alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (mulnode.cpp)

This example Java source code file (mulnode.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

andinode, handy, java, node, null, phasetransform, type, type::top, type\:\:bottom, typeint, typeint\:\:int, typeint\:\:zero, typelong\:\:long

The mulnode.cpp Java example source code

/*
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/connode.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"

// Portions of code courtesy of Clifford Click


//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
// (commute) inputs to MulNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint MulNode::hash() const {
  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}

//------------------------------Identity---------------------------------------
// Multiplying a one preserves the other argument
Node *MulNode::Identity( PhaseTransform *phase ) {
  register const Type *one = mul_id();  // The multiplicative identity
  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);

  return this;
}

//------------------------------Ideal------------------------------------------
// We also canonicalize the Node, moving constants to the right input,
// and flatten expressions (so that 1+x+2 becomes x+3).
Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  Node *progress = NULL;        // Progress flag
  // We are OK if right is a constant, or right is a load and
  // left is a non-constant.
  if( !(t2->singleton() ||
        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
    if( t1->singleton() ||       // Left input is a constant?
        // Otherwise, sort inputs (commutativity) to help value numbering.
        (in(1)->_idx > in(2)->_idx) ) {
      swap_edges(1, 2);
      const Type *t = t1;
      t1 = t2;
      t2 = t;
      progress = this;            // Made progress
    }
  }

  // If the right input is a constant, and the left input is a product of a
  // constant, flatten the expression tree.
  uint op = Opcode();
  if( t2->singleton() &&        // Right input is a constant?
      op != Op_MulF &&          // Float & double cannot reassociate
      op != Op_MulD ) {
    if( t2 == Type::TOP ) return NULL;
    Node *mul1 = in(1);
#ifdef ASSERT
    // Check for dead loop
    int   op1 = mul1->Opcode();
    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
        ( op1 == mul_opcode() || op1 == add_opcode() ) &&
        ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
          phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
      assert(false, "dead loop in MulNode::Ideal");
#endif

    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
      // Mul of a constant?
      const Type *t12 = phase->type( mul1->in(2) );
      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
        // Compute new constant; check for overflow
        const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
        if( tcon01->singleton() ) {
          // The Mul of the flattened expression
          set_req(1, mul1->in(1));
          set_req(2, phase->makecon( tcon01 ));
          t2 = tcon01;
          progress = this;      // Made progress
        }
      }
    }
    // If the right input is a constant, and the left input is an add of a
    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
    const Node *add1 = in(1);
    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
      // Add of a constant?
      const Type *t12 = phase->type( add1->in(2) );
      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
        // Compute new constant; check for overflow
        const Type *tcon01 = mul_ring(t2,t12);
        if( tcon01->singleton() ) {

        // Convert (X+con1)*con0 into X*con0
          Node *mul = clone();    // mul = ()*con0
          mul->set_req(1,add1->in(1));  // mul = X*con0
          mul = phase->transform(mul);

          Node *add2 = add1->clone();
          add2->set_req(1, mul);        // X*con0 + con0*con1
          add2->set_req(2, phase->makecon(tcon01) );
          progress = add2;
        }
      }
    } // End of is left input an add
  } // End of is right input a Mul

  return progress;
}

//------------------------------Value-----------------------------------------
const Type *MulNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is ZERO ==> the result is ZERO.
  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
  int op = Opcode();
  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
    const Type *zero = add_id();        // The multiplicative zero
    if( t1->higher_equal( zero ) ) return zero;
    if( t2->higher_equal( zero ) ) return zero;
  }

  // Either input is BOTTOM ==> the result is the local BOTTOM
  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    return bottom_type();

#if defined(IA32)
  // Can't trust native compilers to properly fold strict double
  // multiplication with round-to-zero on this platform.
  if (op == Op_MulD && phase->C->method()->is_strict()) {
    return TypeD::DOUBLE;
  }
#endif

  return mul_ring(t1,t2);            // Local flavor of type multiplication
}


//=============================================================================
//------------------------------Ideal------------------------------------------
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Swap constant to right
  jint con;
  if ((con = in(1)->find_int_con(0)) != 0) {
    swap_edges(1, 2);
    // Finish rest of method to use info in 'con'
  } else if ((con = in(2)->find_int_con(0)) == 0) {
    return MulNode::Ideal(phase, can_reshape);
  }

