alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (output.cpp)

This example Java source code file (output.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assert, block, c\-, constantintvalue, growablearray, machnode, new_resource_array, node, nodefitsinbundle, null, objectvalue, op_node, optoreg\:\:name, product

The output.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/assembler.inline.hpp"
#include "code/compiledIC.hpp"
#include "code/debugInfo.hpp"
#include "code/debugInfoRec.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/oopMap.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/locknode.hpp"
#include "opto/machnode.hpp"
#include "opto/output.hpp"
#include "opto/regalloc.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
#include "runtime/handles.inline.hpp"
#include "utilities/xmlstream.hpp"

extern uint size_exception_handler();
extern uint size_deopt_handler();

#ifndef PRODUCT
#define DEBUG_ARG(x) , x
#else
#define DEBUG_ARG(x)
#endif

extern int emit_exception_handler(CodeBuffer &cbuf);
extern int emit_deopt_handler(CodeBuffer &cbuf);

// Convert Nodes to instruction bits and pass off to the VM
void Compile::Output() {
  // RootNode goes
  assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );

  // The number of new nodes (mostly MachNop) is proportional to
  // the number of java calls and inner loops which are aligned.
  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
                            C->inner_loops()*(OptoLoopAlignment-1)),
                           "out of nodes before code generation" ) ) {
    return;
  }
  // Make sure I can find the Start Node
  Block *entry = _cfg->get_block(1);
  Block *broot = _cfg->get_root_block();

  const StartNode *start = entry->head()->as_Start();

  // Replace StartNode with prolog
  MachPrologNode *prolog = new (this) MachPrologNode();
  entry->map_node(prolog, 0);
  _cfg->map_node_to_block(prolog, entry);
  _cfg->unmap_node_from_block(start); // start is no longer in any block

  // Virtual methods need an unverified entry point

  if( is_osr_compilation() ) {
    if( PoisonOSREntry ) {
      // TODO: Should use a ShouldNotReachHereNode...
      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    }
  } else {
    if( _method && !_method->flags().is_static() ) {
      // Insert unvalidated entry point
      _cfg->insert( broot, 0, new (this) MachUEPNode() );
    }

  }


  // Break before main entry point
  if( (_method && _method->break_at_execute())
#ifndef PRODUCT
    ||(OptoBreakpoint && is_method_compilation())
    ||(OptoBreakpointOSR && is_osr_compilation())
    ||(OptoBreakpointC2R && !_method)
#endif
    ) {
    // checking for _method means that OptoBreakpoint does not apply to
    // runtime stubs or frame converters
    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
  }

  // Insert epilogs before every return
  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
    Block* block = _cfg->get_block(i);
    if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
      Node* m = block->end();
      if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
        MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
        block->add_inst(epilog);
        _cfg->map_node_to_block(epilog, block);
      }
    }
  }

# ifdef ENABLE_ZAP_DEAD_LOCALS
  if (ZapDeadCompiledLocals) {
    Insert_zap_nodes();
  }
# endif

  uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
  blk_starts[0] = 0;

  // Initialize code buffer and process short branches.
  CodeBuffer* cb = init_buffer(blk_starts);

  if (cb == NULL || failing()) {
    return;
  }

  ScheduleAndBundle();

#ifndef PRODUCT
  if (trace_opto_output()) {
    tty->print("\n---- After ScheduleAndBundle ----\n");
    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
      tty->print("\nBB#%03d:\n", i);
      Block* block = _cfg->get_block(i);
      for (uint j = 0; j < block->number_of_nodes(); j++) {
        Node* n = block->get_node(j);
        OptoReg::Name reg = _regalloc->get_reg_first(n);
        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
        n->dump();
      }
    }
  }
#endif

  if (failing()) {
    return;
  }

  BuildOopMaps();

  if (failing())  {
    return;
  }

  fill_buffer(cb, blk_starts);
}

bool Compile::need_stack_bang(int frame_size_in_bytes) const {
  // Determine if we need to generate a stack overflow check.
  // Do it if the method is not a stub function and
  // has java calls or has frame size > vm_page_size/8.
  return (UseStackBanging && stub_function() == NULL &&
          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
}

bool Compile::need_register_stack_bang() const {
  // Determine if we need to generate a register stack overflow check.
  // This is only used on architectures which have split register
  // and memory stacks (ie. IA64).
  // Bang if the method is not a stub function and has java calls
  return (stub_function() == NULL && has_java_calls());
}

# ifdef ENABLE_ZAP_DEAD_LOCALS


// In order to catch compiler oop-map bugs, we have implemented
// a debugging mode called ZapDeadCompilerLocals.
// This mode causes the compiler to insert a call to a runtime routine,
// "zap_dead_locals", right before each place in compiled code
// that could potentially be a gc-point (i.e., a safepoint or oop map point).
// The runtime routine checks that locations mapped as oops are really
// oops, that locations mapped as values do not look like oops,
// and that locations mapped as dead are not used later
// (by zapping them to an invalid address).

int Compile::_CompiledZap_count = 0;

void Compile::Insert_zap_nodes() {
  bool skip = false;


  // Dink with static counts because code code without the extra
  // runtime calls is MUCH faster for debugging purposes

       if ( CompileZapFirst  ==  0  ) ; // nothing special
  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
  else if ( CompileZapFirst  == CompiledZap_count() )
    warning("starting zap compilation after skipping");

       if ( CompileZapLast  ==  -1  ) ; // nothing special
  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
  else if ( CompileZapLast  ==  CompiledZap_count() )
    warning("about to compile last zap");

  ++_CompiledZap_count; // counts skipped zaps, too

  if ( skip )  return;


  if ( _method == NULL )
    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care

  // Insert call to zap runtime stub before every node with an oop map
  for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
    Block *b = _cfg->get_block(i);
    for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
      Node *n = b->get_node(j);

      // Determining if we should insert a zap-a-lot node in output.
      // We do that for all nodes that has oopmap info, except for calls
      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
      // and expect the C code to reset it.  Hence, there can be no safepoints between
      // the inlined-allocation and the call to new_Java, etc.
      // We also cannot zap monitor calls, as they must hold the microlock
      // during the call to Zap, which also wants to grab the microlock.
      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
      if ( insert ) { // it is MachSafePoint
        if ( !n->is_MachCall() ) {
          insert = false;
        } else if ( n->is_MachCall() ) {
          MachCallNode* call = n->as_MachCall();
          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
              call->entry_point() == OptoRuntime::new_array_Java() ||
              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
              ) {
            insert = false;
          }
        }
        if (insert) {
          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
          b->insert_node(zap, j);
          _cfg->map_node_to_block(zap, b);
          ++j;
        }
      }
    }
  }
}


Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
  CallStaticJavaNode* ideal_node =
    new (this) CallStaticJavaNode( tf,
         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
                       "call zap dead locals stub", 0, TypePtr::BOTTOM);
  // We need to copy the OopMap from the site we're zapping at.
  // We have to make a copy, because the zap site might not be
  // a call site, and zap_dead is a call site.
  OopMap* clone = node_to_check->oop_map()->deep_copy();

  // Add the cloned OopMap to the zap node
  ideal_node->set_oop_map(clone);
  return _matcher->match_sfpt(ideal_node);
}

bool Compile::is_node_getting_a_safepoint( Node* n) {
  // This code duplicates the logic prior to the call of add_safepoint
  // below in this file.
  if( n->is_MachSafePoint() ) return true;
  return false;
}

# endif // ENABLE_ZAP_DEAD_LOCALS

// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
// of a loop. When aligning a loop we need to provide enough instructions
// in cpu's fetch buffer to feed decoders. The loop alignment could be
// avoided if we have enough instructions in fetch buffer at the head of a loop.
// By default, the size is set to 999999 by Block's constructor so that
// a loop will be aligned if the size is not reset here.
//
// Note: Mach instructions could contain several HW instructions
// so the size is estimated only.
//
void Compile::compute_loop_first_inst_sizes() {
  // The next condition is used to gate the loop alignment optimization.
  // Don't aligned a loop if there are enough instructions at the head of a loop
  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
  // equal to 11 bytes which is the largest address NOP instruction.
  if (MaxLoopPad < OptoLoopAlignment - 1) {
    uint last_block = _cfg->number_of_blocks() - 1;
    for (uint i = 1; i <= last_block; i++) {
      Block* block = _cfg->get_block(i);
      // Check the first loop's block which requires an alignment.
      if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
        uint sum_size = 0;
        uint inst_cnt = NumberOfLoopInstrToAlign;
        inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);

        // Check subsequent fallthrough blocks if the loop's first
        // block(s) does not have enough instructions.
        Block *nb = block;
        while(inst_cnt > 0 &&
              i < last_block &&
              !_cfg->get_block(i + 1)->has_loop_alignment() &&
              !nb->has_successor(block)) {
          i++;
          nb = _cfg->get_block(i);
          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
        } // while( inst_cnt > 0 && i < last_block  )

        block->set_first_inst_size(sum_size);
      } // f( b->head()->is_Loop() )
    } // for( i <= last_block )
  } // if( MaxLoopPad < OptoLoopAlignment-1 )
}

// The architecture description provides short branch variants for some long
// branch instructions. Replace eligible long branches with short branches.
void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
  // Compute size of each block, method size, and relocation information size
  uint nblocks  = _cfg->number_of_blocks();

  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )

  bool has_short_branch_candidate = false;

  // Initialize the sizes to 0
  code_size  = 0;          // Size in bytes of generated code
  stub_size  = 0;          // Size in bytes of all stub entries
  // Size in bytes of all relocation entries, including those in local stubs.
  // Start with 2-bytes of reloc info for the unvalidated entry point
  reloc_size = 1;          // Number of relocation entries

  // Make three passes.  The first computes pessimistic blk_starts,
  // relative jmp_offset and reloc_size information.  The second performs
  // short branch substitution using the pessimistic sizing.  The
  // third inserts nops where needed.

