef PRODUCT
  // Return name of operand
  virtual const char    *Name() const { return "???";}

  // Methods to output the text version of the operand
  virtual void int_format(PhaseRegAlloc *,const MachNode *node, outputStream *st) const = 0;
  virtual void ext_format(PhaseRegAlloc *,const MachNode *node,int idx, outputStream *st) const=0;

  virtual void dump_spec(outputStream *st) const; // Print per-operand info
#endif
};

//------------------------------MachNode---------------------------------------
// Base type for all machine specific nodes.  All node classes generated by the
// ADLC inherit from this class.
class MachNode : public Node {
public:
  MachNode() : Node((uint)0), _num_opnds(0), _opnds(NULL) {
    init_class_id(Class_Mach);
  }
  // Required boilerplate
  virtual uint size_of() const { return sizeof(MachNode); }
  virtual int  Opcode() const;          // Always equal to MachNode
  virtual uint rule() const = 0;        // Machine-specific opcode
  // Number of inputs which come before the first operand.
  // Generally at least 1, to skip the Control input
  virtual uint oper_input_base() const { return 1; }

  // Copy inputs and operands to new node of instruction.
  // Called from cisc_version() and short_branch_version().
  // !!!! The method's body is defined in ad_<arch>.cpp file.
  void fill_new_machnode(MachNode *n, Compile* C) const;

  // Return an equivalent instruction using memory for cisc_operand position
  virtual MachNode *cisc_version(int offset, Compile* C);
  // Modify this instruction's register mask to use stack version for cisc_operand
  virtual void use_cisc_RegMask();

  // Support for short branches
  bool may_be_short_branch() const { return (flags() & Flag_may_be_short_branch) != 0; }

  // Avoid back to back some instructions on some CPUs.
  bool avoid_back_to_back() const { return (flags() & Flag_avoid_back_to_back) != 0; }

  // instruction implemented with a call
  bool has_call() const { return (flags() & Flag_has_call) != 0; }

  // First index in _in[] corresponding to operand, or -1 if there is none
  int  operand_index(uint operand) const;

  // Register class input is expected in
  virtual const RegMask &in_RegMask(uint) const;

  // cisc-spillable instructions redefine for use by in_RegMask
  virtual const RegMask *cisc_RegMask() const { return NULL; }

  // If this instruction is a 2-address instruction, then return the
  // index of the input which must match the output.  Not nessecary
  // for instructions which bind the input and output register to the
  // same singleton regiser (e.g., Intel IDIV which binds AX to be
  // both an input and an output).  It is nessecary when the input and
  // output have choices - but they must use the same choice.
  virtual uint two_adr( ) const { return 0; }

  // Array of complex operand pointers.  Each corresponds to zero or
  // more leafs.  Must be set by MachNode constructor to point to an
  // internal array of MachOpers.  The MachOper array is sized by
  // specific MachNodes described in the ADL.
  uint _num_opnds;
  MachOper **_opnds;
  uint  num_opnds() const { return _num_opnds; }

  // Emit bytes into cbuf
  virtual void  emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  // Size of instruction in bytes
  virtual uint  size(PhaseRegAlloc *ra_) const;
  // Helper function that computes size by emitting code
  virtual uint  emit_size(PhaseRegAlloc *ra_) const;

  // Return the alignment required (in units of relocInfo::addr_unit())
  // for this instruction (must be a power of 2)
  virtual int   alignment_required() const { return 1; }

  // Return the padding (in bytes) to be emitted before this
  // instruction to properly align it.
  virtual int   compute_padding(int current_offset) const { return 0; }

  // Return number of relocatable values contained in this instruction
  virtual int   reloc() const { return 0; }

  // Hash and compare over operands.  Used to do GVN on machine Nodes.
  virtual uint  hash() const;
  virtual uint  cmp( const Node &n ) const;

  // Expand method for MachNode, replaces nodes representing pseudo
  // instructions with a set of nodes which represent real machine
  // instructions and compute the same value.
  virtual MachNode *Expand( State *, Node_List &proj_list, Node* mem ) { return this; }

  // Bottom_type call; value comes from operand0
  virtual const class Type *bottom_type() const { return _opnds[0]->type(); }
  virtual uint ideal_reg() const { const Type *t = _opnds[0]->type(); return t == TypeInt::CC ? Op_RegFlags : t->ideal_reg(); }