  // Now we have a constant Node on the right and the constant in con
  if( con == 0 ) return NULL;   // By zero is handled by Value call
  if( con == 1 ) return NULL;   // By one  is handled by Identity call

  // Check for negative constant; if so negate the final result
  bool sign_flip = false;
  if( con < 0 ) {
    con = -con;
    sign_flip = true;
  }

  // Get low bit; check for being the only bit
  Node *res = NULL;
  jint bit1 = con & -con;       // Extract low bit
  if( bit1 == con ) {           // Found a power of 2?
    res = new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
  } else {

    // Check for constant with 2 bits set
    jint bit2 = con-bit1;
    bit2 = bit2 & -bit2;          // Extract 2nd bit
    if( bit2 + bit1 == con ) {    // Found all bits in con?
      Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
      Node *n2 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
      res = new (phase->C) AddINode( n2, n1 );

    } else if (is_power_of_2(con+1)) {
      // Sleezy: power-of-2 -1.  Next time be generic.
      jint temp = (jint) (con + 1);
      Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
      res = new (phase->C) SubINode( n1, in(1) );
    } else {
      return MulNode::Ideal(phase, can_reshape);
    }
  }

  if( sign_flip ) {             // Need to negate result?
    res = phase->transform(res);// Transform, before making the zero con
    res = new (phase->C) SubINode(phase->intcon(0),res);
  }

  return res;                   // Return final result
}

//------------------------------mul_ring---------------------------------------
// Compute the product type of two integer ranges into this node.
const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // Fetch endpoints of all ranges
  int32 lo0 = r0->_lo;
  double a = (double)lo0;
  int32 hi0 = r0->_hi;
  double b = (double)hi0;
  int32 lo1 = r1->_lo;
  double c = (double)lo1;
  int32 hi1 = r1->_hi;
  double d = (double)hi1;

  // Compute all endpoints & check for overflow
  int32 A = lo0*lo1;
  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
  int32 B = lo0*hi1;
  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
  int32 C = hi0*lo1;
  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
  int32 D = hi0*hi1;
  if( (double)D != b*d ) return TypeInt::INT; // Overflow?

  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
  else { lo0 = B; hi0 = A; }
  if( C < D ) {
    if( C < lo0 ) lo0 = C;
    if( D > hi0 ) hi0 = D;
  } else {
    if( D < lo0 ) lo0 = D;
    if( C > hi0 ) hi0 = C;
  }
  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
}


//=============================================================================
//------------------------------Ideal------------------------------------------
// Check for power-of-2 multiply, then try the regular MulNode::Ideal
Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Swap constant to right
  jlong con;
  if ((con = in(1)->find_long_con(0)) != 0) {
    swap_edges(1, 2);
    // Finish rest of method to use info in 'con'
  } else if ((con = in(2)->find_long_con(0)) == 0) {
    return MulNode::Ideal(phase, can_reshape);
  }

  // Now we have a constant Node on the right and the constant in con
  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call

  // Check for negative constant; if so negate the final result
  bool sign_flip = false;
  if( con < 0 ) {
    con = -con;
    sign_flip = true;
  }

  // Get low bit; check for being the only bit
  Node *res = NULL;
  jlong bit1 = con & -con;      // Extract low bit
  if( bit1 == con ) {           // Found a power of 2?
    res = new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
  } else {

    // Check for constant with 2 bits set
    jlong bit2 = con-bit1;
    bit2 = bit2 & -bit2;          // Extract 2nd bit
    if( bit2 + bit1 == con ) {    // Found all bits in con?
      Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
      Node *n2 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
      res = new (phase->C) AddLNode( n2, n1 );