  // Step one, perform a pessimistic sizing pass.
  uint last_call_adr = max_uint;
  uint last_avoid_back_to_back_adr = max_uint;
  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
  for (uint i = 0; i < nblocks; i++) { // For all blocks
    Block* block = _cfg->get_block(i);

    // During short branch replacement, we store the relative (to blk_starts)
    // offset of jump in jmp_offset, rather than the absolute offset of jump.
    // This is so that we do not need to recompute sizes of all nodes when
    // we compute correct blk_starts in our next sizing pass.
    jmp_offset[i] = 0;
    jmp_size[i]   = 0;
    jmp_nidx[i]   = -1;
    DEBUG_ONLY( jmp_target[i] = 0; )
    DEBUG_ONLY( jmp_rule[i]   = 0; )

    // Sum all instruction sizes to compute block size
    uint last_inst = block->number_of_nodes();
    uint blk_size = 0;
    for (uint j = 0; j < last_inst; j++) {
      Node* nj = block->get_node(j);
      // Handle machine instruction nodes
      if (nj->is_Mach()) {
        MachNode *mach = nj->as_Mach();
        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
        reloc_size += mach->reloc();
        if (mach->is_MachCall()) {
          MachCallNode *mcall = mach->as_MachCall();
          // This destination address is NOT PC-relative

          mcall->method_set((intptr_t)mcall->entry_point());

          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
            stub_size  += CompiledStaticCall::to_interp_stub_size();
            reloc_size += CompiledStaticCall::reloc_to_interp_stub();
          }
        } else if (mach->is_MachSafePoint()) {
          // If call/safepoint are adjacent, account for possible
          // nop to disambiguate the two safepoints.
          // ScheduleAndBundle() can rearrange nodes in a block,
          // check for all offsets inside this block.
          if (last_call_adr >= blk_starts[i]) {
            blk_size += nop_size;
          }
        }
        if (mach->avoid_back_to_back()) {
          // Nop is inserted between "avoid back to back" instructions.
          // ScheduleAndBundle() can rearrange nodes in a block,
          // check for all offsets inside this block.
          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
            blk_size += nop_size;
          }
        }
        if (mach->may_be_short_branch()) {
          if (!nj->is_MachBranch()) {
#ifndef PRODUCT
            nj->dump(3);
#endif
            Unimplemented();
          }
          assert(jmp_nidx[i] == -1, "block should have only one branch");
          jmp_offset[i] = blk_size;
          jmp_size[i]   = nj->size(_regalloc);
          jmp_nidx[i]   = j;
          has_short_branch_candidate = true;
        }
      }
      blk_size += nj->size(_regalloc);
      // Remember end of call offset
      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
        last_call_adr = blk_starts[i]+blk_size;
      }
      // Remember end of avoid_back_to_back offset
      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
      }
    }

    // When the next block starts a loop, we may insert pad NOP
    // instructions.  Since we cannot know our future alignment,
    // assume the worst.
    if (i < nblocks - 1) {
      Block* nb = _cfg->get_block(i + 1);
      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
      if (max_loop_pad > 0) {
        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
        // If either is the last instruction in this block, bump by
        // max_loop_pad in lock-step with blk_size, so sizing
        // calculations in subsequent blocks still can conservatively
        // detect that it may the last instruction in this block.
        if (last_call_adr == blk_starts[i]+blk_size) {
          last_call_adr += max_loop_pad;
        }
        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
          last_avoid_back_to_back_adr += max_loop_pad;
        }
        blk_size += max_loop_pad;
      }
    }

    // Save block size; update total method size
    blk_starts[i+1] = blk_starts[i]+blk_size;
  }

  // Step two, replace eligible long jumps.
  bool progress = true;
  uint last_may_be_short_branch_adr = max_uint;
  while (has_short_branch_candidate && progress) {
    progress = false;
    has_short_branch_candidate = false;
    int adjust_block_start = 0;
    for (uint i = 0; i < nblocks; i++) {
      Block* block = _cfg->get_block(i);
      int idx = jmp_nidx[i];
      MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
      if (mach != NULL && mach->may_be_short_branch()) {
#ifdef ASSERT
        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
        int j;
        // Find the branch; ignore trailing NOPs.
        for (j = block->number_of_nodes()-1; j>=0; j--) {
          Node* n = block->get_node(j);
          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
            break;
        }
        assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
#endif
        int br_size = jmp_size[i];
        int br_offs = blk_starts[i] + jmp_offset[i];

        // This requires the TRUE branch target be in succs[0]
        uint bnum = block->non_connector_successor(0)->_pre_order;
        int offset = blk_starts[bnum] - br_offs;
        if (bnum > i) { // adjust following block's offset
          offset -= adjust_block_start;
        }
        // In the following code a nop could be inserted before
        // the branch which will increase the backward distance.
        bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
        if (needs_padding && offset <= 0)
          offset -= nop_size;

        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
          // We've got a winner.  Replace this branch.
          MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);

          // Update the jmp_size.
          int new_size = replacement->size(_regalloc);
          int diff     = br_size - new_size;
          assert(diff >= (int)nop_size, "short_branch size should be smaller");
          // Conservatively take into accound padding between
          // avoid_back_to_back branches. Previous branch could be
          // converted into avoid_back_to_back branch during next
          // rounds.
          if (needs_padding && replacement->avoid_back_to_back()) {
            jmp_offset[i] += nop_size;
            diff -= nop_size;
          }
          adjust_block_start += diff;
          block->map_node(replacement, idx);
          mach->subsume_by(replacement, C);
          mach = replacement;
          progress = true;

          jmp_size[i] = new_size;
          DEBUG_ONLY( jmp_target[i] = bnum; );
          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
        } else {
          // The jump distance is not short, try again during next iteration.
          has_short_branch_candidate = true;
        }
      } // (mach->may_be_short_branch())
      if (mach != NULL && (mach->may_be_short_branch() ||
                           mach->avoid_back_to_back())) {
        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
      }
      blk_starts[i+1] -= adjust_block_start;
    }
  }

#ifdef ASSERT
  for (uint i = 0; i < nblocks; i++) { // For all blocks
    if (jmp_target[i] != 0) {
      int br_size = jmp_size[i];
      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
      }
      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
    }
  }
#endif

  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
  // after ScheduleAndBundle().

  // ------------------
  // Compute size for code buffer
  code_size = blk_starts[nblocks];

  // Relocation records
  reloc_size += 1;              // Relo entry for exception handler

  // Adjust reloc_size to number of record of relocation info
  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
  // a relocation index.
  // The CodeBuffer will expand the locs array if this estimate is too low.
  reloc_size *= 10 / sizeof(relocInfo);
}

//------------------------------FillLocArray-----------------------------------
// Create a bit of debug info and append it to the array.  The mapping is from
// Java local or expression stack to constant, register or stack-slot.  For
// doubles, insert 2 mappings and return 1 (to tell the caller that the next
// entry has been taken care of and caller should skip it).
static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
  // This should never have accepted Bad before
  assert(OptoReg::is_valid(regnum), "location must be valid");
  return (OptoReg::is_reg(regnum))
    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
}


ObjectValue*
Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
  for (int i = 0; i < objs->length(); i++) {
    assert(objs->at(i)->is_object(), "corrupt object cache");
    ObjectValue* sv = (ObjectValue*) objs->at(i);
    if (sv->id() == id) {
      return sv;
    }
  }
  // Otherwise..
  return NULL;
}

void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
                                     ObjectValue* sv ) {
  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
  objs->append(sv);
}


void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
                            GrowableArray<ScopeValue*> *array,
                            GrowableArray<ScopeValue*> *objs ) {
  assert( local, "use _top instead of null" );
  if (array->length() != idx) {
    assert(array->length() == idx + 1, "Unexpected array count");
    // Old functionality:
    //   return
    // New functionality:
    //   Assert if the local is not top. In product mode let the new node
    //   override the old entry.
    assert(local == top(), "LocArray collision");
    if (local == top()) {
      return;
    }
    array->pop();
  }
  const Type *t = local->bottom_type();

  // Is it a safepoint scalar object node?
  if (local->is_SafePointScalarObject()) {
    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();

    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
    if (sv == NULL) {
      ciKlass* cik = t->is_oopptr()->klass();
      assert(cik->is_instance_klass() ||
             cik->is_array_klass(), "Not supported allocation.");
      sv = new ObjectValue(spobj->_idx,
                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
      Compile::set_sv_for_object_node(objs, sv);

      uint first_ind = spobj->first_index(sfpt->jvms());
      for (uint i = 0; i < spobj->n_fields(); i++) {
        Node* fld_node = sfpt->in(first_ind+i);
        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
      }
    }
    array->append(sv);
    return;
  }

  // Grab the register number for the local
  OptoReg::Name regnum = _regalloc->get_reg_first(local);
  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
    // Record the double as two float registers.
    // The register mask for such a value always specifies two adjacent
    // float registers, with the lower register number even.
    // Normally, the allocation of high and low words to these registers
    // is irrelevant, because nearly all operations on register pairs
    // (e.g., StoreD) treat them as a single unit.
    // Here, we assume in addition that the words in these two registers
    // stored "naturally" (by operations like StoreD and double stores
    // within the interpreter) such that the lower-numbered register
    // is written to the lower memory address.  This may seem like
    // a machine dependency, but it is not--it is a requirement on
    // the author of the <arch>.ad file to ensure that, for every
    // even/odd double-register pair to which a double may be allocated,
    // the word in the even single-register is stored to the first
    // memory word.  (Note that register numbers are completely
    // arbitrary, and are not tied to any machine-level encodings.)
#ifdef _LP64
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
      array->append(new ConstantIntValue(0));
      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
    } else if ( t->base() == Type::Long ) {
      array->append(new ConstantIntValue(0));
      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
    } else if ( t->base() == Type::RawPtr ) {
      // jsr/ret return address which must be restored into a the full
      // width 64-bit stack slot.
      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
    }
#else //_LP64
#ifdef SPARC
    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
      // For SPARC we have to swap high and low words for
      // long values stored in a single-register (g0-g7).
      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
    } else
#endif //SPARC
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
      // Repack the double/long as two jints.
      // The convention the interpreter uses is that the second local
      // holds the first raw word of the native double representation.
      // This is actually reasonable, since locals and stack arrays
      // grow downwards in all implementations.
      // (If, on some machine, the interpreter's Java locals or stack
      // were to grow upwards, the embedded doubles would be word-swapped.)
      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
    }
#endif //_LP64
    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
               OptoReg::is_reg(regnum) ) {
      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
                                   ? Location::float_in_dbl : Location::normal ));
    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
                                   ? Location::int_in_long : Location::normal ));
    } else if( t->base() == Type::NarrowOop ) {
      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
    } else {
      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
    }
    return;
  }

