alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (memnode.hpp)

This example Java source code file (memnode.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

basictype, ideal, loadnode, loadstoreconditionalnode, loadstorenode, membarnode, node, opcode, phasetransform, storenode, strintrinsicnode, type, typeptr, value

The memnode.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OPTO_MEMNODE_HPP
#define SHARE_VM_OPTO_MEMNODE_HPP

#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"

// Portions of code courtesy of Clifford Click

class MultiNode;
class PhaseCCP;
class PhaseTransform;

//------------------------------MemNode----------------------------------------
// Load or Store, possibly throwing a NULL pointer exception
class MemNode : public Node {
protected:
#ifdef ASSERT
  const TypePtr* _adr_type;     // What kind of memory is being addressed?
#endif
  virtual uint size_of() const; // Size is bigger (ASSERT only)
public:
  enum { Control,               // When is it safe to do this load?
         Memory,                // Chunk of memory is being loaded from
         Address,               // Actually address, derived from base
         ValueIn,               // Value to store
         OopStore               // Preceeding oop store, only in StoreCM
  };
protected:
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    : Node(c0,c1,c2   ) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    : Node(c0,c1,c2,c3) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }
  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    : Node(c0,c1,c2,c3,c4) {
    init_class_id(Class_Mem);
    debug_only(_adr_type=at; adr_type();)
  }

public:
  // Helpers for the optimizer.  Documented in memnode.cpp.
  static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
                                      Node* p2, AllocateNode* a2,
                                      PhaseTransform* phase);
  static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);

  static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  // This one should probably be a phase-specific function:
  static bool all_controls_dominate(Node* dom, Node* sub);

  // Find any cast-away of null-ness and keep its control.
  static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );

  virtual const class TypePtr *adr_type() const;  // returns bottom_type of address

  // Shared code for Ideal methods:
  Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.

  // Helper function for adr_type() implementations.
  static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);

  // Raw access function, to allow copying of adr_type efficiently in
  // product builds and retain the debug info for debug builds.
  const TypePtr *raw_adr_type() const {
#ifdef ASSERT
    return _adr_type;
#else
    return 0;
#endif
  }

  // Map a load or store opcode to its corresponding store opcode.
  // (Return -1 if unknown.)
  virtual int store_Opcode() const { return -1; }

  // What is the type of the value in memory?  (T_VOID mean "unspecified".)
  virtual BasicType memory_type() const = 0;
  virtual int memory_size() const {
#ifdef ASSERT
    return type2aelembytes(memory_type(), true);
#else
    return type2aelembytes(memory_type());
#endif
  }

  // Search through memory states which precede this node (load or store).
  // Look for an exact match for the address, with no intervening
  // aliased stores.
  Node* find_previous_store(PhaseTransform* phase);

  // Can this node (load or store) accurately see a stored value in
  // the given memory state?  (The state may or may not be in(Memory).)
  Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;

#ifndef PRODUCT
  static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
  virtual void dump_spec(outputStream *st) const;
#endif
};

//------------------------------LoadNode---------------------------------------
// Load value; requires Memory and Address
class LoadNode : public MemNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
  const Type* const _type;      // What kind of value is loaded?
public:

  LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
    : MemNode(c,mem,adr,at), _type(rt) {
    init_class_id(Class_Load);
  }

  // Polymorphic factory method:
  static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
                     const TypePtr* at, const Type *rt, BasicType bt );

  virtual uint hash()   const;  // Check the type

  // Handle algebraic identities here.  If we have an identity, return the Node
  // we are equivalent to.  We look for Load of a Store.
  virtual Node *Identity( PhaseTransform *phase );

  // If the load is from Field memory and the pointer is non-null, we can
  // zero out the control input.
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Split instance field load through Phi.
  Node* split_through_phi(PhaseGVN *phase);

  // Recover original value from boxed values
  Node *eliminate_autobox(PhaseGVN *phase);

  // Compute a new Type for this node.  Basically we just do the pre-check,
  // then call the virtual add() to set the type.
  virtual const Type *Value( PhaseTransform *phase ) const;

  // Common methods for LoadKlass and LoadNKlass nodes.
  const Type *klass_value_common( PhaseTransform *phase ) const;
  Node *klass_identity_common( PhaseTransform *phase );

  virtual uint ideal_reg() const;
  virtual const Type *bottom_type() const;
  // Following method is copied from TypeNode:
  void set_type(const Type* t) {
    assert(t != NULL, "sanity");
    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
    *(const Type**)&_type = t;   // cast away const-ness
    // If this node is in the hash table, make sure it doesn't need a rehash.
    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  }
  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };

  // Do not match memory edge
  virtual uint match_edge(uint idx) const;

  // Map a load opcode to its corresponding store opcode.
  virtual int store_Opcode() const = 0;

  // Check if the load's memory input is a Phi node with the same control.
  bool is_instance_field_load_with_local_phi(Node* ctrl);

#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
#ifdef ASSERT
  // Helper function to allow a raw load without control edge for some cases
  static bool is_immutable_value(Node* adr);
#endif
protected:
  const Type* load_array_final_field(const TypeKlassPtr *tkls,
                                     ciKlass* klass) const;
  // depends_only_on_test is almost always true, and needs to be almost always
  // true to enable key hoisting & commoning optimizations.  However, for the
  // special case of RawPtr loads from TLS top & end, and other loads performed by
  // GC barriers, the control edge carries the dependence preventing hoisting past
  // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
  // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
  // which produce results (new raw memory state) inside of loops preventing all
  // manner of other optimizations).  Basically, it's ugly but so is the alternative.
  // See comment in macro.cpp, around line 125 expand_allocate_common().
  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }

};

//------------------------------LoadBNode--------------------------------------
// Load a byte (8bits signed) from memory
class LoadBNode : public LoadNode {
public:
  LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
  virtual int store_Opcode() const { return Op_StoreB; }
  virtual BasicType memory_type() const { return T_BYTE; }
};

//------------------------------LoadUBNode-------------------------------------
// Load a unsigned byte (8bits unsigned) from memory
class LoadUBNode : public LoadNode {
public:
  LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
    : LoadNode(c, mem, adr, at, ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
  virtual int store_Opcode() const { return Op_StoreB; }
  virtual BasicType memory_type() const { return T_BYTE; }
};

//------------------------------LoadUSNode-------------------------------------
// Load an unsigned short/char (16bits unsigned) from memory
class LoadUSNode : public LoadNode {
public:
  LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
  virtual int store_Opcode() const { return Op_StoreC; }
  virtual BasicType memory_type() const { return T_CHAR; }
};

//------------------------------LoadSNode--------------------------------------
// Load a short (16bits signed) from memory
class LoadSNode : public LoadNode {
public:
  LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
  virtual int store_Opcode() const { return Op_StoreC; }
  virtual BasicType memory_type() const { return T_SHORT; }
};

//------------------------------LoadINode--------------------------------------
// Load an integer from memory
class LoadINode : public LoadNode {
public:
  LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
    : LoadNode(c,mem,adr,at,ti) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual int store_Opcode() const { return Op_StoreI; }
  virtual BasicType memory_type() const { return T_INT; }
};

//------------------------------LoadRangeNode----------------------------------
// Load an array length from the array
class LoadRangeNode : public LoadINode {
public:
  LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
    : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
  virtual int Opcode() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};

//------------------------------LoadLNode--------------------------------------
// Load a long from memory
class LoadLNode : public LoadNode {
  virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
  virtual uint cmp( const Node &n ) const {
    return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
      && LoadNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  const bool _require_atomic_access;  // is piecewise load forbidden?

public:
  LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
             const TypeLong *tl = TypeLong::LONG,
             bool require_atomic_access = false )
    : LoadNode(c,mem,adr,at,tl)
    , _require_atomic_access(require_atomic_access)
  {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegL; }
  virtual int store_Opcode() const { return Op_StoreL; }
  virtual BasicType memory_type() const { return T_LONG; }
  bool require_atomic_access() { return _require_atomic_access; }
  static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {
    LoadNode::dump_spec(st);
    if (_require_atomic_access)  st->print(" Atomic!");
  }
#endif
};

//------------------------------LoadL_unalignedNode----------------------------
// Load a long from unaligned memory
class LoadL_unalignedNode : public LoadLNode {
public:
  LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
    : LoadLNode(c,mem,adr,at) {}
  virtual int Opcode() const;
};

//------------------------------LoadFNode--------------------------------------
// Load a float (64 bits) from memory
class LoadFNode : public LoadNode {
public:
  LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegF; }
  virtual int store_Opcode() const { return Op_StoreF; }
  virtual BasicType memory_type() const { return T_FLOAT; }
};

//------------------------------LoadDNode--------------------------------------
// Load a double (64 bits) from memory
class LoadDNode : public LoadNode {
public:
  LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegD; }
  virtual int store_Opcode() const { return Op_StoreD; }
  virtual BasicType memory_type() const { return T_DOUBLE; }
};