    } else if (is_power_of_2_long(con+1)) {
      // Sleezy: power-of-2 -1.  Next time be generic.
      jlong temp = (jlong) (con + 1);
      Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
      res = new (phase->C) SubLNode( n1, in(1) );
    } else {
      return MulNode::Ideal(phase, can_reshape);
    }
  }

  if( sign_flip ) {             // Need to negate result?
    res = phase->transform(res);// Transform, before making the zero con
    res = new (phase->C) SubLNode(phase->longcon(0),res);
  }

  return res;                   // Return final result
}

//------------------------------mul_ring---------------------------------------
// Compute the product type of two integer ranges into this node.
const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();

  // Fetch endpoints of all ranges
  jlong lo0 = r0->_lo;
  double a = (double)lo0;
  jlong hi0 = r0->_hi;
  double b = (double)hi0;
  jlong lo1 = r1->_lo;
  double c = (double)lo1;
  jlong hi1 = r1->_hi;
  double d = (double)hi1;

  // Compute all endpoints & check for overflow
  jlong A = lo0*lo1;
  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
  jlong B = lo0*hi1;
  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
  jlong C = hi0*lo1;
  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
  jlong D = hi0*hi1;
  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?

  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
  else { lo0 = B; hi0 = A; }
  if( C < D ) {
    if( C < lo0 ) lo0 = C;
    if( D > hi0 ) hi0 = D;
  } else {
    if( D < lo0 ) lo0 = D;
    if( C > hi0 ) hi0 = C;
  }
  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Compute the product type of two double ranges into this node.
const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
  return TypeF::make( t0->getf() * t1->getf() );
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Compute the product type of two double ranges into this node.
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
  // We must be multiplying 2 double constants.
  return TypeD::make( t0->getd() * t1->getd() );
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // It is not worth trying to constant fold this stuff!
  return TypeLong::LONG;
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Supplied function returns the product of the inputs IN THE CURRENT RING.
// For the logical operations the ring's MUL is really a logical AND function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();
  int widen = MAX2(r0->_widen,r1->_widen);

  // If either input is a constant, might be able to trim cases
  if( !r0->is_con() && !r1->is_con() )
    return TypeInt::INT;        // No constants to be had

  // Both constants?  Return bits
  if( r0->is_con() && r1->is_con() )
    return TypeInt::make( r0->get_con() & r1->get_con() );

  if( r0->is_con() && r0->get_con() > 0 )
    return TypeInt::make(0, r0->get_con(), widen);

  if( r1->is_con() && r1->get_con() > 0 )
    return TypeInt::make(0, r1->get_con(), widen);

  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
    return TypeInt::BOOL;
  }

  return TypeInt::INT;          // No constants to be had
}

//------------------------------Identity---------------------------------------
// Masking off the high bits of an unsigned load is not required
Node *AndINode::Identity( PhaseTransform *phase ) {

  // x & x => x
  if (phase->eqv(in(1), in(2))) return in(1);

  Node* in1 = in(1);
  uint op = in1->Opcode();
  const TypeInt* t2 = phase->type(in(2))->isa_int();
  if (t2 && t2->is_con()) {
    int con = t2->get_con();
    // Masking off high bits which are always zero is useless.
    const TypeInt* t1 = phase->type( in(1) )->isa_int();
    if (t1 != NULL && t1->_lo >= 0) {
      jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
      if ((t1_support & con) == t1_support)
        return in1;
    }
    // Masking off the high bits of a unsigned-shift-right is not
    // needed either.
    if (op == Op_URShiftI) {
      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
      if (t12 && t12->is_con()) {  // Shift is by a constant
        int shift = t12->get_con();
        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
        int mask = max_juint >> shift;
        if ((mask & con) == mask)  // If AND is useless, skip it
          return in1;
      }
    }
  }
  return MulNode::Identity(phase);
}

//------------------------------Ideal------------------------------------------
Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Special case constant AND mask
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
  const int mask = t2->get_con();
  Node *load = in(1);
  uint lop = load->Opcode();

  // Masking bits off of a Character?  Hi bits are already zero.
  if( lop == Op_LoadUS &&
      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
    return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF));

  // Masking bits off of a Short?  Loading a Character does some masking
  if (can_reshape &&
      load->outcnt() == 1 && load->unique_out() == this) {
    if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
      Node *ldus = new (phase->C) LoadUSNode(load->in(MemNode::Control),
                                             load->in(MemNode::Memory),
                                             load->in(MemNode::Address),
                                             load->adr_type());
      ldus = phase->transform(ldus);
      return new (phase->C) AndINode(ldus, phase->intcon(mask & 0xFFFF));
    }