  // No register.  It must be constant data.
  switch (t->base()) {
  case Type::Half:              // Second half of a double
    ShouldNotReachHere();       // Caller should skip 2nd halves
    break;
  case Type::AnyPtr:
    array->append(new ConstantOopWriteValue(NULL));
    break;
  case Type::AryPtr:
  case Type::InstPtr:          // fall through
    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
    break;
  case Type::NarrowOop:
    if (t == TypeNarrowOop::NULL_PTR) {
      array->append(new ConstantOopWriteValue(NULL));
    } else {
      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
    }
    break;
  case Type::Int:
    array->append(new ConstantIntValue(t->is_int()->get_con()));
    break;
  case Type::RawPtr:
    // A return address (T_ADDRESS).
    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
#ifdef _LP64
    // Must be restored to the full-width 64-bit stack slot.
    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
#else
    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
#endif
    break;
  case Type::FloatCon: {
    float f = t->is_float_constant()->getf();
    array->append(new ConstantIntValue(jint_cast(f)));
    break;
  }
  case Type::DoubleCon: {
    jdouble d = t->is_double_constant()->getd();
#ifdef _LP64
    array->append(new ConstantIntValue(0));
    array->append(new ConstantDoubleValue(d));
#else
    // Repack the double as two jints.
    // The convention the interpreter uses is that the second local
    // holds the first raw word of the native double representation.
    // This is actually reasonable, since locals and stack arrays
    // grow downwards in all implementations.
    // (If, on some machine, the interpreter's Java locals or stack
    // were to grow upwards, the embedded doubles would be word-swapped.)
    jint   *dp = (jint*)&d;
    array->append(new ConstantIntValue(dp[1]));
    array->append(new ConstantIntValue(dp[0]));
#endif
    break;
  }
  case Type::Long: {
    jlong d = t->is_long()->get_con();
#ifdef _LP64
    array->append(new ConstantIntValue(0));
    array->append(new ConstantLongValue(d));
#else
    // Repack the long as two jints.
    // The convention the interpreter uses is that the second local
    // holds the first raw word of the native double representation.
    // This is actually reasonable, since locals and stack arrays
    // grow downwards in all implementations.
    // (If, on some machine, the interpreter's Java locals or stack
    // were to grow upwards, the embedded doubles would be word-swapped.)
    jint *dp = (jint*)&d;
    array->append(new ConstantIntValue(dp[1]));
    array->append(new ConstantIntValue(dp[0]));
#endif
    break;
  }
  case Type::Top:               // Add an illegal value here
    array->append(new LocationValue(Location()));
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Determine if this node starts a bundle
bool Compile::starts_bundle(const Node *n) const {
  return (_node_bundling_limit > n->_idx &&
          _node_bundling_base[n->_idx].starts_bundle());
}

//--------------------------Process_OopMap_Node--------------------------------
void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {

  // Handle special safepoint nodes for synchronization
  MachSafePointNode *sfn   = mach->as_MachSafePoint();
  MachCallNode      *mcall;

#ifdef ENABLE_ZAP_DEAD_LOCALS
  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
#endif

  int safepoint_pc_offset = current_offset;
  bool is_method_handle_invoke = false;
  bool return_oop = false;

  // Add the safepoint in the DebugInfoRecorder
  if( !mach->is_MachCall() ) {
    mcall = NULL;
    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
  } else {
    mcall = mach->as_MachCall();

    // Is the call a MethodHandle call?
    if (mcall->is_MachCallJava()) {
      if (mcall->as_MachCallJava()->_method_handle_invoke) {
        assert(has_method_handle_invokes(), "must have been set during call generation");
        is_method_handle_invoke = true;
      }
    }

    // Check if a call returns an object.
    if (mcall->return_value_is_used() &&
        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
      return_oop = true;
    }
    safepoint_pc_offset += mcall->ret_addr_offset();
    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
  }

  // Loop over the JVMState list to add scope information
  // Do not skip safepoints with a NULL method, they need monitor info
  JVMState* youngest_jvms = sfn->jvms();
  int max_depth = youngest_jvms->depth();

  // Allocate the object pool for scalar-replaced objects -- the map from
  // small-integer keys (which can be recorded in the local and ostack
  // arrays) to descriptions of the object state.
  GrowableArray<ScopeValue*> *objs = new GrowableArray();

  // Visit scopes from oldest to youngest.
  for (int depth = 1; depth <= max_depth; depth++) {
    JVMState* jvms = youngest_jvms->of_depth(depth);
    int idx;
    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
    // Safepoints that do not have method() set only provide oop-map and monitor info
    // to support GC; these do not support deoptimization.
    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
    int num_mon  = jvms->nof_monitors();
    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
           "JVMS local count must match that of the method");

    // Add Local and Expression Stack Information

    // Insert locals into the locarray
    GrowableArray<ScopeValue*> *locarray = new GrowableArray(num_locs);
    for( idx = 0; idx < num_locs; idx++ ) {
      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
    }

    // Insert expression stack entries into the exparray
    GrowableArray<ScopeValue*> *exparray = new GrowableArray(num_exps);
    for( idx = 0; idx < num_exps; idx++ ) {
      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
    }

    // Add in mappings of the monitors
    assert( !method ||
            !method->is_synchronized() ||
            method->is_native() ||
            num_mon > 0 ||
            !GenerateSynchronizationCode,
            "monitors must always exist for synchronized methods");

    // Build the growable array of ScopeValues for exp stack
    GrowableArray<MonitorValue*> *monarray = new GrowableArray(num_mon);

    // Loop over monitors and insert into array
    for (idx = 0; idx < num_mon; idx++) {
      // Grab the node that defines this monitor
      Node* box_node = sfn->monitor_box(jvms, idx);
      Node* obj_node = sfn->monitor_obj(jvms, idx);

      // Create ScopeValue for object
      ScopeValue *scval = NULL;

      if (obj_node->is_SafePointScalarObject()) {
        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
        scval = Compile::sv_for_node_id(objs, spobj->_idx);
        if (scval == NULL) {
          const Type *t = spobj->bottom_type();
          ciKlass* cik = t->is_oopptr()->klass();
          assert(cik->is_instance_klass() ||
                 cik->is_array_klass(), "Not supported allocation.");
          ObjectValue* sv = new ObjectValue(spobj->_idx,
                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
          Compile::set_sv_for_object_node(objs, sv);

          uint first_ind = spobj->first_index(youngest_jvms);
          for (uint i = 0; i < spobj->n_fields(); i++) {
            Node* fld_node = sfn->in(first_ind+i);
            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
          }
          scval = sv;
        }
      } else if (!obj_node->is_Con()) {
        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
        } else {
          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
        }
      } else {
        const TypePtr *tp = obj_node->get_ptr_type();
        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
      }

      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
    }

    // We dump the object pool first, since deoptimization reads it in first.
    debug_info()->dump_object_pool(objs);

    // Build first class objects to pass to scope
    DebugToken *locvals = debug_info()->create_scope_values(locarray);
    DebugToken *expvals = debug_info()->create_scope_values(exparray);
    DebugToken *monvals = debug_info()->create_monitor_values(monarray);

    // Make method available for all Safepoints
    ciMethod* scope_method = method ? method : _method;
    // Describe the scope here
    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
    // Now we can describe the scope.
    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
  } // End jvms loop

  // Mark the end of the scope set.
  debug_info()->end_safepoint(safepoint_pc_offset);
}



// A simplified version of Process_OopMap_Node, to handle non-safepoints.
class NonSafepointEmitter {
  Compile*  C;
  JVMState* _pending_jvms;
  int       _pending_offset;

  void emit_non_safepoint();

 public:
  NonSafepointEmitter(Compile* compile) {
    this->C = compile;
    _pending_jvms = NULL;
    _pending_offset = 0;
  }

  void observe_instruction(Node* n, int pc_offset) {
    if (!C->debug_info()->recording_non_safepoints())  return;

    Node_Notes* nn = C->node_notes_at(n->_idx);
    if (nn == NULL || nn->jvms() == NULL)  return;
    if (_pending_jvms != NULL &&
        _pending_jvms->same_calls_as(nn->jvms())) {
      // Repeated JVMS?  Stretch it up here.
      _pending_offset = pc_offset;
    } else {
      if (_pending_jvms != NULL &&
          _pending_offset < pc_offset) {
        emit_non_safepoint();
      }
      _pending_jvms = NULL;
      if (pc_offset > C->debug_info()->last_pc_offset()) {
        // This is the only way _pending_jvms can become non-NULL:
        _pending_jvms = nn->jvms();
        _pending_offset = pc_offset;
      }
    }
  }

  // Stay out of the way of real safepoints:
  void observe_safepoint(JVMState* jvms, int pc_offset) {
    if (_pending_jvms != NULL &&
        !_pending_jvms->same_calls_as(jvms) &&
        _pending_offset < pc_offset) {
      emit_non_safepoint();
    }
    _pending_jvms = NULL;
  }

  void flush_at_end() {
    if (_pending_jvms != NULL) {
      emit_non_safepoint();
    }
    _pending_jvms = NULL;
  }
};

void NonSafepointEmitter::emit_non_safepoint() {
  JVMState* youngest_jvms = _pending_jvms;
  int       pc_offset     = _pending_offset;

  // Clear it now:
  _pending_jvms = NULL;

  DebugInformationRecorder* debug_info = C->debug_info();
  assert(debug_info->recording_non_safepoints(), "sanity");

  debug_info->add_non_safepoint(pc_offset);
  int max_depth = youngest_jvms->depth();

  // Visit scopes from oldest to youngest.
  for (int depth = 1; depth <= max_depth; depth++) {
    JVMState* jvms = youngest_jvms->of_depth(depth);
    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  }

  // Mark the end of the scope set.
  debug_info->end_non_safepoint(pc_offset);
}

//------------------------------init_buffer------------------------------------
CodeBuffer* Compile::init_buffer(uint* blk_starts) {

  // Set the initially allocated size
  int  code_req   = initial_code_capacity;
  int  locs_req   = initial_locs_capacity;
  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  int  const_req  = initial_const_capacity;

  int  pad_req    = NativeCall::instruction_size;
  // The extra spacing after the code is necessary on some platforms.
  // Sometimes we need to patch in a jump after the last instruction,
  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)

  // Compute the byte offset where we can store the deopt pc.
  if (fixed_slots() != 0) {
    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  }