  // If this is a memory op, return the base pointer and fixed offset.
  // If there are no such, return NULL.  If there are multiple addresses
  // or the address is indeterminate (rare cases) then return (Node*)-1,
  // which serves as node bottom.
  // If the offset is not statically determined, set it to Type::OffsetBot.
  // This method is free to ignore stack slots if that helps.
  #define TYPE_PTR_SENTINAL  ((const TypePtr*)-1)
  // Passing TYPE_PTR_SENTINAL as adr_type asks for computation of the adr_type if possible
  const Node* get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const;

  // Helper for get_base_and_disp: find the base and index input nodes.
  // Returns the MachOper as determined by memory_operand(), for use, if
  // needed by the caller. If (MachOper *)-1 is returned, base and index
  // are set to NodeSentinel. If (MachOper *) NULL is returned, base and
  // index are set to NULL.
  const MachOper* memory_inputs(Node* &base, Node* &index) const;

  // Helper for memory_inputs:  Which operand carries the necessary info?
  // By default, returns NULL, which means there is no such operand.
  // If it returns (MachOper*)-1, this means there are multiple memories.
  virtual const MachOper* memory_operand() const { return NULL; }

  // Call "get_base_and_disp" to decide which category of memory is used here.
  virtual const class TypePtr *adr_type() const;

  // Apply peephole rule(s) to this instruction
  virtual MachNode *peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C );

  // Top-level ideal Opcode matched
  virtual int ideal_Opcode()     const { return Op_Node; }

  // Adds the label for the case
  virtual void add_case_label( int switch_val, Label* blockLabel);

  // Set the absolute address for methods
  virtual void method_set( intptr_t addr );

  // Should we clone rather than spill this instruction?
  bool rematerialize() const;

  // Get the pipeline info
  static const Pipeline *pipeline_class();
  virtual const Pipeline *pipeline() const;

#ifndef PRODUCT
  virtual const char *Name() const = 0; // Machine-specific name
  virtual void dump_spec(outputStream *st) const; // Print per-node info
  void         dump_format(PhaseRegAlloc *ra, outputStream *st) const; // access to virtual
#endif
};

//------------------------------MachIdealNode----------------------------
// Machine specific versions of nodes that must be defined by user.
// These are not converted by matcher from ideal nodes to machine nodes
// but are inserted into the code by the compiler.
class MachIdealNode : public MachNode {
public:
  MachIdealNode( ) {}

  // Define the following defaults for non-matched machine nodes
  virtual uint oper_input_base() const { return 0; }
  virtual uint rule()            const { return 9999999; }
  virtual const class Type *bottom_type() const { return _opnds == NULL ? Type::CONTROL : MachNode::bottom_type(); }
};

//------------------------------MachTypeNode----------------------------
// Machine Nodes that need to retain a known Type.
class MachTypeNode : public MachNode {
  virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
  MachTypeNode( ) {}
  const Type *_bottom_type;

  virtual const class Type *bottom_type() const { return _bottom_type; }
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachBreakpointNode----------------------------
// Machine breakpoint or interrupt Node
class MachBreakpointNode : public MachIdealNode {
public:
  MachBreakpointNode( ) {}
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;

#ifndef PRODUCT
  virtual const char *Name() const { return "Breakpoint"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachConstantBaseNode--------------------------
// Machine node that represents the base address of the constant table.
class MachConstantBaseNode : public MachIdealNode {
public:
  static const RegMask& _out_RegMask;  // We need the out_RegMask statically in MachConstantNode::in_RegMask().

public:
  MachConstantBaseNode() : MachIdealNode() {
    init_class_id(Class_MachConstantBase);
  }
  virtual const class Type* bottom_type() const { return TypeRawPtr::NOTNULL; }
  virtual uint ideal_reg() const { return Op_RegP; }
  virtual uint oper_input_base() const { return 1; }

  virtual void emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const;
  virtual uint size(PhaseRegAlloc* ra_) const;
  virtual bool pinned() const { return UseRDPCForConstantTableBase; }

  static const RegMask& static_out_RegMask() { return _out_RegMask; }
  virtual const RegMask& out_RegMask() const { return static_out_RegMask(); }