    // Masking sign bits off of a Byte?  Do an unsigned byte load plus
    // an and.
    if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
      Node* ldub = new (phase->C) LoadUBNode(load->in(MemNode::Control),
                                             load->in(MemNode::Memory),
                                             load->in(MemNode::Address),
                                             load->adr_type());
      ldub = phase->transform(ldub);
      return new (phase->C) AndINode(ldub, phase->intcon(mask));
    }
  }

  // Masking off sign bits?  Dont make them!
  if( lop == Op_RShiftI ) {
    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
    if( t12 && t12->is_con() ) { // Shift is by a constant
      int shift = t12->get_con();
      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
      // If the AND'ing of the 2 masks has no bits, then only original shifted
      // bits survive.  NO sign-extension bits survive the maskings.
      if( (sign_bits_mask & mask) == 0 ) {
        // Use zero-fill shift instead
        Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2)));
        return new (phase->C) AndINode( zshift, in(2) );
      }
    }
  }

  // Check for 'negate/and-1', a pattern emitted when someone asks for
  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
  // plus 1) and the mask is of the low order bit.  Skip the negate.
  if( lop == Op_SubI && mask == 1 && load->in(1) &&
      phase->type(load->in(1)) == TypeInt::ZERO )
    return new (phase->C) AndINode( load->in(2), in(2) );

  return MulNode::Ideal(phase, can_reshape);
}

//=============================================================================
//------------------------------mul_ring---------------------------------------
// Supplied function returns the product of the inputs IN THE CURRENT RING.
// For the logical operations the ring's MUL is really a logical AND function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();
  int widen = MAX2(r0->_widen,r1->_widen);

  // If either input is a constant, might be able to trim cases
  if( !r0->is_con() && !r1->is_con() )
    return TypeLong::LONG;      // No constants to be had

  // Both constants?  Return bits
  if( r0->is_con() && r1->is_con() )
    return TypeLong::make( r0->get_con() & r1->get_con() );

  if( r0->is_con() && r0->get_con() > 0 )
    return TypeLong::make(CONST64(0), r0->get_con(), widen);

  if( r1->is_con() && r1->get_con() > 0 )
    return TypeLong::make(CONST64(0), r1->get_con(), widen);

  return TypeLong::LONG;        // No constants to be had
}

//------------------------------Identity---------------------------------------
// Masking off the high bits of an unsigned load is not required
Node *AndLNode::Identity( PhaseTransform *phase ) {

  // x & x => x
  if (phase->eqv(in(1), in(2))) return in(1);

  Node *usr = in(1);
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
  if( t2 && t2->is_con() ) {
    jlong con = t2->get_con();
    // Masking off high bits which are always zero is useless.
    const TypeLong* t1 = phase->type( in(1) )->isa_long();
    if (t1 != NULL && t1->_lo >= 0) {
      jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
      if ((t1_support & con) == t1_support)
        return usr;
    }
    uint lop = usr->Opcode();
    // Masking off the high bits of a unsigned-shift-right is not
    // needed either.
    if( lop == Op_URShiftL ) {
      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
      if( t12 && t12->is_con() ) {  // Shift is by a constant
        int shift = t12->get_con();
        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
        jlong mask = max_julong >> shift;
        if( (mask&con) == mask )  // If AND is useless, skip it
          return usr;
      }
    }
  }
  return MulNode::Identity(phase);
}

//------------------------------Ideal------------------------------------------
Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Special case constant AND mask
  const TypeLong *t2 = phase->type( in(2) )->isa_long();
  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
  const jlong mask = t2->get_con();

  Node* in1 = in(1);
  uint op = in1->Opcode();

  // Are we masking a long that was converted from an int with a mask
  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
  // convert masks which would cause a sign extension of the integer
  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
  // would be optimized away later in Identity.
  if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
    Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask));
    andi = phase->transform(andi);
    return new (phase->C) ConvI2LNode(andi);
  }