  // Compute prolog code size
  _method_size = 0;
  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
#ifdef IA64
  if (save_argument_registers()) {
    // 4815101: this is a stub with implicit and unknown precision fp args.
    // The usual spill mechanism can only generate stfd's in this case, which
    // doesn't work if the fp reg to spill contains a single-precision denorm.
    // Instead, we hack around the normal spill mechanism using stfspill's and
    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
    //
    // If we ever implement 16-byte 'registers' == stack slots, we can
    // get rid of this hack and have SpillCopy generate stfspill/ldffill
    // instead of stfd/stfs/ldfd/ldfs.
    _frame_slots += 8*(16/BytesPerInt);
  }
#endif
  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");

  if (has_mach_constant_base_node()) {
    // Fill the constant table.
    // Note:  This must happen before shorten_branches.
    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
      Block* b = _cfg->get_block(i);

      for (uint j = 0; j < b->number_of_nodes(); j++) {
        Node* n = b->get_node(j);

        // If the node is a MachConstantNode evaluate the constant
        // value section.
        if (n->is_MachConstant()) {
          MachConstantNode* machcon = n->as_MachConstant();
          machcon->eval_constant(C);
        }
      }
    }

    // Calculate the offsets of the constants and the size of the
    // constant table (including the padding to the next section).
    constant_table().calculate_offsets_and_size();
    const_req = constant_table().size();
  }

  // Initialize the space for the BufferBlob used to find and verify
  // instruction size in MachNode::emit_size()
  init_scratch_buffer_blob(const_req);
  if (failing())  return NULL; // Out of memory

  // Pre-compute the length of blocks and replace
  // long branches with short if machine supports it.
  shorten_branches(blk_starts, code_req, locs_req, stub_req);

  // nmethod and CodeBuffer count stubs & constants as part of method's code.
  int exception_handler_req = size_exception_handler();
  int deopt_handler_req = size_deopt_handler();
  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  stub_req += MAX_stubs_size;   // ensure per-stub margin
  code_req += MAX_inst_size;    // ensure per-instruction margin

  if (StressCodeBuffers)
    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion

  int total_req =
    const_req +
    code_req +
    pad_req +
    stub_req +
    exception_handler_req +
    deopt_handler_req;               // deopt handler

  if (has_method_handle_invokes())
    total_req += deopt_handler_req;  // deopt MH handler

  CodeBuffer* cb = code_buffer();
  cb->initialize(total_req, locs_req);

  // Have we run out of code space?
  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
    C->record_failure("CodeCache is full");
    return NULL;
  }
  // Configure the code buffer.
  cb->initialize_consts_size(const_req);
  cb->initialize_stubs_size(stub_req);
  cb->initialize_oop_recorder(env()->oop_recorder());

  // fill in the nop array for bundling computations
  MachNode *_nop_list[Bundle::_nop_count];
  Bundle::initialize_nops(_nop_list, this);

  return cb;
}

//------------------------------fill_buffer------------------------------------
void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
  // blk_starts[] contains offsets calculated during short branches processing,
  // offsets should not be increased during following steps.

  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  // of a loop. It is used to determine the padding for loop alignment.
  compute_loop_first_inst_sizes();

  // Create oopmap set.
  _oop_map_set = new OopMapSet();

  // !!!!! This preserves old handling of oopmaps for now
  debug_info()->set_oopmaps(_oop_map_set);

  uint nblocks  = _cfg->number_of_blocks();
  // Count and start of implicit null check instructions
  uint inct_cnt = 0;
  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);

  // Count and start of calls
  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);

  uint  return_offset = 0;
  int nop_size = (new (this) MachNopNode())->size(_regalloc);

  int previous_offset = 0;
  int current_offset  = 0;
  int last_call_offset = -1;
  int last_avoid_back_to_back_offset = -1;
#ifdef ASSERT
  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
#endif

  // Create an array of unused labels, one for each basic block, if printing is enabled
#ifndef PRODUCT
  int *node_offsets      = NULL;
  uint node_offset_limit = unique();

  if (print_assembly())
    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
#endif

  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily

  // Emit the constant table.
  if (has_mach_constant_base_node()) {
    constant_table().emit(*cb);
  }

  // Create an array of labels, one for each basic block
  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
  for (uint i=0; i <= nblocks; i++) {
    blk_labels[i].init();
  }

  // ------------------
  // Now fill in the code buffer
  Node *delay_slot = NULL;

  for (uint i = 0; i < nblocks; i++) {
    Block* block = _cfg->get_block(i);
    Node* head = block->head();

    // If this block needs to start aligned (i.e, can be reached other
    // than by falling-thru from the previous block), then force the
    // start of a new bundle.
    if (Pipeline::requires_bundling() && starts_bundle(head)) {
      cb->flush_bundle(true);
    }

#ifdef ASSERT
    if (!block->is_connector()) {
      stringStream st;
      block->dump_head(_cfg, &st);
      MacroAssembler(cb).block_comment(st.as_string());
    }
    jmp_target[i] = 0;
    jmp_offset[i] = 0;
    jmp_size[i]   = 0;
    jmp_rule[i]   = 0;
#endif
    int blk_offset = current_offset;

    // Define the label at the beginning of the basic block
    MacroAssembler(cb).bind(blk_labels[block->_pre_order]);

    uint last_inst = block->number_of_nodes();

    // Emit block normally, except for last instruction.
    // Emit means "dump code bits into code buffer".
    for (uint j = 0; j<last_inst; j++) {

      // Get the node
      Node* n = block->get_node(j);

      // See if delay slots are supported
      if (valid_bundle_info(n) &&
          node_bundling(n)->used_in_unconditional_delay()) {
        assert(delay_slot == NULL, "no use of delay slot node");
        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");

        delay_slot = n;
        continue;
      }

      // If this starts a new instruction group, then flush the current one
      // (but allow split bundles)
      if (Pipeline::requires_bundling() && starts_bundle(n))
        cb->flush_bundle(false);

      // The following logic is duplicated in the code ifdeffed for
      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
      // should be factored out.  Or maybe dispersed to the nodes?

      // Special handling for SafePoint/Call Nodes
      bool is_mcall = false;
      if (n->is_Mach()) {
        MachNode *mach = n->as_Mach();
        is_mcall = n->is_MachCall();
        bool is_sfn = n->is_MachSafePoint();

        // If this requires all previous instructions be flushed, then do so
        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
          cb->flush_bundle(true);
          current_offset = cb->insts_size();
        }

        // A padding may be needed again since a previous instruction
        // could be moved to delay slot.

        // align the instruction if necessary
        int padding = mach->compute_padding(current_offset);
        // Make sure safepoint node for polling is distinct from a call's
        // return by adding a nop if needed.
        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
          padding = nop_size;
        }
        if (padding == 0 && mach->avoid_back_to_back() &&
            current_offset == last_avoid_back_to_back_offset) {
          // Avoid back to back some instructions.
          padding = nop_size;
        }

        if(padding > 0) {
          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
          int nops_cnt = padding / nop_size;
          MachNode *nop = new (this) MachNopNode(nops_cnt);
          block->insert_node(nop, j++);
          last_inst++;
          _cfg->map_node_to_block(nop, block);
          nop->emit(*cb, _regalloc);
          cb->flush_bundle(true);
          current_offset = cb->insts_size();
        }

        // Remember the start of the last call in a basic block
        if (is_mcall) {
          MachCallNode *mcall = mach->as_MachCall();

          // This destination address is NOT PC-relative
          mcall->method_set((intptr_t)mcall->entry_point());

          // Save the return address
          call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();

          if (mcall->is_MachCallLeaf()) {
            is_mcall = false;
            is_sfn = false;
          }
        }

        // sfn will be valid whenever mcall is valid now because of inheritance
        if (is_sfn || is_mcall) {

          // Handle special safepoint nodes for synchronization
          if (!is_mcall) {
            MachSafePointNode *sfn = mach->as_MachSafePoint();
            // !!!!! Stubs only need an oopmap right now, so bail out
            if (sfn->jvms()->method() == NULL) {
              // Write the oopmap directly to the code blob??!!
#             ifdef ENABLE_ZAP_DEAD_LOCALS
              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
#             endif
              continue;
            }
          } // End synchronization

          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
                                           current_offset);
          Process_OopMap_Node(mach, current_offset);
        } // End if safepoint

        // If this is a null check, then add the start of the previous instruction to the list
        else if( mach->is_MachNullCheck() ) {
          inct_starts[inct_cnt++] = previous_offset;
        }

        // If this is a branch, then fill in the label with the target BB's label
        else if (mach->is_MachBranch()) {
          // This requires the TRUE branch target be in succs[0]
          uint block_num = block->non_connector_successor(0)->_pre_order;

          // Try to replace long branch if delay slot is not used,
          // it is mostly for back branches since forward branch's
          // distance is not updated yet.
          bool delay_slot_is_used = valid_bundle_info(n) &&
                                    node_bundling(n)->use_unconditional_delay();
          if (!delay_slot_is_used && mach->may_be_short_branch()) {
           assert(delay_slot == NULL, "not expecting delay slot node");
           int br_size = n->size(_regalloc);
            int offset = blk_starts[block_num] - current_offset;
            if (block_num >= i) {
              // Current and following block's offset are not
              // finilized yet, adjust distance by the difference
              // between calculated and final offsets of current block.
              offset -= (blk_starts[i] - blk_offset);
            }
            // In the following code a nop could be inserted before
            // the branch which will increase the backward distance.
            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
            if (needs_padding && offset <= 0)
              offset -= nop_size;

            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
              // We've got a winner.  Replace this branch.
              MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);