//------------------------------LoadD_unalignedNode----------------------------
// Load a double from unaligned memory
class LoadD_unalignedNode : public LoadDNode {
public:
  LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
    : LoadDNode(c,mem,adr,at) {}
  virtual int Opcode() const;
};

//------------------------------LoadPNode--------------------------------------
// Load a pointer from memory (either object or array)
class LoadPNode : public LoadNode {
public:
  LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegP; }
  virtual int store_Opcode() const { return Op_StoreP; }
  virtual BasicType memory_type() const { return T_ADDRESS; }
};


//------------------------------LoadNNode--------------------------------------
// Load a narrow oop from memory (either object or array)
class LoadNNode : public LoadNode {
public:
  LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
    : LoadNode(c,mem,adr,at,t) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegN; }
  virtual int store_Opcode() const { return Op_StoreN; }
  virtual BasicType memory_type() const { return T_NARROWOOP; }
};

//------------------------------LoadKlassNode----------------------------------
// Load a Klass from an object
class LoadKlassNode : public LoadPNode {
public:
  LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
    : LoadPNode(c,mem,adr,at,tk) {}
  virtual int Opcode() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual bool depends_only_on_test() const { return true; }

  // Polymorphic factory method:
  static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
                     const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
};

//------------------------------LoadNKlassNode---------------------------------
// Load a narrow Klass from an object.
class LoadNKlassNode : public LoadNNode {
public:
  LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk )
    : LoadNNode(c,mem,adr,at,tk) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegN; }
  virtual int store_Opcode() const { return Op_StoreNKlass; }
  virtual BasicType memory_type() const { return T_NARROWKLASS; }

  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual bool depends_only_on_test() const { return true; }
};


//------------------------------StoreNode--------------------------------------
// Store value; requires Store, Address and Value
class StoreNode : public MemNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual bool depends_only_on_test() const { return false; }

  Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
  Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);

public:
  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
    : MemNode(c,mem,adr,at,val) {
    init_class_id(Class_Store);
  }
  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
    : MemNode(c,mem,adr,at,val,oop_store) {
    init_class_id(Class_Store);
  }

  // Polymorphic factory method:
  static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
                          const TypePtr* at, Node *val, BasicType bt );

  virtual uint hash() const;    // Check the type

  // If the store is to Field memory and the pointer is non-null, we can
  // zero out the control input.
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Compute a new Type for this node.  Basically we just do the pre-check,
  // then call the virtual add() to set the type.
  virtual const Type *Value( PhaseTransform *phase ) const;

  // Check for identity function on memory (Load then Store at same address)
  virtual Node *Identity( PhaseTransform *phase );

  // Do not match memory edge
  virtual uint match_edge(uint idx) const;

  virtual const Type *bottom_type() const;  // returns Type::MEMORY

  // Map a store opcode to its corresponding own opcode, trivially.
  virtual int store_Opcode() const { return Opcode(); }

  // have all possible loads of the value stored been optimized away?
  bool value_never_loaded(PhaseTransform *phase) const;
};

//------------------------------StoreBNode-------------------------------------
// Store byte to memory
class StoreBNode : public StoreNode {
public:
  StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual BasicType memory_type() const { return T_BYTE; }
};

//------------------------------StoreCNode-------------------------------------
// Store char/short to memory
class StoreCNode : public StoreNode {
public:
  StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual BasicType memory_type() const { return T_CHAR; }
};

//------------------------------StoreINode-------------------------------------
// Store int to memory
class StoreINode : public StoreNode {
public:
  StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_INT; }
};

//------------------------------StoreLNode-------------------------------------
// Store long to memory
class StoreLNode : public StoreNode {
  virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
  virtual uint cmp( const Node &n ) const {
    return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
      && StoreNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  const bool _require_atomic_access;  // is piecewise store forbidden?

public:
  StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
              bool require_atomic_access = false )
    : StoreNode(c,mem,adr,at,val)
    , _require_atomic_access(require_atomic_access)
  {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_LONG; }
  bool require_atomic_access() { return _require_atomic_access; }
  static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {
    StoreNode::dump_spec(st);
    if (_require_atomic_access)  st->print(" Atomic!");
  }
#endif
};

//------------------------------StoreFNode-------------------------------------
// Store float to memory
class StoreFNode : public StoreNode {
public:
  StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_FLOAT; }
};