  // Masking off sign bits?  Dont make them!
  if (op == Op_RShiftL) {
    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
    if( t12 && t12->is_con() ) { // Shift is by a constant
      int shift = t12->get_con();
      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
      // If the AND'ing of the 2 masks has no bits, then only original shifted
      // bits survive.  NO sign-extension bits survive the maskings.
      if( (sign_bits_mask & mask) == 0 ) {
        // Use zero-fill shift instead
        Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2)));
        return new (phase->C) AndLNode(zshift, in(2));
      }
    }
  }

  return MulNode::Ideal(phase, can_reshape);
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *LShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
// If the right input is a constant, and the left input is an add of a
// constant, flatten the tree: (X+con1)<in(2))->isa_int();
    if( t12 && t12->is_con() ){ // Left input is an add of a con?
      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
      if( con < 16 ) {
        // Compute X << con0
        Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) );
        // Compute X<intcon(t12->get_con() << con));
      }
    }
  }

  // Check for "(x>>c0)<in(1),phase->intcon( -(1<c0) & Y)<C) LShiftINode( add1->in(2), in(2) ) );
      return new (phase->C) AndINode( add2->in(1), y_sh );
    }
  }

  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
  // before shifting them away.
  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
  if( add1_op == Op_AndI &&
      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
    return new (phase->C) LShiftINode( add1->in(1), in(2) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A LShiftINode shifts its input2 left by input1 amount.
const Type *LShiftINode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int(); // Handy access
  const TypeInt *r2 = t2->is_int(); // Handy access

  if (!r2->is_con())
    return TypeInt::INT;

  uint shift = r2->get_con();
  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
  // Shift by a multiple of 32 does nothing:
  if (shift == 0)  return t1;

  // If the shift is a constant, shift the bounds of the type,
  // unless this could lead to an overflow.
  if (!r1->is_con()) {
    jint lo = r1->_lo, hi = r1->_hi;
    if (((lo << shift) >> shift) == lo &&
        ((hi << shift) >> shift) == hi) {
      // No overflow.  The range shifts up cleanly.
      return TypeInt::make((jint)lo << (jint)shift,
                           (jint)hi << (jint)shift,
                           MAX2(r1->_widen,r2->_widen));
    }
    return TypeInt::INT;
  }

  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *LShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
// If the right input is a constant, and the left input is an add of a
// constant, flatten the tree: (X+con1)<in(2))->isa_long();
    if( t12 && t12->is_con() ){ // Left input is an add of a con?
      // Compute X << con0
      Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) );
      // Compute X<longcon(t12->get_con() << con));
    }
  }

  // Check for "(x>>c0)<in(1),phase->longcon( -(CONST64(1)<c0) & Y)<C) LShiftLNode( add1->in(2), in(2) ) );
      return new (phase->C) AndLNode( add2->in(1), y_sh );
    }
  }

  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
  // before shifting them away.
  const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
  if( add1_op == Op_AndL &&
      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
    return new (phase->C) LShiftLNode( add1->in(1), in(2) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A LShiftLNode shifts its input2 left by input1 amount.
const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int();  // Handy access

  if (!r2->is_con())
    return TypeLong::LONG;

  uint shift = r2->get_con();
  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
  // Shift by a multiple of 64 does nothing:
  if (shift == 0)  return t1;

  // If the shift is a constant, shift the bounds of the type,
  // unless this could lead to an overflow.
  if (!r1->is_con()) {
    jlong lo = r1->_lo, hi = r1->_hi;
    if (((lo << shift) >> shift) == lo &&
        ((hi << shift) >> shift) == hi) {
      // No overflow.  The range shifts up cleanly.
      return TypeLong::make((jlong)lo << (jint)shift,
                            (jlong)hi << (jint)shift,
                            MAX2(r1->_widen,r2->_widen));
    }
    return TypeLong::LONG;
  }

  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *RShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *t2 = phase->type(in(2))->isa_int();
  if( !t2 ) return this;
  if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
    return in(1);