              // Update the jmp_size.
              int new_size = replacement->size(_regalloc);
              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
              // Insert padding between avoid_back_to_back branches.
              if (needs_padding && replacement->avoid_back_to_back()) {
                MachNode *nop = new (this) MachNopNode();
                block->insert_node(nop, j++);
                _cfg->map_node_to_block(nop, block);
                last_inst++;
                nop->emit(*cb, _regalloc);
                cb->flush_bundle(true);
                current_offset = cb->insts_size();
              }
#ifdef ASSERT
              jmp_target[i] = block_num;
              jmp_offset[i] = current_offset - blk_offset;
              jmp_size[i]   = new_size;
              jmp_rule[i]   = mach->rule();
#endif
              block->map_node(replacement, j);
              mach->subsume_by(replacement, C);
              n    = replacement;
              mach = replacement;
            }
          }
          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
        } else if (mach->ideal_Opcode() == Op_Jump) {
          for (uint h = 0; h < block->_num_succs; h++) {
            Block* succs_block = block->_succs[h];
            for (uint j = 1; j < succs_block->num_preds(); j++) {
              Node* jpn = succs_block->pred(j);
              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
                uint block_num = succs_block->non_connector()->_pre_order;
                Label *blkLabel = &blk_labels[block_num];
                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
              }
            }
          }
        }
#ifdef ASSERT
        // Check that oop-store precedes the card-mark
        else if (mach->ideal_Opcode() == Op_StoreCM) {
          uint storeCM_idx = j;
          int count = 0;
          for (uint prec = mach->req(); prec < mach->len(); prec++) {
            Node *oop_store = mach->in(prec);  // Precedence edge
            if (oop_store == NULL) continue;
            count++;
            uint i4;
            for (i4 = 0; i4 < last_inst; ++i4) {
              if (block->get_node(i4) == oop_store) {
                break;
              }
            }
            // Note: This test can provide a false failure if other precedence
            // edges have been added to the storeCMNode.
            assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
          }
          assert(count > 0, "storeCM expects at least one precedence edge");
        }
#endif
        else if (!n->is_Proj()) {
          // Remember the beginning of the previous instruction, in case
          // it's followed by a flag-kill and a null-check.  Happens on
          // Intel all the time, with add-to-memory kind of opcodes.
          previous_offset = current_offset;
        }
      }

      // Verify that there is sufficient space remaining
      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
        C->record_failure("CodeCache is full");
        return;
      }

      // Save the offset for the listing
#ifndef PRODUCT
      if (node_offsets && n->_idx < node_offset_limit)
        node_offsets[n->_idx] = cb->insts_size();
#endif

      // "Normal" instruction case
      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
      n->emit(*cb, _regalloc);
      current_offset  = cb->insts_size();

#ifdef ASSERT
      if (n->size(_regalloc) < (current_offset-instr_offset)) {
        n->dump();
        assert(false, "wrong size of mach node");
      }
#endif
      non_safepoints.observe_instruction(n, current_offset);

      // mcall is last "call" that can be a safepoint
      // record it so we can see if a poll will directly follow it
      // in which case we'll need a pad to make the PcDesc sites unique
      // see  5010568. This can be slightly inaccurate but conservative
      // in the case that return address is not actually at current_offset.
      // This is a small price to pay.

      if (is_mcall) {
        last_call_offset = current_offset;
      }

      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
        // Avoid back to back some instructions.
        last_avoid_back_to_back_offset = current_offset;
      }

      // See if this instruction has a delay slot
      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
        assert(delay_slot != NULL, "expecting delay slot node");

        // Back up 1 instruction
        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());

        // Save the offset for the listing
#ifndef PRODUCT
        if (node_offsets && delay_slot->_idx < node_offset_limit)
          node_offsets[delay_slot->_idx] = cb->insts_size();
#endif

        // Support a SafePoint in the delay slot
        if (delay_slot->is_MachSafePoint()) {
          MachNode *mach = delay_slot->as_Mach();
          // !!!!! Stubs only need an oopmap right now, so bail out
          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
            // Write the oopmap directly to the code blob??!!
#           ifdef ENABLE_ZAP_DEAD_LOCALS
            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
#           endif
            delay_slot = NULL;
            continue;
          }

          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
                                           adjusted_offset);
          // Generate an OopMap entry
          Process_OopMap_Node(mach, adjusted_offset);
        }

        // Insert the delay slot instruction
        delay_slot->emit(*cb, _regalloc);

        // Don't reuse it
        delay_slot = NULL;
      }

    } // End for all instructions in block

    // If the next block is the top of a loop, pad this block out to align
    // the loop top a little. Helps prevent pipe stalls at loop back branches.
    if (i < nblocks-1) {
      Block *nb = _cfg->get_block(i + 1);
      int padding = nb->alignment_padding(current_offset);
      if( padding > 0 ) {
        MachNode *nop = new (this) MachNopNode(padding / nop_size);
        block->insert_node(nop, block->number_of_nodes());
        _cfg->map_node_to_block(nop, block);
        nop->emit(*cb, _regalloc);
        current_offset = cb->insts_size();
      }
    }
    // Verify that the distance for generated before forward
    // short branches is still valid.
    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");

    // Save new block start offset
    blk_starts[i] = blk_offset;
  } // End of for all blocks
  blk_starts[nblocks] = current_offset;

  non_safepoints.flush_at_end();

  // Offset too large?
  if (failing())  return;

  // Define a pseudo-label at the end of the code
  MacroAssembler(cb).bind( blk_labels[nblocks] );

  // Compute the size of the first block
  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();

  assert(cb->insts_size() < 500000, "method is unreasonably large");

#ifdef ASSERT
  for (uint i = 0; i < nblocks; i++) { // For all blocks
    if (jmp_target[i] != 0) {
      int br_size = jmp_size[i];
      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
        assert(false, "Displacement too large for short jmp");
      }
    }
  }
#endif

#ifndef PRODUCT
  // Information on the size of the method, without the extraneous code
  Scheduling::increment_method_size(cb->insts_size());
#endif

  // ------------------
  // Fill in exception table entries.
  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);

  // Only java methods have exception handlers and deopt handlers
  if (_method) {
    // Emit the exception handler code.
    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
    // Emit the deopt handler code.
    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));

    // Emit the MethodHandle deopt handler code (if required).
    if (has_method_handle_invokes()) {
      // We can use the same code as for the normal deopt handler, we
      // just need a different entry point address.
      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
    }
  }

  // One last check for failed CodeBuffer::expand:
  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
    C->record_failure("CodeCache is full");
    return;
  }

#ifndef PRODUCT
  // Dump the assembly code, including basic-block numbers
  if (print_assembly()) {
    ttyLocker ttyl;  // keep the following output all in one block
    if (!VMThread::should_terminate()) {  // test this under the tty lock
      // This output goes directly to the tty, not the compiler log.
      // To enable tools to match it up with the compilation activity,
      // be sure to tag this tty output with the compile ID.
      if (xtty != NULL) {
        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
                   is_osr_compilation()    ? " compile_kind='osr'" :
                   "");
      }
      if (method() != NULL) {
        method()->print_metadata();
      }
      dump_asm(node_offsets, node_offset_limit);
      if (xtty != NULL) {
        xtty->tail("opto_assembly");
      }
    }
  }
#endif

}

void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  _inc_table.set_size(cnt);

  uint inct_cnt = 0;
  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
    Block* block = _cfg->get_block(i);
    Node *n = NULL;
    int j;

    // Find the branch; ignore trailing NOPs.
    for (j = block->number_of_nodes() - 1; j >= 0; j--) {
      n = block->get_node(j);
      if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
        break;
      }
    }

    // If we didn't find anything, continue
    if (j < 0) {
      continue;
    }

    // Compute ExceptionHandlerTable subtable entry and add it
    // (skip empty blocks)
    if (n->is_Catch()) {

      // Get the offset of the return from the call
      uint call_return = call_returns[block->_pre_order];
#ifdef ASSERT
      assert( call_return > 0, "no call seen for this basic block" );
      while (block->get_node(--j)->is_MachProj()) ;
      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
#endif
      // last instruction is a CatchNode, find it's CatchProjNodes
      int nof_succs = block->_num_succs;
      // allocate space
      GrowableArray<intptr_t> handler_bcis(nof_succs);
      GrowableArray<intptr_t> handler_pcos(nof_succs);
      // iterate through all successors
      for (int j = 0; j < nof_succs; j++) {
        Block* s = block->_succs[j];
        bool found_p = false;
        for (uint k = 1; k < s->num_preds(); k++) {
          Node* pk = s->pred(k);
          if (pk->is_CatchProj() && pk->in(0) == n) {
            const CatchProjNode* p = pk->as_CatchProj();
            found_p = true;
            // add the corresponding handler bci & pco information
            if (p->_con != CatchProjNode::fall_through_index) {
              // p leads to an exception handler (and is not fall through)
              assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
              // no duplicates, please
              if (!handler_bcis.contains(p->handler_bci())) {
                uint block_num = s->non_connector()->_pre_order;
                handler_bcis.append(p->handler_bci());
                handler_pcos.append(blk_labels[block_num].loc_pos());
              }
            }
          }
        }
        assert(found_p, "no matching predecessor found");
        // Note:  Due to empty block removal, one block may have
        // several CatchProj inputs, from the same Catch.
      }

      // Set the offset of the return from the call
      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
      continue;
    }

    // Handle implicit null exception table updates
    if (n->is_MachNullCheck()) {
      uint block_num = block->non_connector_successor(0)->_pre_order;
      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
      continue;
    }
  } // End of for all blocks fill in exception table entries
}

// Static Variables
#ifndef PRODUCT
uint Scheduling::_total_nop_size = 0;
uint Scheduling::_total_method_size = 0;
uint Scheduling::_total_branches = 0;
uint Scheduling::_total_unconditional_delays = 0;
uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
#endif

// Initializer for class Scheduling

Scheduling::Scheduling(Arena *arena, Compile &compile)
  : _arena(arena),
    _cfg(compile.cfg()),
    _regalloc(compile.regalloc()),
    _reg_node(arena),
    _bundle_instr_count(0),
    _bundle_cycle_number(0),
    _scheduled(arena),
    _available(arena),
    _next_node(NULL),
    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
    _pinch_free_list(arena)
#ifndef PRODUCT
  , _branches(0)
  , _unconditional_delays(0)
#endif
{
  // Create a MachNopNode
  _nop = new (&compile) MachNopNode();

  // Now that the nops are in the array, save the count
  // (but allow entries for the nops)
  _node_bundling_limit = compile.unique();
  uint node_max = _regalloc->node_regs_max_index();

  compile.set_node_bundling_limit(_node_bundling_limit);

  // This one is persistent within the Compile class
  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);

  // Allocate space for fixed-size arrays
  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);

  // Clear the arrays
  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  memset(_node_latency,       0, node_max * sizeof(unsigned short));
  memset(_uses,               0, node_max * sizeof(short));
  memset(_current_latency,    0, node_max * sizeof(unsigned short));

  // Clear the bundling information
  memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));

  // Get the last node
  Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);