//------------------------------StoreDNode-------------------------------------
// Store double to memory
class StoreDNode : public StoreNode {
public:
  StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_DOUBLE; }
};

//------------------------------StorePNode-------------------------------------
// Store pointer to memory
class StorePNode : public StoreNode {
public:
  StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_ADDRESS; }
};

//------------------------------StoreNNode-------------------------------------
// Store narrow oop to memory
class StoreNNode : public StoreNode {
public:
  StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_NARROWOOP; }
};

//------------------------------StoreNKlassNode--------------------------------------
// Store narrow klass to memory
class StoreNKlassNode : public StoreNNode {
public:
  StoreNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNNode(c,mem,adr,at,val) {}
  virtual int Opcode() const;
  virtual BasicType memory_type() const { return T_NARROWKLASS; }
};

//------------------------------StoreCMNode-----------------------------------
// Store card-mark byte to memory for CM
// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
// Preceeding equivalent StoreCMs may be eliminated.
class StoreCMNode : public StoreNode {
 private:
  virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
  virtual uint cmp( const Node &n ) const {
    return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
      && StoreNode::cmp(n);
  }
  virtual uint size_of() const { return sizeof(*this); }
  int _oop_alias_idx;   // The alias_idx of OopStore

public:
  StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
    StoreNode(c,mem,adr,at,val,oop_store),
    _oop_alias_idx(oop_alias_idx) {
    assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
           _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
           "bad oop alias idx");
  }
  virtual int Opcode() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual BasicType memory_type() const { return T_VOID; } // unspecific
  int oop_alias_idx() const { return _oop_alias_idx; }
};

//------------------------------LoadPLockedNode---------------------------------
// Load-locked a pointer from memory (either object or array).
// On Sparc & Intel this is implemented as a normal pointer load.
// On PowerPC and friends it's a real load-locked.
class LoadPLockedNode : public LoadPNode {
public:
  LoadPLockedNode( Node *c, Node *mem, Node *adr )
    : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
  virtual int Opcode() const;
  virtual int store_Opcode() const { return Op_StorePConditional; }
  virtual bool depends_only_on_test() const { return true; }
};

//------------------------------SCMemProjNode---------------------------------------
// This class defines a projection of the memory  state of a store conditional node.
// These nodes return a value, but also update memory.
class SCMemProjNode : public ProjNode {
public:
  enum {SCMEMPROJCON = (uint)-2};
  SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
  virtual int Opcode() const;
  virtual bool      is_CFG() const  { return false; }
  virtual const Type *bottom_type() const {return Type::MEMORY;}
  virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
  virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
  virtual const Type *Value( PhaseTransform *phase ) const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const {};
#endif
};

//------------------------------LoadStoreNode---------------------------
// Note: is_Mem() method returns 'true' for this class.
class LoadStoreNode : public Node {
private:
  const Type* const _type;      // What kind of value is loaded?
  const TypePtr* _adr_type;     // What kind of memory is being addressed?
  virtual uint size_of() const; // Size is bigger
public:
  LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
  virtual bool depends_only_on_test() const { return false; }
  virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }

  virtual const Type *bottom_type() const { return _type; }
  virtual uint ideal_reg() const;
  virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address

  bool result_not_used() const;
};

class LoadStoreConditionalNode : public LoadStoreNode {
public:
  enum {
    ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
  };
  LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
};

//------------------------------StorePConditionalNode---------------------------
// Conditionally store pointer to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StorePConditionalNode : public LoadStoreConditionalNode {
public:
  StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
  virtual int Opcode() const;
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
};

//------------------------------StoreIConditionalNode---------------------------
// Conditionally store int to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StoreIConditionalNode : public LoadStoreConditionalNode {
public:
  StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
  virtual int Opcode() const;
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
};

//------------------------------StoreLConditionalNode---------------------------
// Conditionally store long to memory, if no change since prior
// load-locked.  Sets flags for success or failure of the store.
class StoreLConditionalNode : public LoadStoreConditionalNode {
public:
  StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
  virtual int Opcode() const;
  // Produces flags
  virtual uint ideal_reg() const { return Op_RegFlags; }
};


//------------------------------CompareAndSwapLNode---------------------------
class CompareAndSwapLNode : public LoadStoreConditionalNode {
public:
  CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};


//------------------------------CompareAndSwapINode---------------------------
class CompareAndSwapINode : public LoadStoreConditionalNode {
public:
  CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};