  // Check for useless sign-masking
  if( in(1)->Opcode() == Op_LShiftI &&
      in(1)->req() == 3 &&
      in(1)->in(2) == in(2) &&
      t2->is_con() ) {
    uint shift = t2->get_con();
    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
    // Compute masks for which this shifting doesn't change
    int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
    int hi = ~lo;               // 00007FFF
    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
    if( !t11 ) return this;
    // Does actual value fit inside of mask?
    if( lo <= t11->_lo && t11->_hi <= hi )
      return in(1)->in(1);      // Then shifting is a nop
  }

  return this;
}

//------------------------------Ideal------------------------------------------
Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Inputs may be TOP if they are dead.
  const TypeInt *t1 = phase->type( in(1) )->isa_int();
  if( !t1 ) return NULL;        // Left input is an integer
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const TypeInt *t3;  // type of in(1).in(2)
  int shift = t2->get_con();
  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts

  if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count

  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
  // Such expressions arise normally from shift chains like (byte)(x >> 24).
  const Node *mask = in(1);
  if( mask->Opcode() == Op_AndI &&
      (t3 = phase->type(mask->in(2))->isa_int()) &&
      t3->is_con() ) {
    Node *x = mask->in(1);
    jint maskbits = t3->get_con();
    // Convert to "(x >> shift) & (mask >> shift)"
    Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) );
    return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
  }

  // Check for "(short[i] <<16)>>16" which simply sign-extends
  const Node *shl = in(1);
  if( shl->Opcode() != Op_LShiftI ) return NULL;

  if( shift == 16 &&
      (t3 = phase->type(shl->in(2))->isa_int()) &&
      t3->is_con(16) ) {
    Node *ld = shl->in(1);
    if( ld->Opcode() == Op_LoadS ) {
      // Sign extension is just useless here.  Return a RShiftI of zero instead
      // returning 'ld' directly.  We cannot return an old Node directly as
      // that is the job of 'Identity' calls and Identity calls only work on
      // direct inputs ('ld' is an extra Node removed from 'this').  The
      // combined optimization requires Identity only return direct inputs.
      set_req(1, ld);
      set_req(2, phase->intcon(0));
      return this;
    }
    else if( can_reshape &&
             ld->Opcode() == Op_LoadUS &&
             ld->outcnt() == 1 && ld->unique_out() == shl)
      // Replace zero-extension-load with sign-extension-load
      return new (phase->C) LoadSNode( ld->in(MemNode::Control),
                                ld->in(MemNode::Memory),
                                ld->in(MemNode::Address),
                                ld->adr_type());
  }

  // Check for "(byte[i] <<24)>>24" which simply sign-extends
  if( shift == 24 &&
      (t3 = phase->type(shl->in(2))->isa_int()) &&
      t3->is_con(24) ) {
    Node *ld = shl->in(1);
    if( ld->Opcode() == Op_LoadB ) {
      // Sign extension is just useless here
      set_req(1, ld);
      set_req(2, phase->intcon(0));
      return this;
    }
  }

  return NULL;
}

//------------------------------Value------------------------------------------
// A RShiftINode shifts its input2 right by input1 amount.
const Type *RShiftINode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeInt::INT;

  if (t2 == TypeInt::INT)
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int(); // Handy access
  const TypeInt *r2 = t2->is_int(); // Handy access

  // If the shift is a constant, just shift the bounds of the type.
  // For example, if the shift is 31, we just propagate sign bits.
  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
    // Shift by a multiple of 32 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    // This is necessary if we are to correctly type things
    // like (x<<24>>24) == ((byte)x).
    jint lo = (jint)r1->_lo >> (jint)shift;
    jint hi = (jint)r1->_hi >> (jint)shift;
    assert(lo <= hi, "must have valid bounds");
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
#ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == BitsPerJavaInteger-1) {
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
    }
#endif
    return ti;
  }

  if( !r1->is_con() || !r2->is_con() )
    return TypeInt::INT;

  // Signed shift right
  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *RShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Value------------------------------------------
// A RShiftLNode shifts its input2 right by input1 amount.
const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeLong::LONG;

  if (t2 == TypeInt::INT)
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int (); // Handy access