  _next_node = block->get_node(block->number_of_nodes() - 1);
}

#ifndef PRODUCT
// Scheduling destructor
Scheduling::~Scheduling() {
  _total_branches             += _branches;
  _total_unconditional_delays += _unconditional_delays;
}
#endif

// Step ahead "i" cycles
void Scheduling::step(uint i) {

  Bundle *bundle = node_bundling(_next_node);
  bundle->set_starts_bundle();

  // Update the bundle record, but leave the flags information alone
  if (_bundle_instr_count > 0) {
    bundle->set_instr_count(_bundle_instr_count);
    bundle->set_resources_used(_bundle_use.resourcesUsed());
  }

  // Update the state information
  _bundle_instr_count = 0;
  _bundle_cycle_number += i;
  _bundle_use.step(i);
}

void Scheduling::step_and_clear() {
  Bundle *bundle = node_bundling(_next_node);
  bundle->set_starts_bundle();

  // Update the bundle record
  if (_bundle_instr_count > 0) {
    bundle->set_instr_count(_bundle_instr_count);
    bundle->set_resources_used(_bundle_use.resourcesUsed());

    _bundle_cycle_number += 1;
  }

  // Clear the bundling information
  _bundle_instr_count = 0;
  _bundle_use.reset();

  memcpy(_bundle_use_elements,
    Pipeline_Use::elaborated_elements,
    sizeof(Pipeline_Use::elaborated_elements));
}

// Perform instruction scheduling and bundling over the sequence of
// instructions in backwards order.
void Compile::ScheduleAndBundle() {

  // Don't optimize this if it isn't a method
  if (!_method)
    return;

  // Don't optimize this if scheduling is disabled
  if (!do_scheduling())
    return;

  // Scheduling code works only with pairs (8 bytes) maximum.
  if (max_vector_size() > 8)
    return;

  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )

  // Create a data structure for all the scheduling information
  Scheduling scheduling(Thread::current()->resource_area(), *this);

  // Walk backwards over each basic block, computing the needed alignment
  // Walk over all the basic blocks
  scheduling.DoScheduling();
}

// Compute the latency of all the instructions.  This is fairly simple,
// because we already have a legal ordering.  Walk over the instructions
// from first to last, and compute the latency of the instruction based
// on the latency of the preceding instruction(s).
void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> ComputeLocalLatenciesForward\n");
#endif

  // Walk over all the schedulable instructions
  for( uint j=_bb_start; j < _bb_end; j++ ) {

    // This is a kludge, forcing all latency calculations to start at 1.
    // Used to allow latency 0 to force an instruction to the beginning
    // of the bb
    uint latency = 1;
    Node *use = bb->get_node(j);
    uint nlen = use->len();

    // Walk over all the inputs
    for ( uint k=0; k < nlen; k++ ) {
      Node *def = use->in(k);
      if (!def)
        continue;

      uint l = _node_latency[def->_idx] + use->latency(k);
      if (latency < l)
        latency = l;
    }

    _node_latency[use->_idx] = latency;

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("# latency %4d: ", latency);
      use->dump();
    }
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- ComputeLocalLatenciesForward\n");
#endif

} // end ComputeLocalLatenciesForward

// See if this node fits into the present instruction bundle
bool Scheduling::NodeFitsInBundle(Node *n) {
  uint n_idx = n->_idx;

  // If this is the unconditional delay instruction, then it fits
  if (n == _unconditional_delay_slot) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
#endif
    return (true);
  }

  // If the node cannot be scheduled this cycle, skip it
  if (_current_latency[n_idx] > _bundle_cycle_number) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
#endif
    return (false);
  }

  const Pipeline *node_pipeline = n->pipeline();

  uint instruction_count = node_pipeline->instructionCount();
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
    instruction_count = 0;
  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
    instruction_count++;

  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
#endif
    return (false);
  }

  // Don't allow non-machine nodes to be handled this way
  if (!n->is_Mach() && instruction_count == 0)
    return (false);

  // See if there is any overlap
  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());

  if (delay > 0) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
#endif
    return false;
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
#endif

  return true;
}

Node * Scheduling::ChooseNodeToBundle() {
  uint siz = _available.size();

  if (siz == 0) {

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#   ChooseNodeToBundle: NULL\n");
#endif
    return (NULL);
  }

  // Fast path, if only 1 instruction in the bundle
  if (siz == 1) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#   ChooseNodeToBundle (only 1): ");
      _available[0]->dump();
    }
#endif
    return (_available[0]);
  }

  // Don't bother, if the bundle is already full
  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
    for ( uint i = 0; i < siz; i++ ) {
      Node *n = _available[i];

      // Skip projections, we'll handle them another way
      if (n->is_Proj())
        continue;

      // This presupposed that instructions are inserted into the
      // available list in a legality order; i.e. instructions that
      // must be inserted first are at the head of the list
      if (NodeFitsInBundle(n)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output()) {
          tty->print("#   ChooseNodeToBundle: ");
          n->dump();
        }
#endif
        return (n);
      }
    }
  }

  // Nothing fits in this bundle, choose the highest priority
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   ChooseNodeToBundle: ");
    _available[0]->dump();
  }
#endif

  return _available[0];
}

void Scheduling::AddNodeToAvailableList(Node *n) {
  assert( !n->is_Proj(), "projections never directly made available" );
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   AddNodeToAvailableList: ");
    n->dump();
  }
#endif

  int latency = _current_latency[n->_idx];

  // Insert in latency order (insertion sort)
  uint i;
  for ( i=0; i < _available.size(); i++ )
    if (_current_latency[_available[i]->_idx] > latency)
      break;

  // Special Check for compares following branches
  if( n->is_Mach() && _scheduled.size() > 0 ) {
    int op = n->as_Mach()->ideal_Opcode();
    Node *last = _scheduled[0];
    if( last->is_MachIf() && last->in(1) == n &&
        ( op == Op_CmpI ||
          op == Op_CmpU ||
          op == Op_CmpP ||
          op == Op_CmpF ||
          op == Op_CmpD ||
          op == Op_CmpL ) ) {

      // Recalculate position, moving to front of same latency
      for ( i=0 ; i < _available.size(); i++ )
        if (_current_latency[_available[i]->_idx] >= latency)
          break;
    }
  }

  // Insert the node in the available list
  _available.insert(i, n);

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    dump_available();
#endif
}

void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  for ( uint i=0; i < n->len(); i++ ) {
    Node *def = n->in(i);
    if (!def) continue;
    if( def->is_Proj() )        // If this is a machine projection, then
      def = def->in(0);         // propagate usage thru to the base instruction

    if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
      continue;
    }

    // Compute the latency
    uint l = _bundle_cycle_number + n->latency(i);
    if (_current_latency[def->_idx] < l)
      _current_latency[def->_idx] = l;

    // If this does not have uses then schedule it
    if ((--_uses[def->_idx]) == 0)
      AddNodeToAvailableList(def);
  }
}

void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   AddNodeToBundle: ");
    n->dump();
  }
#endif

  // Remove this from the available list
  uint i;
  for (i = 0; i < _available.size(); i++)
    if (_available[i] == n)
      break;
  assert(i < _available.size(), "entry in _available list not found");
  _available.remove(i);

  // See if this fits in the current bundle
  const Pipeline *node_pipeline = n->pipeline();
  const Pipeline_Use& node_usage = node_pipeline->resourceUse();

  // Check for instructions to be placed in the delay slot. We
  // do this before we actually schedule the current instruction,
  // because the delay slot follows the current instruction.
  if (Pipeline::_branch_has_delay_slot &&
      node_pipeline->hasBranchDelay() &&
      !_unconditional_delay_slot) {

    uint siz = _available.size();

    // Conditional branches can support an instruction that
    // is unconditionally executed and not dependent by the
    // branch, OR a conditionally executed instruction if
    // the branch is taken.  In practice, this means that
    // the first instruction at the branch target is
    // copied to the delay slot, and the branch goes to
    // the instruction after that at the branch target
    if ( n->is_MachBranch() ) {

      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );

#ifndef PRODUCT
      _branches++;
#endif

      // At least 1 instruction is on the available list
      // that is not dependent on the branch
      for (uint i = 0; i < siz; i++) {
        Node *d = _available[i];
        const Pipeline *avail_pipeline = d->pipeline();

        // Don't allow safepoints in the branch shadow, that will
        // cause a number of difficulties
        if ( avail_pipeline->instructionCount() == 1 &&
            !avail_pipeline->hasMultipleBundles() &&
            !avail_pipeline->hasBranchDelay() &&
            Pipeline::instr_has_unit_size() &&
            d->size(_regalloc) == Pipeline::instr_unit_size() &&
            NodeFitsInBundle(d) &&
            !node_bundling(d)->used_in_delay()) {

          if (d->is_Mach() && !d->is_MachSafePoint()) {
            // A node that fits in the delay slot was found, so we need to
            // set the appropriate bits in the bundle pipeline information so
            // that it correctly indicates resource usage.  Later, when we
            // attempt to add this instruction to the bundle, we will skip
            // setting the resource usage.
            _unconditional_delay_slot = d;
            node_bundling(n)->set_use_unconditional_delay();
            node_bundling(d)->set_used_in_unconditional_delay();
            _bundle_use.add_usage(avail_pipeline->resourceUse());
            _current_latency[d->_idx] = _bundle_cycle_number;
            _next_node = d;
            ++_bundle_instr_count;
#ifndef PRODUCT
            _unconditional_delays++;
#endif
            break;
          }
        }
      }
    }

    // No delay slot, add a nop to the usage
    if (!_unconditional_delay_slot) {
      // See if adding an instruction in the delay slot will overflow
      // the bundle.
      if (!NodeFitsInBundle(_nop)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
#endif
        step(1);
      }

      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
      _next_node = _nop;
      ++_bundle_instr_count;
    }

    // See if the instruction in the delay slot requires a
    // step of the bundles
    if (!NodeFitsInBundle(n)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(branch won't fit) ***\n");
#endif
        // Update the state information
        _bundle_instr_count = 0;
        _bundle_cycle_number += 1;
        _bundle_use.step(1);
    }
  }

  // Get the number of instructions
  uint instruction_count = node_pipeline->instructionCount();
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
    instruction_count = 0;

  // Compute the latency information
  uint delay = 0;

  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
    if (relative_latency < 0)
      relative_latency = 0;

    delay = _bundle_use.full_latency(relative_latency, node_usage);

