|
Java example source code file (parse2.cpp)
The parse2.cpp Java example source code/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciMethodData.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "compiler/compileLog.hpp" #include "interpreter/linkResolver.hpp" #include "memory/universe.inline.hpp" #include "opto/addnode.hpp" #include "opto/divnode.hpp" #include "opto/idealGraphPrinter.hpp" #include "opto/matcher.hpp" #include "opto/memnode.hpp" #include "opto/mulnode.hpp" #include "opto/parse.hpp" #include "opto/runtime.hpp" #include "runtime/deoptimization.hpp" #include "runtime/sharedRuntime.hpp" extern int explicit_null_checks_inserted, explicit_null_checks_elided; //---------------------------------array_load---------------------------------- void Parse::array_load(BasicType elem_type) { const Type* elem = Type::TOP; Node* adr = array_addressing(elem_type, 0, &elem); if (stopped()) return; // guaranteed null or range check dec_sp(2); // Pop array and index const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type); Node* ld = make_load(control(), adr, elem, elem_type, adr_type); push(ld); } //--------------------------------array_store---------------------------------- void Parse::array_store(BasicType elem_type) { Node* adr = array_addressing(elem_type, 1); if (stopped()) return; // guaranteed null or range check Node* val = pop(); dec_sp(2); // Pop array and index const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type); store_to_memory(control(), adr, val, elem_type, adr_type); } //------------------------------array_addressing------------------------------- // Pull array and index from the stack. Compute pointer-to-element. Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) { Node *idx = peek(0+vals); // Get from stack without popping Node *ary = peek(1+vals); // in case of exception // Null check the array base, with correct stack contents ary = null_check(ary, T_ARRAY); // Compile-time detect of null-exception? if (stopped()) return top(); const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); const TypeInt* sizetype = arytype->size(); const Type* elemtype = arytype->elem(); if (UseUniqueSubclasses && result2 != NULL) { const Type* el = elemtype->make_ptr(); if (el && el->isa_instptr()) { const TypeInstPtr* toop = el->is_instptr(); if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) { // If we load from "AbstractClass[]" we must see "ConcreteSubClass". const Type* subklass = Type::get_const_type(toop->klass()); elemtype = subklass->join(el); } } } // Check for big class initializers with all constant offsets // feeding into a known-size array. const TypeInt* idxtype = _gvn.type(idx)->is_int(); // See if the highest idx value is less than the lowest array bound, // and if the idx value cannot be negative: bool need_range_check = true; if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { need_range_check = false; if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'"); } ciKlass * arytype_klass = arytype->klass(); if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) { // Only fails for some -Xcomp runs // The class is unloaded. We have to run this bytecode in the interpreter. uncommon_trap(Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, arytype->klass(), "!loaded array"); return top(); } // Do the range check if (GenerateRangeChecks && need_range_check) { Node* tst; if (sizetype->_hi <= 0) { // The greatest array bound is negative, so we can conclude that we're // compiling unreachable code, but the unsigned compare trick used below // only works with non-negative lengths. Instead, hack "tst" to be zero so // the uncommon_trap path will always be taken. tst = _gvn.intcon(0); } else { // Range is constant in array-oop, so we can use the original state of mem Node* len = load_array_length(ary); // Test length vs index (standard trick using unsigned compare) Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) ); BoolTest::mask btest = BoolTest::lt; tst = _gvn.transform( new (C) BoolNode(chk, btest) ); } // Branch to failure if out of bounds { BuildCutout unless(this, tst, PROB_MAX); if (C->allow_range_check_smearing()) { // Do not use builtin_throw, since range checks are sometimes // made more stringent by an optimistic transformation. // This creates "tentative" range checks at this point, // which are not guaranteed to throw exceptions. // See IfNode::Ideal, is_range_check, adjust_check. uncommon_trap(Deoptimization::Reason_range_check, Deoptimization::Action_make_not_entrant, NULL, "range_check"); } else { // If we have already recompiled with the range-check-widening // heroic optimization turned off, then we must really be throwing // range check exceptions. builtin_throw(Deoptimization::Reason_range_check, idx); } } } // Check for always knowing you are throwing a range-check exception if (stopped()) return top(); Node* ptr = array_element_address(ary, idx, type, sizetype); if (result2 != NULL) *result2 = elemtype; assert(ptr != top(), "top should go hand-in-hand with stopped"); return