#ifndef PRODUCT
  virtual const char* Name() const { return "MachConstantBaseNode"; }
  virtual void format(PhaseRegAlloc*, outputStream* st) const;
#endif
};

//------------------------------MachConstantNode-------------------------------
// Machine node that holds a constant which is stored in the constant table.
class MachConstantNode : public MachTypeNode {
protected:
  Compile::Constant _constant;  // This node's constant.

public:
  MachConstantNode() : MachTypeNode() {
    init_class_id(Class_MachConstant);
  }

  virtual void eval_constant(Compile* C) {
#ifdef ASSERT
    tty->print("missing MachConstantNode eval_constant function: ");
    dump();
#endif
    ShouldNotCallThis();
  }

  virtual const RegMask &in_RegMask(uint idx) const {
    if (idx == mach_constant_base_node_input())
      return MachConstantBaseNode::static_out_RegMask();
    return MachNode::in_RegMask(idx);
  }

  // Input edge of MachConstantBaseNode.
  uint mach_constant_base_node_input() const { return req() - 1; }

  int  constant_offset();
  int  constant_offset() const { return ((MachConstantNode*) this)->constant_offset(); }
};

//------------------------------MachUEPNode-----------------------------------
// Machine Unvalidated Entry Point Node
class MachUEPNode : public MachIdealNode {
public:
  MachUEPNode( ) {}
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;

#ifndef PRODUCT
  virtual const char *Name() const { return "Unvalidated-Entry-Point"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachPrologNode--------------------------------
// Machine function Prolog Node
class MachPrologNode : public MachIdealNode {
public:
  MachPrologNode( ) {}
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;
  virtual int reloc() const;

#ifndef PRODUCT
  virtual const char *Name() const { return "Prolog"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachEpilogNode--------------------------------
// Machine function Epilog Node
class MachEpilogNode : public MachIdealNode {
public:
  MachEpilogNode(bool do_poll = false) : _do_polling(do_poll) {}
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;
  virtual int reloc() const;
  virtual const Pipeline *pipeline() const;

private:
  bool _do_polling;

public:
  bool do_polling() const { return _do_polling; }

  // Offset of safepoint from the beginning of the node
  int safepoint_offset() const;

#ifndef PRODUCT
  virtual const char *Name() const { return "Epilog"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachNopNode-----------------------------------
// Machine function Nop Node
class MachNopNode : public MachIdealNode {
private:
  int _count;
public:
  MachNopNode( ) : _count(1) {}
  MachNopNode( int count ) : _count(count) {}
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;

  virtual const class Type *bottom_type() const { return Type::CONTROL; }

  virtual int ideal_Opcode() const { return Op_Con; } // bogus; see output.cpp
  virtual const Pipeline *pipeline() const;
#ifndef PRODUCT
  virtual const char *Name() const { return "Nop"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
  virtual void dump_spec(outputStream *st) const { } // No per-operand info
#endif
};

//------------------------------MachSpillCopyNode------------------------------
// Machine SpillCopy Node.  Copies 1 or 2 words from any location to any
// location (stack or register).
class MachSpillCopyNode : public MachIdealNode {
  const RegMask *_in;           // RegMask for input
  const RegMask *_out;          // RegMask for output
  const Type *_type;
public:
  MachSpillCopyNode( Node *n, const RegMask &in, const RegMask &out ) :
    MachIdealNode(), _in(&in), _out(&out), _type(n->bottom_type()) {
    init_class_id(Class_MachSpillCopy);
    init_flags(Flag_is_Copy);
    add_req(NULL);
    add_req(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  void set_out_RegMask(const RegMask &out) { _out = &out; }
  void set_in_RegMask(const RegMask &in) { _in = ∈ }
  virtual const RegMask &out_RegMask() const { return *_out; }
  virtual const RegMask &in_RegMask(uint) const { return *_in; }
  virtual const class Type *bottom_type() const { return _type; }
  virtual uint ideal_reg() const { return _type->ideal_reg(); }
  virtual uint oper_input_base() const { return 1; }
  uint implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const;

  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual uint size(PhaseRegAlloc *ra_) const;