    // Does not fit in this bundle, start a new one
    if (delay > 0) {
      step(delay);

#ifndef PRODUCT
      if (_cfg->C->trace_opto_output())
        tty->print("#  *** STEP(%d) ***\n", delay);
#endif
    }
  }

  // If this was placed in the delay slot, ignore it
  if (n != _unconditional_delay_slot) {

    if (delay == 0) {
      if (node_pipeline->hasMultipleBundles()) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(multiple instructions) ***\n");
#endif
        step(1);
      }

      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
            instruction_count + _bundle_instr_count,
            Pipeline::_max_instrs_per_cycle);
#endif
        step(1);
      }
    }

    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
      _bundle_instr_count++;

    // Set the node's latency
    _current_latency[n->_idx] = _bundle_cycle_number;

    // Now merge the functional unit information
    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
      _bundle_use.add_usage(node_usage);

    // Increment the number of instructions in this bundle
    _bundle_instr_count += instruction_count;

    // Remember this node for later
    if (n->is_Mach())
      _next_node = n;
  }

  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  // 'Schedule' them (basically ignore in the schedule) but do not insert them
  // into the block.  All other scheduled nodes get put in the schedule here.
  int op = n->Opcode();
  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
      (op != Op_Node &&         // Not an unused antidepedence node and
       // not an unallocated boxlock
       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {

    // Push any trailing projections
    if( bb->get_node(bb->number_of_nodes()-1) != n ) {
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
        Node *foi = n->fast_out(i);
        if( foi->is_Proj() )
          _scheduled.push(foi);
      }
    }

    // Put the instruction in the schedule list
    _scheduled.push(n);
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    dump_available();
#endif

  // Walk all the definitions, decrementing use counts, and
  // if a definition has a 0 use count, place it in the available list.
  DecrementUseCounts(n,bb);
}

// This method sets the use count within a basic block.  We will ignore all
// uses outside the current basic block.  As we are doing a backwards walk,
// any node we reach that has a use count of 0 may be scheduled.  This also
// avoids the problem of cyclic references from phi nodes, as long as phi
// nodes are at the front of the basic block.  This method also initializes
// the available list to the set of instructions that have no uses within this
// basic block.
void Scheduling::ComputeUseCount(const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> ComputeUseCount\n");
#endif

  // Clear the list of available and scheduled instructions, just in case
  _available.clear();
  _scheduled.clear();

  // No delay slot specified
  _unconditional_delay_slot = NULL;

#ifdef ASSERT
  for( uint i=0; i < bb->number_of_nodes(); i++ )
    assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
#endif

  // Force the _uses count to never go to zero for unscheduable pieces
  // of the block
  for( uint k = 0; k < _bb_start; k++ )
    _uses[bb->get_node(k)->_idx] = 1;
  for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
    _uses[bb->get_node(l)->_idx] = 1;

  // Iterate backwards over the instructions in the block.  Don't count the
  // branch projections at end or the block header instructions.
  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
    Node *n = bb->get_node(j);
    if( n->is_Proj() ) continue; // Projections handled another way

    // Account for all uses
    for ( uint k = 0; k < n->len(); k++ ) {
      Node *inp = n->in(k);
      if (!inp) continue;
      assert(inp != n, "no cycles allowed" );
      if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
        if (inp->is_Proj()) { // Skip through Proj's
          inp = inp->in(0);
        }
        ++_uses[inp->_idx];     // Count 1 block-local use
      }
    }

    // If this instruction has a 0 use count, then it is available
    if (!_uses[n->_idx]) {
      _current_latency[n->_idx] = _bundle_cycle_number;
      AddNodeToAvailableList(n);
    }

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#   uses: %3d: ", _uses[n->_idx]);
      n->dump();
    }
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- ComputeUseCount\n");
#endif
}

// This routine performs scheduling on each basic block in reverse order,
// using instruction latencies and taking into account function unit
// availability.
void Scheduling::DoScheduling() {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> DoScheduling\n");
#endif

  Block *succ_bb = NULL;
  Block *bb;

  // Walk over all the basic blocks in reverse order
  for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
    bb = _cfg->get_block(i);

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#  Schedule BB#%03d (initial)\n", i);
      for (uint j = 0; j < bb->number_of_nodes(); j++) {
        bb->get_node(j)->dump();
      }
    }
#endif

    // On the head node, skip processing
    if (bb == _cfg->get_root_block()) {
      continue;
    }

    // Skip empty, connector blocks
    if (bb->is_connector())
      continue;

    // If the following block is not the sole successor of
    // this one, then reset the pipeline information
    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
#ifndef PRODUCT
      if (_cfg->C->trace_opto_output()) {
        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
                   _next_node->_idx, _bundle_instr_count);
      }
#endif
      step_and_clear();
    }

    // Leave untouched the starting instruction, any Phis, a CreateEx node
    // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
    _bb_end = bb->number_of_nodes()-1;
    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
      Node *n = bb->get_node(_bb_start);
      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
      // Also, MachIdealNodes do not get scheduled
      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
      MachNode *mach = n->as_Mach();
      int iop = mach->ideal_Opcode();
      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
      if( iop == Op_Con ) continue;      // Do not schedule Top
      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
          mach->pipeline() == MachNode::pipeline_class() &&
          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
        continue;
      break;                    // Funny loop structure to be sure...
    }
    // Compute last "interesting" instruction in block - last instruction we
    // might schedule.  _bb_end points just after last schedulable inst.  We
    // normally schedule conditional branches (despite them being forced last
    // in the block), because they have delay slots we can fill.  Calls all
    // have their delay slots filled in the template expansions, so we don't
    // bother scheduling them.
    Node *last = bb->get_node(_bb_end);
    // Ignore trailing NOPs.
    while (_bb_end > 0 && last->is_Mach() &&
           last->as_Mach()->ideal_Opcode() == Op_Con) {
      last = bb->get_node(--_bb_end);
    }
    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
    if( last->is_Catch() ||
       // Exclude unreachable path case when Halt node is in a separate block.
       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
      // There must be a prior call.  Skip it.
      while( !bb->get_node(--_bb_end)->is_MachCall() ) {
        assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
      }
    } else if( last->is_MachNullCheck() ) {
      // Backup so the last null-checked memory instruction is
      // outside the schedulable range. Skip over the nullcheck,
      // projection, and the memory nodes.
      Node *mem = last->in(1);
      do {
        _bb_end--;
      } while (mem != bb->get_node(_bb_end));
    } else {
      // Set _bb_end to point after last schedulable inst.
      _bb_end++;
    }

    assert( _bb_start <= _bb_end, "inverted block ends" );

    // Compute the register antidependencies for the basic block
    ComputeRegisterAntidependencies(bb);
    if (_cfg->C->failing())  return;  // too many D-U pinch points

    // Compute intra-bb latencies for the nodes
    ComputeLocalLatenciesForward(bb);

    // Compute the usage within the block, and set the list of all nodes
    // in the block that have no uses within the block.
    ComputeUseCount(bb);

    // Schedule the remaining instructions in the block
    while ( _available.size() > 0 ) {
      Node *n = ChooseNodeToBundle();
      guarantee(n != NULL, "no nodes available");
      AddNodeToBundle(n,bb);
    }

    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
#ifdef ASSERT
    for( uint l = _bb_start; l < _bb_end; l++ ) {
      Node *n = bb->get_node(l);
      uint m;
      for( m = 0; m < _bb_end-_bb_start; m++ )
        if( _scheduled[m] == n )
          break;
      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
    }
#endif

    // Now copy the instructions (in reverse order) back to the block
    for ( uint k = _bb_start; k < _bb_end; k++ )
      bb->map_node(_scheduled[_bb_end-k-1], k);

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#  Schedule BB#%03d (final)\n", i);
      uint current = 0;
      for (uint j = 0; j < bb->number_of_nodes(); j++) {
        Node *n = bb->get_node(j);
        if( valid_bundle_info(n) ) {
          Bundle *bundle = node_bundling(n);
          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
            tty->print("*** Bundle: ");
            bundle->dump();
          }
          n->dump();
        }
      }
    }
#endif
#ifdef ASSERT
  verify_good_schedule(bb,"after block local scheduling");
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- DoScheduling\n");
#endif

  // Record final node-bundling array location
  _regalloc->C->set_node_bundling_base(_node_bundling_base);

} // end DoScheduling

// Verify that no live-range used in the block is killed in the block by a
// wrong DEF.  This doesn't verify live-ranges that span blocks.

// Check for edge existence.  Used to avoid adding redundant precedence edges.
static bool edge_from_to( Node *from, Node *to ) {
  for( uint i=0; i<from->len(); i++ )
    if( from->in(i) == to )
      return true;
  return false;
}

#ifdef ASSERT
void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  // Check for bad kills
  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
    Node *prior_use = _reg_node[def];
    if( prior_use && !edge_from_to(prior_use,n) ) {
      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
      n->dump();
      tty->print_cr("...");
      prior_use->dump();
      assert(edge_from_to(prior_use,n),msg);
    }
    _reg_node.map(def,NULL); // Kill live USEs
  }
}

void Scheduling::verify_good_schedule( Block *b, const char *msg ) {

  // Zap to something reasonable for the verify code
  _reg_node.clear();

  // Walk over the block backwards.  Check to make sure each DEF doesn't
  // kill a live value (other than the one it's supposed to).  Add each
  // USE to the live set.
  for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
    Node *n = b->get_node(i);
    int n_op = n->Opcode();
    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
      // Fat-proj kills a slew of registers
      RegMask rm = n->out_RegMask();// Make local copy
      while( rm.is_NotEmpty() ) {
        OptoReg::Name kill = rm.find_first_elem();
        rm.Remove(kill);
        verify_do_def( n, kill, msg );
      }
    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
      // Get DEF'd registers the normal way
      verify_do_def( n, _regalloc->get_reg_first(n), msg );
      verify_do_def( n, _regalloc->get_reg_second(n), msg );
    }

    // Now make all USEs live
    for( uint i=1; i<n->req(); i++ ) {
      Node *def = n->in(i);
      assert(def != 0, "input edge required");
      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
      if( OptoReg::is_valid(reg_lo) ) {
        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
        _reg_node.map(reg_lo,n);
      }
      if( OptoReg::is_valid(reg_hi) ) {
        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
        _reg_node.map(reg_hi,n);
      }
    }