ptr; } // returns IfNode IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) { Node *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 Node *tst = _gvn.transform( new (C) BoolNode( cmp, mask)); IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN ); return iff; } // return Region node Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) { Node *region = new (C) RegionNode(3); // 2 results record_for_igvn(region); region->init_req(1, iffalse); region->init_req(2, iftrue ); _gvn.set_type(region, Type::CONTROL); region = _gvn.transform(region); set_control (region); return region; } //------------------------------helper for tableswitch------------------------- void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iftrue = _gvn.transform( new (C) IfTrueNode (iff) ); set_control( iftrue ); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } // False branch Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) ); set_control( iffalse ); } void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iffalse = _gvn.transform( new (C) IfFalseNode (iff) ); set_control( iffalse ); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } // False branch Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) ); set_control( iftrue ); } void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) { // False branch, use existing map and control() profile_switch_case(prof_table_index); merge_new_path(dest_bci); } extern "C" { static int jint_cmp(const void *i, const void *j) { int a = *(jint *)i; int b = *(jint *)j; return a > b ? 1 : a < b ? -1 : 0; } } // Default value for methodData switch indexing. Must be a negative value to avoid // conflict with any legal switch index. #define NullTableIndex -1 class SwitchRange : public StackObj { // a range of integers coupled with a bci destination jint _lo; // inclusive lower limit jint _hi; // inclusive upper limit int _dest; int _table_index; // index into method data table public: jint lo() const { return _lo; } jint hi() const { return _hi; } int dest() const { return _dest; } int table_index() const { return _table_index; } bool is_singleton() const { return _lo == _hi; } void setRange(jint lo, jint hi, int dest, int table_index) { assert(lo <= hi, "must be a non-empty range"); _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; } bool adjoinRange(jint lo, jint hi, int dest, int table_index) { assert(lo <= hi, "must be a non-empty range"); if (lo == _hi+1 && dest == _dest && table_index == _table_index) { _hi = hi; return true; } return false; } void set (jint value, int dest, int table_index) { setRange(value, value, dest, table_index); } bool adjoin(jint value, int dest, int table_index) { return adjoinRange(value, value, dest, table_index); } void print() { if (is_singleton()) tty->print(" {%d}=>%d", lo(), dest()); else if (lo() == min_jint) tty->print(" {..%d}=>%d", hi(), dest()); else if (hi() == max_jint) tty->print(" {%d..}=>%d", lo(), dest()); else tty->print(" {%d..%d}=>%d", lo(), hi(), dest()); } }; //-------------------------------do_tableswitch-------------------------------- void Parse::do_tableswitch() { Node* lookup = pop(); // Get information about tableswitch int default_dest = iter().get_dest_table(0); int lo_index = iter().get_int_table(1); int hi_index = iter().get_int_table(2); int len = hi_index - lo_index + 1; if (len < 1) { // If this is a backward branch, add safepoint maybe_add_safepoint(default_dest); merge(default_dest); return; } // generate decision tree, using trichotomy when possible int rnum = len+2; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; if (lo_index != min_jint) { ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex); } for (int j = 0; j < len; j++) { jint match_int = lo_index+j; int dest = iter().get_dest_table(j+3); makes_backward_branch |= (dest <= bci()); int table_index = method_data_update() ? j : NullTableIndex; if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) { ranges[++rp].set(match_int, dest, table_index); } } jint highest = lo_index+(len-1); assert(ranges[rp].hi() == highest, ""); if (highest != max_jint && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) { ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); } assert(rp < len+2, "not too many ranges"); // Safepoint in case if backward branch observed if( makes_backward_branch && UseLoopSafepoints ) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); } //------------------------------do_lookupswitch-------------------------------- void Parse::do_lookupswitch() { Node *lookup = pop(); // lookup value // Get information about lookupswitch int default_dest = iter().get_dest_table(0); int len = iter().get_int_table(1); if (len < 1) { // If this is a backward branch, add safepoint maybe_add_safepoint(default_dest); merge(default_dest); return; } // generate decision tree, using trichotomy when possible jint* table = NEW_RESOURCE_ARRAY(jint, len*2); { for( int j = 0; j < len; j++ ) { table[j+j+0] = iter().get_int_table(2+j+j); table[j+j+1] = iter().get_dest_table(2+j+j+1); } qsort( table, len, 