#ifndef PRODUCT
  virtual const char *Name() const { return "MachSpillCopy"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachBranchNode--------------------------------
// Abstract machine branch Node
class MachBranchNode : public MachIdealNode {
public:
  MachBranchNode() : MachIdealNode() {
    init_class_id(Class_MachBranch);
  }
  virtual void label_set(Label* label, uint block_num) = 0;
  virtual void save_label(Label** label, uint* block_num) = 0;

  // Support for short branches
  virtual MachNode *short_branch_version(Compile* C) { return NULL; }

  virtual bool pinned() const { return true; };
};

//------------------------------MachNullChkNode--------------------------------
// Machine-dependent null-pointer-check Node.  Points a real MachNode that is
// also some kind of memory op.  Turns the indicated MachNode into a
// conditional branch with good latency on the ptr-not-null path and awful
// latency on the pointer-is-null path.

class MachNullCheckNode : public MachBranchNode {
public:
  const uint _vidx;             // Index of memop being tested
  MachNullCheckNode( Node *ctrl, Node *memop, uint vidx ) : MachBranchNode(), _vidx(vidx) {
    init_class_id(Class_MachNullCheck);
    add_req(ctrl);
    add_req(memop);
  }
  virtual uint size_of() const { return sizeof(*this); }

  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  virtual void label_set(Label* label, uint block_num);
  virtual void save_label(Label** label, uint* block_num);
  virtual void negate() { }
  virtual const class Type *bottom_type() const { return TypeTuple::IFBOTH; }
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual const RegMask &in_RegMask(uint) const;
  virtual const RegMask &out_RegMask() const { return RegMask::Empty; }
#ifndef PRODUCT
  virtual const char *Name() const { return "NullCheck"; }
  virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};

//------------------------------MachProjNode----------------------------------
// Machine-dependent Ideal projections (how is that for an oxymoron).  Really
// just MachNodes made by the Ideal world that replicate simple projections
// but with machine-dependent input & output register masks.  Generally
// produced as part of calling conventions.  Normally I make MachNodes as part
// of the Matcher process, but the Matcher is ill suited to issues involving
// frame handling, so frame handling is all done in the Ideal world with
// occasional callbacks to the machine model for important info.
class MachProjNode : public ProjNode {
public:
  MachProjNode( Node *multi, uint con, const RegMask &out, uint ideal_reg ) : ProjNode(multi,con), _rout(out), _ideal_reg(ideal_reg) {
    init_class_id(Class_MachProj);
  }
  RegMask _rout;
  const uint  _ideal_reg;
  enum projType {
    unmatched_proj = 0,         // Projs for Control, I/O, memory not matched
    fat_proj       = 999        // Projs killing many regs, defined by _rout
  };
  virtual int   Opcode() const;
  virtual const Type *bottom_type() const;
  virtual const TypePtr *adr_type() const;
  virtual const RegMask &in_RegMask(uint) const { return RegMask::Empty; }
  virtual const RegMask &out_RegMask() const { return _rout; }
  virtual uint  ideal_reg() const { return _ideal_reg; }
  // Need size_of() for virtual ProjNode::clone()
  virtual uint  size_of() const { return sizeof(MachProjNode); }
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachIfNode-------------------------------------
// Machine-specific versions of IfNodes
class MachIfNode : public MachBranchNode {
  virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
  float _prob;                  // Probability branch goes either way
  float _fcnt;                  // Frequency counter
  MachIfNode() : MachBranchNode() {
    init_class_id(Class_MachIf);
  }
  // Negate conditional branches.
  virtual void negate() = 0;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachGotoNode-----------------------------------
// Machine-specific versions of GotoNodes
class MachGotoNode : public MachBranchNode {
public:
  MachGotoNode() : MachBranchNode() {
    init_class_id(Class_MachGoto);
  }
};

//------------------------------MachFastLockNode-------------------------------------
// Machine-specific versions of FastLockNodes
class MachFastLockNode : public MachNode {
  virtual uint size_of() const { return sizeof(*this); } // Size is bigger
public:
  BiasedLockingCounters* _counters;

  MachFastLockNode() : MachNode() {}
};