  // If the shift is a constant, just shift the bounds of the type.
  // For example, if the shift is 63, we just propagate sign bits.
  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
    // Shift by a multiple of 64 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    // This is necessary if we are to correctly type things
    // like (x<<24>>24) == ((byte)x).
    jlong lo = (jlong)r1->_lo >> (jlong)shift;
    jlong hi = (jlong)r1->_hi >> (jlong)shift;
    assert(lo <= hi, "must have valid bounds");
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == (2*BitsPerJavaInteger)-1) {
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
    }
    #endif
    return tl;
  }

  return TypeLong::LONG;                // Give up
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *URShiftINode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int();
  if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);

  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
  // Happens during new-array length computation.
  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
  Node *add = in(1);
  if( add->Opcode() == Op_AddI ) {
    const TypeInt *t2  = phase->type(add->in(2))->isa_int();
    if( t2 && t2->is_con(wordSize - 1) &&
        add->in(1)->Opcode() == Op_LShiftI ) {
      // Check that shift_counts are LogBytesPerWord
      Node          *lshift_count   = add->in(1)->in(2);
      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
      if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
          t_lshift_count == phase->type(in(2)) ) {
        Node          *x   = add->in(1)->in(1);
        const TypeInt *t_x = phase->type(x)->isa_int();
        if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
          return x;
        }
      }
    }
  }

  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & 31; // Shift count is always masked
  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  // We'll be wanting the right-shift amount as a mask of that many bits
  const int mask = right_n_bits(BitsPerJavaInteger - con);

  int in1_op = in(1)->Opcode();

  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
  if( in1_op == Op_URShiftI ) {
    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
    if( t12 && t12->is_con() ) { // Right input is a constant
      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
      const int con2 = t12->get_con() & 31; // Shift count is always masked
      const int con3 = con+con2;
      if( con3 < 32 )           // Only merge shifts if total is < 32
        return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) );
    }
  }

  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  // If Q is "X << z" the rounding is useless.  Look for patterns like
  // ((X<> Z  and replace with (X + Y>>>Z) & Z-mask.
  Node *add = in(1);
  if( in1_op == Op_AddI ) {
    Node *lshl = add->in(1);
    if( lshl->Opcode() == Op_LShiftI &&
        phase->type(lshl->in(2)) == t2 ) {
      Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) );
      Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) );
      return new (phase->C) AndINode( sum, phase->intcon(mask) );
    }
  }

  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  // This shortens the mask.  Also, if we are extracting a high byte and
  // storing it to a buffer, the mask will be removed completely.
  Node *andi = in(1);
  if( in1_op == Op_AndI ) {
    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
    if( t3 && t3->is_con() ) { // Right input is a constant
      jint mask2 = t3->get_con();
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
      Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) );
      return new (phase->C) AndINode(newshr, phase->intcon(mask2));
      // The negative values are easier to materialize than positive ones.
      // A typical case from address arithmetic is ((x & ~15) >> 4).
      // It's better to change that to ((x >> 4) & ~0) versus
      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
    }
  }

  // Check for "(X << z ) >>> z" which simply zero-extends
  Node *shl = in(1);
  if( in1_op == Op_LShiftI &&
      phase->type(shl->in(2)) == t2 )
    return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A URShiftINode shifts its input2 right by input1 amount.
const Type *URShiftINode::Value( PhaseTransform *phase ) const {
  // (This is a near clone of RShiftINode::Value.)
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeInt::INT;

  if (t2 == TypeInt::INT)
    return TypeInt::INT;

  const TypeInt *r1 = t1->is_int();     // Handy access
  const TypeInt *r2 = t2->is_int();     // Handy access

  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
    // Shift by a multiple of 32 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    jint lo = (juint)r1->_lo >> (juint)shift;
    jint hi = (juint)r1->_hi >> (juint)shift;
    if (r1->_hi >= 0 && r1->_lo < 0) {
      // If the type has both negative and positive values,
      // there are two separate sub-domains to worry about:
      // The positive half and the negative half.
      jint neg_lo = lo;
      jint neg_hi = (juint)-1 >> (juint)shift;
      jint pos_lo = (juint) 0 >> (juint)shift;
      jint pos_hi = hi;
      lo = MIN2(neg_lo, pos_lo);  // == 0
      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
    }
    assert(lo <= hi, "must have valid bounds");
    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == BitsPerJavaInteger-1) {
      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
    }
    #endif
    return ti;
  }