  }

  // Zap to something reasonable for the Antidependence code
  _reg_node.clear();
}
#endif

// Conditionally add precedence edges.  Avoid putting edges on Projs.
static void add_prec_edge_from_to( Node *from, Node *to ) {
  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
    from = from->in(0);
  }
  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
      !edge_from_to( from, to ) ) // Avoid duplicate edge
    from->add_prec(to);
}

void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
    return;

  Node *pinch = _reg_node[def_reg]; // Get pinch point
  if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
      is_def ) {    // Check for a true def (not a kill)
    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
    return;
  }

  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  debug_only( def = (Node*)0xdeadbeef; )

  // After some number of kills there _may_ be a later def
  Node *later_def = NULL;

  // Finding a kill requires a real pinch-point.
  // Check for not already having a pinch-point.
  // Pinch points are Op_Node's.
  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
    later_def = pinch;            // Must be def/kill as optimistic pinch-point
    if ( _pinch_free_list.size() > 0) {
      pinch = _pinch_free_list.pop();
    } else {
      pinch = new (_cfg->C) Node(1); // Pinch point to-be
    }
    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
      _cfg->C->record_method_not_compilable("too many D-U pinch points");
      return;
    }
    _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
    _reg_node.map(def_reg,pinch); // Record pinch-point
    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
      later_def = NULL;           // and no later def
    }
    pinch->set_req(0,later_def);  // Hook later def so we can find it
  } else {                        // Else have valid pinch point
    if( pinch->in(0) )            // If there is a later-def
      later_def = pinch->in(0);   // Get it
  }

  // Add output-dependence edge from later def to kill
  if( later_def )               // If there is some original def
    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill

  // See if current kill is also a use, and so is forced to be the pinch-point.
  if( pinch->Opcode() == Op_Node ) {
    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
    for( uint i=1; i<uses->req(); i++ ) {
      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
        // Yes, found a use/kill pinch-point
        pinch->set_req(0,NULL);  //
        pinch->replace_by(kill); // Move anti-dep edges up
        pinch = kill;
        _reg_node.map(def_reg,pinch);
        return;
      }
    }
  }

  // Add edge from kill to pinch-point
  add_prec_edge_from_to(kill,pinch);
}

void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
    return;
  Node *pinch = _reg_node[use_reg]; // Get pinch point
  // Check for no later def_reg/kill in block
  if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
      // Use has to be block-local as well
      _cfg->get_block_for_node(use) == b) {
    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
        pinch->req() == 1 ) {   // pinch not yet in block?
      pinch->del_req(0);        // yank pointer to later-def, also set flag
      // Insert the pinch-point in the block just after the last use
      b->insert_node(pinch, b->find_node(use) + 1);
      _bb_end++;                // Increase size scheduled region in block
    }

    add_prec_edge_from_to(pinch,use);
  }
}

// We insert antidependences between the reads and following write of
// allocated registers to prevent illegal code motion. Hopefully, the
// number of added references should be fairly small, especially as we
// are only adding references within the current basic block.
void Scheduling::ComputeRegisterAntidependencies(Block *b) {

#ifdef ASSERT
  verify_good_schedule(b,"before block local scheduling");
#endif

  // A valid schedule, for each register independently, is an endless cycle
  // of: a def, then some uses (connected to the def by true dependencies),
  // then some kills (defs with no uses), finally the cycle repeats with a new
  // def.  The uses are allowed to float relative to each other, as are the
  // kills.  No use is allowed to slide past a kill (or def).  This requires
  // antidependencies between all uses of a single def and all kills that
  // follow, up to the next def.  More edges are redundant, because later defs
  // & kills are already serialized with true or antidependencies.  To keep
  // the edge count down, we add a 'pinch point' node if there's more than
  // one use or more than one kill/def.

  // We add dependencies in one bottom-up pass.

  // For each instruction we handle it's DEFs/KILLs, then it's USEs.

  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  // register.  If not, we record the DEF/KILL in _reg_node, the
  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  // "pinch point", a new Node that's in the graph but not in the block.
  // We put edges from the prior and current DEF/KILLs to the pinch point.
  // We put the pinch point in _reg_node.  If there's already a pinch point
  // we merely add an edge from the current DEF/KILL to the pinch point.

  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  // put an edge from the pinch point to the USE.

  // To be expedient, the _reg_node array is pre-allocated for the whole
  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  // or a valid def/kill/pinch-point, or a leftover node from some prior
  // block.  Leftover node from some prior block is treated like a NULL (no
  // prior def, so no anti-dependence needed).  Valid def is distinguished by
  // it being in the current block.
  bool fat_proj_seen = false;
  uint last_safept = _bb_end-1;
  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
  Node* last_safept_node = end_node;
  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
    Node *n = b->get_node(i);
    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
      // Fat-proj kills a slew of registers
      // This can add edges to 'n' and obscure whether or not it was a def,
      // hence the is_def flag.
      fat_proj_seen = true;
      RegMask rm = n->out_RegMask();// Make local copy
      while( rm.is_NotEmpty() ) {
        OptoReg::Name kill = rm.find_first_elem();
        rm.Remove(kill);
        anti_do_def( b, n, kill, is_def );
      }
    } else {
      // Get DEF'd registers the normal way
      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
    }

    // Kill projections on a branch should appear to occur on the
    // branch, not afterwards, so grab the masks from the projections
    // and process them.
    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
        Node* use = n->fast_out(i);
        if (use->is_Proj()) {
          RegMask rm = use->out_RegMask();// Make local copy
          while( rm.is_NotEmpty() ) {
            OptoReg::Name kill = rm.find_first_elem();
            rm.Remove(kill);
            anti_do_def( b, n, kill, false );
          }
        }
      }
    }

    // Check each register used by this instruction for a following DEF/KILL
    // that must occur afterward and requires an anti-dependence edge.
    for( uint j=0; j<n->req(); j++ ) {
      Node *def = n->in(j);
      if( def ) {
        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
        anti_do_use( b, n, _regalloc->get_reg_first(def) );
        anti_do_use( b, n, _regalloc->get_reg_second(def) );
      }
    }
    // Do not allow defs of new derived values to float above GC
    // points unless the base is definitely available at the GC point.

    Node *m = b->get_node(i);

    // Add precedence edge from following safepoint to use of derived pointer
    if( last_safept_node != end_node &&
        m != last_safept_node) {
      for (uint k = 1; k < m->req(); k++) {
        const Type *t = m->in(k)->bottom_type();
        if( t->isa_oop_ptr() &&
            t->is_ptr()->offset() != 0 ) {
          last_safept_node->add_prec( m );
          break;
        }
      }
    }

    if( n->jvms() ) {           // Precedence edge from derived to safept
      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
      if( b->get_node(last_safept) != last_safept_node ) {
        last_safept = b->find_node(last_safept_node);
      }
      for( uint j=last_safept; j > i; j-- ) {
        Node *mach = b->get_node(j);
        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
          mach->add_prec( n );
      }
      last_safept = i;
      last_safept_node = m;
    }
  }

  if (fat_proj_seen) {
    // Garbage collect pinch nodes that were not consumed.
    // They are usually created by a fat kill MachProj for a call.
    garbage_collect_pinch_nodes();
  }
}

// Garbage collect pinch nodes for reuse by other blocks.
//
// The block scheduler's insertion of anti-dependence
// edges creates many pinch nodes when the block contains
// 2 or more Calls.  A pinch node is used to prevent a
// combinatorial explosion of edges.  If a set of kills for a
// register is anti-dependent on a set of uses (or defs), rather
// than adding an edge in the graph between each pair of kill
// and use (or def), a pinch is inserted between them:
//
//            use1   use2  use3
//                \   |   /
//                 \  |  /
//                  pinch
//                 /  |  \
//                /   |   \
//            kill1 kill2 kill3
//
// One pinch node is created per register killed when
// the second call is encountered during a backwards pass
// over the block.  Most of these pinch nodes are never
// wired into the graph because the register is never
// used or def'ed in the block.
//
void Scheduling::garbage_collect_pinch_nodes() {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
#endif
    int trace_cnt = 0;
    for (uint k = 0; k < _reg_node.Size(); k++) {
      Node* pinch = _reg_node[k];
      if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
          // no predecence input edges
          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
        cleanup_pinch(pinch);
        _pinch_free_list.push(pinch);
        _reg_node.map(k, NULL);
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output()) {
          trace_cnt++;
          if (trace_cnt > 40) {
            tty->print("\n");
            trace_cnt = 0;
          }
          tty->print(" %d", pinch->_idx);
        }
#endif
      }
    }
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) tty->print("\n");
#endif
}

// Clean up a pinch node for reuse.
void Scheduling::cleanup_pinch( Node *pinch ) {
  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");

  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
    Node* use = pinch->last_out(i);
    uint uses_found = 0;
    for (uint j = use->req(); j < use->len(); j++) {
      if (use->in(j) == pinch) {
        use->rm_prec(j);
        uses_found++;
      }
    }
    assert(uses_found > 0, "must be a precedence edge");
    i -= uses_found;    // we deleted 1 or more copies of this edge
  }
  // May have a later_def entry
  pinch->set_req(0, NULL);
}

#ifndef PRODUCT

void Scheduling::dump_available() const {
  tty->print("#Availist  ");
  for (uint i = 0; i < _available.size(); i++)
    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  tty->cr();
}

// Print Scheduling Statistics
void Scheduling::print_statistics() {
  // Print the size added by nops for bundling
  tty->print("Nops added %d bytes to total of %d bytes",
    _total_nop_size, _total_method_size);
  if (_total_method_size > 0)
    tty->print(", for %.2f%%",
      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  tty->print("\n");

  // Print the number of branch shadows filled
  if (Pipeline::_branch_has_delay_slot) {
    tty->print("Of %d branches, %d had unconditional delay slots filled",
      _total_branches, _total_unconditional_delays);
    if (_total_branches > 0)
      tty->print(", for %.2f%%",
        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
    tty->print("\n");
  }

  uint total_instructions = 0, total_bundles = 0;

  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
    uint bundle_count   = _total_instructions_per_bundle[i];
    total_instructions += bundle_count * i;
    total_bundles      += bundle_count;
  }

  if (total_bundles > 0)
    tty->print("Average ILP (excluding nops) is %.2f\n",
      ((double)total_instructions) / ((double)total_bundles));
}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java output.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.