//------------------------------MachReturnNode--------------------------------
// Machine-specific versions of subroutine returns
class MachReturnNode : public MachNode {
  virtual uint size_of() const; // Size is bigger
public:
  RegMask *_in_rms;             // Input register masks, set during allocation
  ReallocMark _nesting;         // assertion check for reallocations
  const TypePtr* _adr_type;     // memory effects of call or return
  MachReturnNode() : MachNode() {
    init_class_id(Class_MachReturn);
    _adr_type = TypePtr::BOTTOM; // the default: all of memory
  }

  void set_adr_type(const TypePtr* atp) { _adr_type = atp; }

  virtual const RegMask &in_RegMask(uint) const;
  virtual bool pinned() const { return true; };
  virtual const TypePtr *adr_type() const;
};

//------------------------------MachSafePointNode-----------------------------
// Machine-specific versions of safepoints
class MachSafePointNode : public MachReturnNode {
public:
  OopMap*         _oop_map;     // Array of OopMap info (8-bit char) for GC
  JVMState*       _jvms;        // Pointer to list of JVM State Objects
  uint            _jvmadj;      // Extra delta to jvms indexes (mach. args)
  OopMap*         oop_map() const { return _oop_map; }
  void            set_oop_map(OopMap* om) { _oop_map = om; }

  MachSafePointNode() : MachReturnNode(), _oop_map(NULL), _jvms(NULL), _jvmadj(0) {
    init_class_id(Class_MachSafePoint);
  }

  virtual JVMState* jvms() const { return _jvms; }
  void set_jvms(JVMState* s) {
    _jvms = s;
  }
  virtual const Type    *bottom_type() const;

  virtual const RegMask &in_RegMask(uint) const;

  // Functionality from old debug nodes
  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
  Node *frameptr () const { return in(TypeFunc::FramePtr); }

  Node *local(const JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(_jvmadj + jvms->locoff() + idx);
  }
  Node *stack(const JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(_jvmadj + jvms->stkoff() + idx);
 }
  Node *monitor_obj(const JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(_jvmadj + jvms->monitor_obj_offset(idx));
  }
  Node *monitor_box(const JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(_jvmadj + jvms->monitor_box_offset(idx));
  }
  void  set_local(const JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(_jvmadj + jvms->locoff() + idx, c);
  }
  void  set_stack(const JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(_jvmadj + jvms->stkoff() + idx, c);
  }
  void  set_monitor(const JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(_jvmadj + jvms->monoff() + idx, c);
  }
};

//------------------------------MachCallNode----------------------------------
// Machine-specific versions of subroutine calls
class MachCallNode : public MachSafePointNode {
protected:
  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const = 0; // Size is bigger
public:
  const TypeFunc *_tf;        // Function type
  address      _entry_point;  // Address of the method being called
  float        _cnt;          // Estimate of number of times called
  uint         _argsize;      // Size of argument block on stack

  const TypeFunc* tf()        const { return _tf; }
  const address entry_point() const { return _entry_point; }
  const float   cnt()         const { return _cnt; }
  uint argsize()              const { return _argsize; }

  void set_tf(const TypeFunc* tf) { _tf = tf; }
  void set_entry_point(address p) { _entry_point = p; }
  void set_cnt(float c)           { _cnt = c; }
  void set_argsize(int s)         { _argsize = s; }

  MachCallNode() : MachSafePointNode() {
    init_class_id(Class_MachCall);
  }

  virtual const Type *bottom_type() const;
  virtual bool  pinned() const { return false; }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual const RegMask &in_RegMask(uint) const;
  virtual int ret_addr_offset() { return 0; }

  bool returns_long() const { return tf()->return_type() == T_LONG; }
  bool return_value_is_used() const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachCallJavaNode------------------------------
// "Base" class for machine-specific versions of subroutine calls
class MachCallJavaNode : public MachCallNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  ciMethod* _method;             // Method being direct called
  int        _bci;               // Byte Code index of call byte code
  bool       _optimized_virtual; // Tells if node is a static call or an optimized virtual
  bool       _method_handle_invoke;   // Tells if the call has to preserve SP
  MachCallJavaNode() : MachCallNode() {
    init_class_id(Class_MachCallJava);
  }

  virtual const RegMask &in_RegMask(uint) const;