//------------------------------CompareAndSwapPNode---------------------------
class CompareAndSwapPNode : public LoadStoreConditionalNode {
public:
  CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};

//------------------------------CompareAndSwapNNode---------------------------
class CompareAndSwapNNode : public LoadStoreConditionalNode {
public:
  CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
  virtual int Opcode() const;
};

//------------------------------GetAndAddINode---------------------------
class GetAndAddINode : public LoadStoreNode {
public:
  GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
  virtual int Opcode() const;
};

//------------------------------GetAndAddLNode---------------------------
class GetAndAddLNode : public LoadStoreNode {
public:
  GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
  virtual int Opcode() const;
};


//------------------------------GetAndSetINode---------------------------
class GetAndSetINode : public LoadStoreNode {
public:
  GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
  virtual int Opcode() const;
};

//------------------------------GetAndSetINode---------------------------
class GetAndSetLNode : public LoadStoreNode {
public:
  GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
  virtual int Opcode() const;
};

//------------------------------GetAndSetPNode---------------------------
class GetAndSetPNode : public LoadStoreNode {
public:
  GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
  virtual int Opcode() const;
};

//------------------------------GetAndSetNNode---------------------------
class GetAndSetNNode : public LoadStoreNode {
public:
  GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
  virtual int Opcode() const;
};

//------------------------------ClearArray-------------------------------------
class ClearArrayNode: public Node {
public:
  ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
    : Node(ctrl,arymem,word_cnt,base) {
    init_class_id(Class_ClearArray);
  }
  virtual int         Opcode() const;
  virtual const Type *bottom_type() const { return Type::MEMORY; }
  // ClearArray modifies array elements, and so affects only the
  // array memory addressed by the bottom_type of its base address.
  virtual const class TypePtr *adr_type() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint match_edge(uint idx) const;

  // Clear the given area of an object or array.
  // The start offset must always be aligned mod BytesPerInt.
  // The end offset must always be aligned mod BytesPerLong.
  // Return the new memory.
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            intptr_t start_offset,
                            intptr_t end_offset,
                            PhaseGVN* phase);
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            intptr_t start_offset,
                            Node* end_offset,
                            PhaseGVN* phase);
  static Node* clear_memory(Node* control, Node* mem, Node* dest,
                            Node* start_offset,
                            Node* end_offset,
                            PhaseGVN* phase);
  // Return allocation input memory edge if it is different instance
  // or itself if it is the one we are looking for.
  static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
};

//------------------------------StrIntrinsic-------------------------------
// Base class for Ideal nodes used in String instrinsic code.
class StrIntrinsicNode: public Node {
public:
  StrIntrinsicNode(Node* control, Node* char_array_mem,
                   Node* s1, Node* c1, Node* s2, Node* c2):
    Node(control, char_array_mem, s1, c1, s2, c2) {
  }

  StrIntrinsicNode(Node* control, Node* char_array_mem,
                   Node* s1, Node* s2, Node* c):
    Node(control, char_array_mem, s1, s2, c) {
  }

  StrIntrinsicNode(Node* control, Node* char_array_mem,
                   Node* s1, Node* s2):
    Node(control, char_array_mem, s1, s2) {
  }

  virtual bool depends_only_on_test() const { return false; }
  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
};

//------------------------------StrComp-------------------------------------
class StrCompNode: public StrIntrinsicNode {
public:
  StrCompNode(Node* control, Node* char_array_mem,
              Node* s1, Node* c1, Node* s2, Node* c2):
    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
  virtual int Opcode() const;
  virtual const Type* bottom_type() const { return TypeInt::INT; }
};

//------------------------------StrEquals-------------------------------------
class StrEqualsNode: public StrIntrinsicNode {
public:
  StrEqualsNode(Node* control, Node* char_array_mem,
                Node* s1, Node* s2, Node* c):
    StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
  virtual int Opcode() const;
  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
};

//------------------------------StrIndexOf-------------------------------------
class StrIndexOfNode: public StrIntrinsicNode {
public:
  StrIndexOfNode(Node* control, Node* char_array_mem,
              Node* s1, Node* c1, Node* s2, Node* c2):
    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
  virtual int Opcode() const;
  virtual const Type* bottom_type() const { return TypeInt::INT; }
};

//------------------------------AryEq---------------------------------------
class AryEqNode: public StrIntrinsicNode {
public:
  AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
    StrIntrinsicNode(control, char_array_mem, s1, s2) {};
  virtual int Opcode() const;
  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
};