  //
  // Do not support shifted oops in info for GC
  //
  // else if( t1->base() == Type::InstPtr ) {
  //
  //   const TypeInstPtr *o = t1->is_instptr();
  //   if( t1->singleton() )
  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  // }
  // else if( t1->base() == Type::KlassPtr ) {
  //   const TypeKlassPtr *o = t1->is_klassptr();
  //   if( t1->singleton() )
  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  // }

  return TypeInt::INT;
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *URShiftLNode::Identity( PhaseTransform *phase ) {
  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
}

//------------------------------Ideal------------------------------------------
Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const TypeInt *t2 = phase->type( in(2) )->isa_int();
  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
                              // note: mask computation below does not work for 0 shift count
  // We'll be wanting the right-shift amount as a mask of that many bits
  const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);

  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  // If Q is "X << z" the rounding is useless.  Look for patterns like
  // ((X<> Z  and replace with (X + Y>>>Z) & Z-mask.
  Node *add = in(1);
  if( add->Opcode() == Op_AddL ) {
    Node *lshl = add->in(1);
    if( lshl->Opcode() == Op_LShiftL &&
        phase->type(lshl->in(2)) == t2 ) {
      Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) );
      Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) );
      return new (phase->C) AndLNode( sum, phase->longcon(mask) );
    }
  }

  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  // This shortens the mask.  Also, if we are extracting a high byte and
  // storing it to a buffer, the mask will be removed completely.
  Node *andi = in(1);
  if( andi->Opcode() == Op_AndL ) {
    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
    if( t3 && t3->is_con() ) { // Right input is a constant
      jlong mask2 = t3->get_con();
      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
      Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) );
      return new (phase->C) AndLNode(newshr, phase->longcon(mask2));
    }
  }

  // Check for "(X << z ) >>> z" which simply zero-extends
  Node *shl = in(1);
  if( shl->Opcode() == Op_LShiftL &&
      phase->type(shl->in(2)) == t2 )
    return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) );

  return NULL;
}

//------------------------------Value------------------------------------------
// A URShiftINode shifts its input2 right by input1 amount.
const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
  // (This is a near clone of RShiftLNode::Value.)
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  // Either input is TOP ==> the result is TOP
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is ZERO ==> the result is ZERO.
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // Shift by zero does nothing
  if( t2 == TypeInt::ZERO ) return t1;

  // Either input is BOTTOM ==> the result is BOTTOM
  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
    return TypeLong::LONG;

  if (t2 == TypeInt::INT)
    return TypeLong::LONG;

  const TypeLong *r1 = t1->is_long(); // Handy access
  const TypeInt  *r2 = t2->is_int (); // Handy access

  if (r2->is_con()) {
    uint shift = r2->get_con();
    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
    // Shift by a multiple of 64 does nothing:
    if (shift == 0)  return t1;
    // Calculate reasonably aggressive bounds for the result.
    jlong lo = (julong)r1->_lo >> (juint)shift;
    jlong hi = (julong)r1->_hi >> (juint)shift;
    if (r1->_hi >= 0 && r1->_lo < 0) {
      // If the type has both negative and positive values,
      // there are two separate sub-domains to worry about:
      // The positive half and the negative half.
      jlong neg_lo = lo;
      jlong neg_hi = (julong)-1 >> (juint)shift;
      jlong pos_lo = (julong) 0 >> (juint)shift;
      jlong pos_hi = hi;
      //lo = MIN2(neg_lo, pos_lo);  // == 0
      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
    }
    assert(lo <= hi, "must have valid bounds");
    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
    #ifdef ASSERT
    // Make sure we get the sign-capture idiom correct.
    if (shift == BitsPerJavaLong - 1) {
      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
    }
    #endif
    return tl;
  }

  return TypeLong::LONG;                // Give up
}

Other Java examples (source code examples)

Here is a short list of links related to this Java mulnode.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.