#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachCallStaticJavaNode------------------------
// Machine-specific versions of monomorphic subroutine calls
class MachCallStaticJavaNode : public MachCallJavaNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  const char *_name;            // Runtime wrapper name
  MachCallStaticJavaNode() : MachCallJavaNode() {
    init_class_id(Class_MachCallStaticJava);
  }

  // If this is an uncommon trap, return the request code, else zero.
  int uncommon_trap_request() const;

  virtual int ret_addr_offset();
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
  void dump_trap_args(outputStream *st) const;
#endif
};

//------------------------------MachCallDynamicJavaNode------------------------
// Machine-specific versions of possibly megamorphic subroutine calls
class MachCallDynamicJavaNode : public MachCallJavaNode {
public:
  int _vtable_index;
  MachCallDynamicJavaNode() : MachCallJavaNode() {
    init_class_id(Class_MachCallDynamicJava);
    DEBUG_ONLY(_vtable_index = -99);  // throw an assert if uninitialized
  }
  virtual int ret_addr_offset();
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------MachCallRuntimeNode----------------------------
// Machine-specific versions of subroutine calls
class MachCallRuntimeNode : public MachCallNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  const char *_name;            // Printable name, if _method is NULL
  MachCallRuntimeNode() : MachCallNode() {
    init_class_id(Class_MachCallRuntime);
  }
  virtual int ret_addr_offset();
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

class MachCallLeafNode: public MachCallRuntimeNode {
public:
  MachCallLeafNode() : MachCallRuntimeNode() {
    init_class_id(Class_MachCallLeaf);
  }
};

//------------------------------MachHaltNode-----------------------------------
// Machine-specific versions of halt nodes
class MachHaltNode : public MachReturnNode {
public:
  virtual JVMState* jvms() const;
};


//------------------------------MachTempNode-----------------------------------
// Node used by the adlc to construct inputs to represent temporary registers
class MachTempNode : public MachNode {
private:
  MachOper *_opnd_array[1];

public:
  virtual const RegMask &out_RegMask() const { return *_opnds[0]->in_RegMask(0); }
  virtual uint rule() const { return 9999999; }
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}

  MachTempNode(MachOper* oper) {
    init_class_id(Class_MachTemp);
    _num_opnds = 1;
    _opnds = _opnd_array;
    add_req(NULL);
    _opnds[0] = oper;
  }
  virtual uint size_of() const { return sizeof(MachTempNode); }

#ifndef PRODUCT
  virtual void format(PhaseRegAlloc *, outputStream *st ) const {}
  virtual const char *Name() const { return "MachTemp";}
#endif
};



//------------------------------labelOper--------------------------------------
// Machine-independent version of label operand
class labelOper : public MachOper {
private:
  virtual uint           num_edges() const { return 0; }
public:
  // Supported for fixed size branches
  Label* _label;                // Label for branch(es)

  uint _block_num;

  labelOper() : _block_num(0), _label(0) {}

  labelOper(Label* label, uint block_num) : _label(label), _block_num(block_num) {}

  labelOper(labelOper* l) : _label(l->_label) , _block_num(l->_block_num) {}

  virtual MachOper *clone(Compile* C) const;

  virtual Label *label() const { assert(_label != NULL, "need Label"); return _label; }

  virtual uint           opcode() const;

  virtual uint           hash()   const;
  virtual uint           cmp( const MachOper &oper ) const;
#ifndef PRODUCT
  virtual const char    *Name()   const { return "Label";}

  virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;
  virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const { int_format( ra, node, st ); }
#endif
};


//------------------------------methodOper--------------------------------------
// Machine-independent version of method operand
class methodOper : public MachOper {
private:
  virtual uint           num_edges() const { return 0; }
public:
  intptr_t _method;             // Address of method
  methodOper() :   _method(0) {}
  methodOper(intptr_t method) : _method(method)  {}

  virtual MachOper *clone(Compile* C) const;

  virtual intptr_t method() const { return _method; }

  virtual uint           opcode() const;

  virtual uint           hash()   const;
  virtual uint           cmp( const MachOper &oper ) const;
#ifndef PRODUCT
  virtual const char    *Name()   const { return "Method";}

  virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;
  virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const { int_format( ra, node, st ); }
#endif
};

#endif // SHARE_VM_OPTO_MACHNODE_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java machnode.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.