//------------------------------EncodeISOArray--------------------------------
// encode char[] to byte[] in ISO_8859_1
class EncodeISOArrayNode: public Node {
public:
  EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
  virtual int Opcode() const;
  virtual bool depends_only_on_test() const { return false; }
  virtual const Type* bottom_type() const { return TypeInt::INT; }
  virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value(PhaseTransform *phase) const;
};

//------------------------------MemBar-----------------------------------------
// There are different flavors of Memory Barriers to match the Java Memory
// Model.  Monitor-enter and volatile-load act as Aquires: no following ref
// can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
// volatile-load.  Monitor-exit and volatile-store act as Release: no
// preceding ref can be moved to after them.  We insert a MemBar-Release
// before a FastUnlock or volatile-store.  All volatiles need to be
// serialized, so we follow all volatile-stores with a MemBar-Volatile to
// separate it from any following volatile-load.
class MemBarNode: public MultiNode {
  virtual uint hash() const ;                  // { return NO_HASH; }
  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self

  virtual uint size_of() const { return sizeof(*this); }
  // Memory type this node is serializing.  Usually either rawptr or bottom.
  const TypePtr* _adr_type;

public:
  enum {
    Precedent = TypeFunc::Parms  // optional edge to force precedence
  };
  MemBarNode(Compile* C, int alias_idx, Node* precedent);
  virtual int Opcode() const = 0;
  virtual const class TypePtr *adr_type() const { return _adr_type; }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint match_edge(uint idx) const { return 0; }
  virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
  virtual Node *match( const ProjNode *proj, const Matcher *m );
  // Factory method.  Builds a wide or narrow membar.
  // Optional 'precedent' becomes an extra edge if not null.
  static MemBarNode* make(Compile* C, int opcode,
                          int alias_idx = Compile::AliasIdxBot,
                          Node* precedent = NULL);
};

// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache).  Requires multi-cpu
// visibility.  Inserted after a volatile load.
class MemBarAcquireNode: public MemBarNode {
public:
  MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load).  Requires
// multi-cpu visibility.  Inserted before a volatile store.
class MemBarReleaseNode: public MemBarNode {
public:
  MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// "Acquire" - no following ref can move before (but earlier refs can
// follow, like an early Load stalled in cache).  Requires multi-cpu
// visibility.  Inserted after a FastLock.
class MemBarAcquireLockNode: public MemBarNode {
public:
  MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// "Release" - no earlier ref can move after (but later refs can move
// up, like a speculative pipelined cache-hitting Load).  Requires
// multi-cpu visibility.  Inserted before a FastUnLock.
class MemBarReleaseLockNode: public MemBarNode {
public:
  MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

class MemBarStoreStoreNode: public MemBarNode {
public:
  MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {
    init_class_id(Class_MemBarStoreStore);
  }
  virtual int Opcode() const;
};

// Ordering between a volatile store and a following volatile load.
// Requires multi-CPU visibility?
class MemBarVolatileNode: public MemBarNode {
public:
  MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
};

// Ordering within the same CPU.  Used to order unsafe memory references
// inside the compiler when we lack alias info.  Not needed "outside" the
// compiler because the CPU does all the ordering for us.
class MemBarCPUOrderNode: public MemBarNode {
public:
  MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
    : MemBarNode(C, alias_idx, precedent) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
};

// Isolation of object setup after an AllocateNode and before next safepoint.
// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
class InitializeNode: public MemBarNode {
  friend class AllocateNode;

  enum {
    Incomplete    = 0,
    Complete      = 1,
    WithArraycopy = 2
  };
  int _is_complete;

  bool _does_not_escape;

public:
  enum {
    Control    = TypeFunc::Control,
    Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
    RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
    RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  };

  InitializeNode(Compile* C, int adr_type, Node* rawoop);
  virtual int Opcode() const;
  virtual uint size_of() const { return sizeof(*this); }
  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress

  // Manage incoming memory edges via a MergeMem on in(Memory):
  Node* memory(uint alias_idx);

  // The raw memory edge coming directly from the Allocation.
  // The contents of this memory are *always* all-zero-bits.
  Node* zero_memory() { return memory(Compile::AliasIdxRaw); }

  // Return the corresponding allocation for this initialization (or null if none).
  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  AllocateNode* allocation();

  // Anything other than zeroing in this init?
  bool is_non_zero();

  // An InitializeNode must completed before macro expansion is done.
  // Completion requires that the AllocateNode must be followed by
  // initialization of the new memory to zero, then to any initializers.
  bool is_complete() { return _is_complete != Incomplete; }
  bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }

  // Mark complete.  (Must not yet be complete.)
  void set_complete(PhaseGVN* phase);
  void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }

  bool does_not_escape() { return _does_not_escape; }
  void set_does_not_escape() { _does_not_escape = true; }

#ifdef ASSERT
  // ensure all non-degenerate stores are ordered and non-overlapping
  bool stores_are_sane(PhaseTransform* phase);
#endif //ASSERT

  // See if this store can be captured; return offset where it initializes.
  // Return 0 if the store cannot be moved (any sort of problem).
  intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);

  // Capture another store; reformat it to write my internal raw memory.
  // Return the captured copy, else NULL if there is some sort of problem.
  Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);

  // Find captured store which corresponds to the range [start..start+size).
  // Return my own memory projection (meaning the initial zero bits)
  // if there is no such store.  Return NULL if there is a problem.
  Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);

  // Called when the associated AllocateNode is expanded into CFG.
  Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
                        intptr_t header_size, Node* size_in_bytes,
                        PhaseGVN* phase);

 private:
  void remove_extra_zeroes();

  // Find out where a captured store should be placed (or already is placed).
  int captured_store_insertion_point(intptr_t start, int size_in_bytes,
                                     PhaseTransform* phase);

  static intptr_t get_store_offset(Node* st, PhaseTransform* phase);

  Node* make_raw_address(intptr_t offset, PhaseTransform* phase);

  bool detect_init_independence(Node* n, int& count);

  void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
                               PhaseGVN* phase);

  intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
};

//------------------------------MergeMem---------------------------------------
// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
class MergeMemNode: public Node {
  virtual uint hash() const ;                  // { return NO_HASH; }
  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  friend class MergeMemStream;
  MergeMemNode(Node* def);  // clients use MergeMemNode::make

public:
  // If the input is a whole memory state, clone it with all its slices intact.
  // Otherwise, make a new memory state with just that base memory input.
  // In either case, the result is a newly created MergeMem.
  static MergeMemNode* make(Compile* C, Node* base_memory);

  virtual int Opcode() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return 0; }
  virtual const RegMask &out_RegMask() const;
  virtual const Type *bottom_type() const { return Type::MEMORY; }
  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  // sparse accessors
  // Fetch the previously stored "set_memory_at", or else the base memory.
  // (Caller should clone it if it is a phi-nest.)
  Node* memory_at(uint alias_idx) const;
  // set the memory, regardless of its previous value
  void set_memory_at(uint alias_idx, Node* n);
  // the "base" is the memory that provides the non-finite support
  Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  // warning: setting the base can implicitly set any of the other slices too
  void set_base_memory(Node* def);
  // sentinel value which denotes a copy of the base memory:
  Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  static Node* make_empty_memory(); // where the sentinel comes from
  bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  // hook for the iterator, to perform any necessary setup
  void iteration_setup(const MergeMemNode* other = NULL);
  // push sentinels until I am at least as long as the other (semantic no-op)
  void grow_to_match(const MergeMemNode* other);
  bool verify_sparse() const PRODUCT_RETURN0;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};

class MergeMemStream : public StackObj {
 private:
  MergeMemNode*       _mm;
  const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  Node*               _mm_base;  // loop-invariant base memory of _mm
  int                 _idx;
  int                 _cnt;
  Node*               _mem;
  Node*               _mem2;
  int                 _cnt2;

  void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
    // subsume_node will break sparseness at times, whenever a memory slice
    // folds down to a copy of the base ("fat") memory.  In such a case,
    // the raw edge will update to base, although it should be top.
    // This iterator will recognize either top or base_memory as an
    // "empty" slice.  See is_empty, is_empty2, and next below.
    //
    // The sparseness property is repaired in MergeMemNode::Ideal.
    // As long as access to a MergeMem goes through this iterator
    // or the memory_at accessor, flaws in the sparseness will
    // never be observed.
    //
    // Also, iteration_setup repairs sparseness.
    assert(mm->verify_sparse(), "please, no dups of base");
    assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");

    _mm  = mm;
    _mm_base = mm->base_memory();
    _mm2 = mm2;
    _cnt = mm->req();
    _idx = Compile::AliasIdxBot-1; // start at the base memory
    _mem = NULL;
    _mem2 = NULL;
  }

#ifdef ASSERT
  Node* check_memory() const {
    if (at_base_memory())
      return _mm->base_memory();
    else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
      return _mm->memory_at(_idx);
    else
      return _mm_base;
  }
  Node* check_memory2() const {
    return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  }
#endif

  static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  void assert_synch() const {
    assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
           "no side-effects except through the stream");
  }

 public:

  // expected usages:
  // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }

  // iterate over one merge
  MergeMemStream(MergeMemNode* mm) {
    mm->iteration_setup();
    init(mm);
    debug_only(_cnt2 = 999);
  }
  // iterate in parallel over two merges
  // only iterates through non-empty elements of mm2
  MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
    assert(mm2, "second argument must be a MergeMem also");
    ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
    mm->iteration_setup(mm2);
    init(mm, mm2);
    _cnt2 = mm2->req();
  }
#ifdef ASSERT
  ~MergeMemStream() {
    assert_synch();
  }
#endif

  MergeMemNode* all_memory() const {
    return _mm;
  }
  Node* base_memory() const {
    assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
    return _mm_base;
  }
  const MergeMemNode* all_memory2() const {
    assert(_mm2 != NULL, "");
    return _mm2;
  }
  bool at_base_memory() const {
    return _idx == Compile::AliasIdxBot;
  }
  int alias_idx() const {
    assert(_mem, "must call next 1st");
    return _idx;
  }

  const TypePtr* adr_type() const {
    return Compile::current()->get_adr_type(alias_idx());
  }

  const TypePtr* adr_type(Compile* C) const {
    return C->get_adr_type(alias_idx());
  }
  bool is_empty() const {
    assert(_mem, "must call next 1st");
    assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
    return _mem->is_top();
  }
  bool is_empty2() const {
    assert(_mem2, "must call next 1st");
    assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
    return _mem2->is_top();
  }
  Node* memory() const {
    assert(!is_empty(), "must not be empty");
    assert_synch();
    return _mem;
  }
  // get the current memory, regardless of empty or non-empty status
  Node* force_memory() const {
    assert(!is_empty() || !at_base_memory(), "");
    // Use _mm_base to defend against updates to _mem->base_memory().
    Node *mem = _mem->is_top() ? _mm_base : _mem;
    assert(mem == check_memory(), "");
    return mem;
  }
  Node* memory2() const {
    assert(_mem2 == check_memory2(), "");
    return _mem2;
  }
  void set_memory(Node* mem) {
    if (at_base_memory()) {
      // Note that this does not change the invariant _mm_base.
      _mm->set_base_memory(mem);
    } else {
      _mm->set_memory_at(_idx, mem);
    }
    _mem = mem;
    assert_synch();
  }

  // Recover from a side effect to the MergeMemNode.
  void set_memory() {
    _mem = _mm->in(_idx);
  }

  bool next()  { return next(false); }
  bool next2() { return next(true); }

  bool next_non_empty()  { return next_non_empty(false); }
  bool next_non_empty2() { return next_non_empty(true); }
  // next_non_empty2 can yield states where is_empty() is true

 private:
  // find the next item, which might be empty
  bool next(bool have_mm2) {
    assert((_mm2 != NULL) == have_mm2, "use other next");
    assert_synch();
    if (++_idx < _cnt) {
      // Note:  This iterator allows _mm to be non-sparse.
      // It behaves the same whether _mem is top or base_memory.
      _mem = _mm->in(_idx);
      if (have_mm2)
        _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
      return true;
    }
    return false;
  }

  // find the next non-empty item
  bool next_non_empty(bool have_mm2) {
    while (next(have_mm2)) {
      if (!is_empty()) {
        // make sure _mem2 is filled in sensibly
        if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
        return true;
      } else if (have_mm2 && !is_empty2()) {
        return true;   // is_empty() == true
      }
    }
    return false;
  }
};

//------------------------------Prefetch---------------------------------------

// Non-faulting prefetch load.  Prefetch for many reads.
class PrefetchReadNode : public Node {
public:
  PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return idx==2; }
  virtual const Type *bottom_type() const { return Type::ABIO; }
};

// Non-faulting prefetch load.  Prefetch for many reads & many writes.
class PrefetchWriteNode : public Node {
public:
  PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return idx==2; }
  virtual const Type *bottom_type() const { return Type::ABIO; }
};

// Allocation prefetch which may fault, TLAB size have to be adjusted.
class PrefetchAllocationNode : public Node {
public:
  PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const { return idx==2; }
  virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
};

#endif // SHARE_VM_OPTO_MEMNODE_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java memnode.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.