2*sizeof(table[0]), jint_cmp ); } int rnum = len*2+1; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; for( int j = 0; j < len; j++ ) { jint match_int = table[j+j+0]; int dest = table[j+j+1]; int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; int table_index = method_data_update() ? j : NullTableIndex; makes_backward_branch |= (dest <= bci()); if( match_int != next_lo ) { ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex); } if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) { ranges[++rp].set(match_int, dest, table_index); } } jint highest = table[2*(len-1)]; assert(ranges[rp].hi() == highest, ""); if( highest != max_jint && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) { ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); } assert(rp < rnum, "not too many ranges"); // Safepoint in case backward branch observed if( makes_backward_branch && UseLoopSafepoints ) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); } //----------------------------create_jump_tables------------------------------- bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { // Are jumptables enabled if (!UseJumpTables) return false; // Are jumptables supported if (!Matcher::has_match_rule(Op_Jump)) return false; // Don't make jump table if profiling if (method_data_update()) return false; // Decide if a guard is needed to lop off big ranges at either (or // both) end(s) of the input set. We'll call this the default target // even though we can't be sure that it is the true "default". bool needs_guard = false; int default_dest; int64 total_outlier_size = 0; int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1; int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1; if (lo->dest() == hi->dest()) { total_outlier_size = hi_size + lo_size; default_dest = lo->dest(); } else if (lo_size > hi_size) { total_outlier_size = lo_size; default_dest = lo->dest(); } else { total_outlier_size = hi_size; default_dest = hi->dest(); } // If a guard test will eliminate very sparse end ranges, then // it is worth the cost of an extra jump. if (total_outlier_size > (MaxJumpTableSparseness * 4)) { needs_guard = true; if (default_dest == lo->dest()) lo++; if (default_dest == hi->dest()) hi--; } // Find the total number of cases and ranges int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1; int num_range = hi - lo + 1; // Don't create table if: too large, too small, or too sparse. if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize) return false; if (num_cases > (MaxJumpTableSparseness * num_range)) return false; // Normalize table lookups to zero int lowval = lo->lo(); key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) ); // Generate a guard to protect against input keyvals that aren't // in the switch domain. if (needs_guard) { Node* size = _gvn.intcon(num_cases); Node* cmp = _gvn.transform( new (C) CmpUNode(key_val, size) ); Node* tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) ); IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN); jump_if_true_fork(iff, default_dest, NullTableIndex); } // Create an ideal node JumpTable that has projections // of all possible ranges for a switch statement // The key_val input must be converted to a pointer offset and scaled. // Compare Parse::array_addressing above. #ifdef _LP64 // Clean the 32-bit int into a real 64-bit offset. // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin); key_val = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) ); #endif // Shift the value by wordsize so we have an index into the table, rather // than a switch value Node *shiftWord = _gvn.MakeConX(wordSize); key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord)); // Create the JumpNode Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) ); // These are the switch destinations hanging off the jumpnode int i = 0; for (SwitchRange* r = lo; r <= hi; r++) { for (int64 j = r->lo(); j <= r->hi(); j++, i++) { Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); { PreserveJVMState pjvms(this); set_control(input); jump_if_always_fork(r->dest(), r->table_index()); } } } assert(i == num_cases, "miscount of cases"); stop_and_kill_map(); // no more uses for this JVMS return true; } //----------------------------jump_switch_ranges------------------------------- void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { Block* switch_block = block(); if (switch_depth == 0) { // Do special processing for the top-level call. assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); // Decrement pred-numbers for the unique set of nodes. #ifdef ASSERT // Ensure that the block's successors are a (duplicate-free) set. int successors_counted = 0; // block occurrences in [hi..lo] int unique_successors = switch_block->num_successors(); for (int i = 0; i < unique_successors; i++) { Block* target = switch_block->successor_at(i); // Check that the set of successors is the same in both places. int successors_found = 0; for (SwitchRange* p = lo; p <= hi; p++) { if (p->dest() == target->start()) successors_found++; } assert(successors_found > 0, "successor must be known"); successors_counted += successors_found; } assert(successors_counted == (hi-lo)+1, "no unexpected successors"); #endif // Maybe prune the inputs, based on the type of key_val. jint min_val = min_jint; jint max_val = max_jint; const TypeInt* ti = key_val->bottom_type()->isa_int(); if (ti != NULL) { min_val = ti->_lo; max_val = ti->_hi; assert(min_val <= max_val, "invalid int type"); } while (lo->hi() < min_val) lo++; if (lo->lo() < min_val) lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index()); while (hi->lo() > max_val) hi--; if (hi->hi() > max_val) hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index()); } #ifndef PRODUCT if (switch_depth == 0) { _max_switch_depth = 0; _est_switch_depth = log2_intptr((hi-lo+1)-1)+1; } #endif assert(lo <= hi, "must be a non-empty set of ranges"); if (lo == hi) { jump_if_always_fork(lo->dest(), lo->table_index()); } else { assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); if (create_jump_tables(key_val, lo, hi)) return; int nr = hi - lo + 1; SwitchRange* mid = lo + nr/2; // if there is an easy choice, pivot at a singleton: if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; assert(lo < mid && mid <= hi, "good pivot choice"); assert(nr != 2 || mid == hi, "should pick higher of 2"); assert(nr != 3 || mid == hi-1, "should pick middle of 3"); Node *test_val = _gvn.intcon(mid->lo()); if (mid->is_singleton()) { IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne); jump_if_false_fork(iff_ne, mid->dest(), mid->table_index()); // Special Case: If there are exactly three ranges, and the high // and low range each go to the same place, omit the "gt" test, // since it will not discriminate anything. bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest()); if (eq_test_only) { assert(mid == hi-1, ""); } // if there is a higher range, test for it and process it: if (mid < hi && !eq_test_only) { // two comparisons of same values--should enable 1 test for 2 branches // Use BoolTest::le instead of BoolTest::gt IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le); Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff_le) ); Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) ); { PreserveJVMState pjvms(this); set_control(iffalse); jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); } set_control(iftrue); } } else { // mid is a range, not a singleton, so treat mid..hi as a unit IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge); // if there is a higher range, test for it and process it: if (mid == hi) { jump_if_true_fork(iff_ge, mid->dest(), mid->table_index()); } else { Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff_ge) ); Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) ); { PreserveJVMState pjvms(this); set_control(iftrue); jump_switch_ranges(key_val, mid, hi, switch_depth+1); } set_control(iffalse); } } // in any case, process the lower range jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); } // Decrease pred_count for each successor after all is done. if (switch_depth == 0) { int unique_successors = switch_block->num_successors(); for (int i = 0; i < unique_successors; i++) { Block* target = switch_block->successor_at(i); // Throw away the pre-allocated path for each unique successor. target->next_path_num(); } } #ifndef PRODUCT _max_switch_depth = MAX2(switch_depth, _max_switch_depth); if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { SwitchRange* r; int nsing = 0; for( r = lo; r <= hi; r++ ) { if( r->is_singleton() ) nsing++; } tty->print(">>> "); _method->print_short_name(); tty->print_cr(" switch decision tree"); tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", hi-lo+1, nsing, _max_switch_depth, _est_switch_depth); if (_max_switch_depth > _est_switch_depth) { tty->print_cr("******** BAD SWITCH DEPTH ********"); } tty->print(" "); for( r = lo; r <= hi; r++ ) { r->print(); } tty->print_cr(""); } #endif } void Parse::modf() { Node *f2 = pop(); Node *f1 = pop(); Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::frem), "frem", NULL, //no memory effects f1, f2); Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); push(res); } void Parse::modd() { Node *d2 = pop_pair(); Node *d1 = pop_pair(); Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::drem), "drem", NULL, //no memory effects d1, top(), d2, top()); Node* res_d = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); #ifdef ASSERT Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1)); assert(res_top == top(), "second value must be top"); #endif push_pair(res_d); } void Parse::l2f() { Node* f2 = pop(); Node* f1 = pop(); Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::l2f), "l2f", NULL, //no memory effects f1, f2); Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0)); push(res); } void Parse::do_irem() { // Must keep both values on the expression-stack during null-check zero_check_int(peek()); // Compile-time detect of null-exception? if (stopped()) return; Node* b = pop(); Node* a = pop(); const Type *t = _gvn.type(b); if (t != Type::TOP) { const TypeInt *ti = t->is_int(); if (ti->is_con()) { int divisor = ti->get_con(); // check for positive power of 2 if (divisor > 0 && (divisor & ~(divisor-1)) == divisor) { // yes ! Node *mask = _gvn.intcon((divisor - 1)); // Sigh, must handle negative dividends Node *zero = _gvn.intcon(0); IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt); Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) ); Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) ); Node *reg = jump_if_join(ift, iff); Node *phi = PhiNode::make(reg, NULL, TypeInt::INT); // Negative path; negate/and/negate Node *neg = _gvn.transform( new (C) SubINode(zero, a) ); Node *andn= _gvn.transform( new (C) AndINode(neg, mask) ); Node *negn= _gvn.transform( new (C) SubINode(zero, andn) ); phi->init_req(1, negn); // Fast positive case Node *andx = _gvn.transform( new (C) AndINode(a, mask) ); phi->init_req(2, andx); // Push the merge push( _gvn.transform(phi) ); return; } } } // Default case push( _gvn.transform( new (C) ModINode(control(),a,b) ) ); } // Handle jsr and jsr_w bytecode void Parse::do_jsr() { assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); // Store information about current state, tagged with new _jsr_bci int return_bci = iter().next_bci(); int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); // Update method data profile_taken_branch(jsr_bci); // The way we do things now, there is only one successor block // for the jsr, because the target code is cloned by ciTypeFlow. Block* target = successor_for_bci(jsr_bci); // What got pushed? const Type* ret_addr = target->peek(); assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); // Effect on jsr on stack push(_gvn.makecon(ret_addr)); // Flow to the jsr. merge(jsr_bci); } // Handle ret bytecode void Parse::do_ret() { // Find to whom we return. assert(block()->num_successors() == 1, "a ret can only go one place now"); Block* target = block()->successor_at(0); assert(!target->is_ready(), "our arrival must be expected"); profile_ret(target->flow()->start()); int pnum = target->next_path_num(); merge_common(target, pnum); } //--------------------------dynamic_branch_prediction-------------------------- // Try to gather dynamic branch prediction behavior. Return a probability // of the branch being taken and set the "cnt" field. Returns a -1.0 // if we need to use static prediction for some reason. float Parse::dynamic_branch_prediction(float &cnt) { ResourceMark rm; cnt = COUNT_UNKNOWN; // Use MethodData information if it is available // FIXME: free the ProfileData structure ciMethodData* methodData = method()->method_data(); if (!methodData->is_mature()) return PROB_UNKNOWN; ciProfileData* data = methodData->bci_to_data(bci()); if (!data->is_JumpData()) return PROB_UNKNOWN; // get taken and not taken values int taken = data->as_JumpData()->taken(); int not_taken = 0; if (data->is_BranchData()) { not_taken = data->as_BranchData()->not_taken(); } // scale the counts to be commensurate with invocation counts: taken = method()->scale_count(taken); not_taken = method()->scale_count(not_taken); // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. // We also check that individual counters are positive first, overwise the sum can become positive. if (taken < 0 || not_taken < 0 || taken + not_taken < 40) { if (C->log() != NULL) { C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); } return PROB_UNKNOWN; } // Compute frequency that we arrive here float sum = taken + not_taken; // Adjust, if this block is a cloned private block but the // Jump counts are shared. Taken the private counts for // just this path instead of the shared counts. if( block()->count() > 0 ) sum = block()->count(); cnt = sum / FreqCountInvocations; // Pin probability to sane limits float prob; if( !taken ) prob = (0+PROB_MIN) / 2; else if( !not_taken ) prob = (1+PROB_MAX) / 2; else { // Compute probability of true path prob = (float)taken / (float)(taken + not_taken); if (prob > PROB_MAX) prob = PROB_MAX; if (prob < PROB_MIN) prob = PROB_MIN; } assert((cnt > 0.0f) && (prob > 0.0f), "Bad frequency assignment in if"); if (C->log() != NULL) { const char* prob_str = NULL; if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; char prob_str_buf[30]; if (prob_str == NULL) { sprintf(prob_str_buf, "%g", prob); prob_str = prob_str_buf; } C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'", iter().get_dest(), taken, not_taken, cnt, prob_str); } return prob; } //-----------------------------branch_prediction------------------------------- float Parse::branch_prediction(float& cnt, BoolTest::mask btest, int target_bci) { float prob = dynamic_branch_prediction(cnt); // If prob is unknown, switch to static prediction if (prob != PROB_UNKNOWN) return prob; prob = PROB_FAIR; // Set default value if (btest == BoolTest::eq) // Exactly equal test? prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent else if (btest == BoolTest::ne) prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent // If this is a conditional test guarding a backwards branch, // assume its a loop-back edge. Make it a likely taken branch. if (target_bci < bci()) { if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt // Since it's an OSR, we probably have profile data, but since // branch_prediction returned PROB_UNKNOWN, the counts are too small. // Let's make a special check here for completely zero counts. ciMethodData* methodData = method()->method_data(); if (!methodData->is_empty()) { ciProfileData* data = methodData->bci_to_data(bci()); // Only stop for truly zero counts, which mean an unknown part // of the OSR-ed method, and we want to deopt to gather more stats. // If you have ANY counts, then this loop is simply 'cold' relative // to the OSR loop. if (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0 ) { // This is the only way to return PROB_UNKNOWN: return PROB_UNKNOWN; } } } prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch } assert(prob != PROB_UNKNOWN, "must have some guess at this point"); return prob; } // The magic constants are chosen so as to match the output of // branch_prediction() when the profile reports a zero taken count. // It is important to distinguish zero counts unambiguously, because // some branches (e.g., _213_javac.Assembler.eliminate) validly produce // very small but nonzero probabilities, which if confused with zero // counts would keep the program recompiling indefinitely. bool Parse::seems_never_taken(float prob) { return prob < PROB_MIN; } // True if the comparison seems to be the kind that will not change its // statistics from true to false. See comments in adjust_map_after_if. // This question is only asked along paths which are already // classifed as untaken (by seems_never_taken), so really, // if a path is never taken, its controlling comparison is // already acting in a stable fashion. If the comparison // seems stable, we will put an expensive uncommon trap // on the untaken path. To be conservative, and to allow // partially executed counted loops to be compiled fully, // we will plant uncommon traps only after pointer comparisons. bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) { for (int depth = 4; depth > 0; depth--) { // The following switch can find CmpP here over half the time for // dynamic language code rich with type tests. // Code using counted loops or array manipulations (typical // of benchmarks) will have many (>80%) CmpI instructions. switch (cmp->Opcode()) { case Op_CmpP: // A never-taken null check looks like CmpP/BoolTest::eq. // These certainly should be closed off as uncommon traps. if (btest == BoolTest::eq) return true; // A never-failed type check looks like CmpP/BoolTest::ne. // Let's put traps on those, too, so that we don't have to compile // unused paths with indeterminate dynamic type information. if (ProfileDynamicTypes) return true; return false; case Op_CmpI: // A small minority (< 10%) of CmpP are masked as CmpI, // as if by boolean conversion ((p == q? 1: 0) != 0). // Detect that here, even if it hasn't optimized away yet. // Specifically, this covers the 'instanceof' operator. if (btest == BoolTest::ne || btest == BoolTest::eq) { if (_gvn.type(cmp->in(2))->singleton() && cmp->in(1)->is_Phi()) { PhiNode* phi = cmp->in(1)->as_Phi(); int true_path = phi->is_diamond_phi(); if (true_path > 0 && _gvn.type(phi->in(1))->singleton() && _gvn.type(phi->in(2))->singleton()) { // phi->region->if_proj->ifnode->bool->cmp BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool(); btest = bol->_test._test; cmp = bol->in(1); continue; } } } return false; } } return false; } //-------------------------------repush_if_args-------------------------------- // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. inline int Parse::repush_if_args() { #ifndef PRODUCT if (PrintOpto && WizardMode) { tty->print("defending against excessive implicit null exceptions on %s @%d in ", Bytecodes::name(iter().cur_bc()), iter().cur_bci()); method()->print_name(); tty->cr(); } #endif int bc_depth = - Bytecodes::depth(iter().cur_bc()); assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms assert(argument(0) != NULL, "must exist"); assert(bc_depth == 1 || argument(1) != NULL, "two must exist"); inc_sp(bc_depth); return bc_depth; } //----------------------------------do_ifnull---------------------------------- void Parse::do_ifnull(BoolTest::mask btest, Node *c) { int target_bci = iter().get_dest(); Block* branch_block = successor_for_bci(target_bci); Block* next_block = successor_for_bci(iter().next_bci()); float cnt; float prob = branch_prediction(cnt, btest, target_bci); if (prob == PROB_UNKNOWN) { // (An earlier version of do_ifnull omitted this trap for OSR methods.) #ifndef PRODUCT if (PrintOpto && Verbose) tty->print_cr("Never-taken edge stops compilation at bci %d",bci()); #endif repush_if_args(); // to gather stats on loop // We need to mark this branch as taken so that if we recompile we will // see that it is possible. In the tiered system the interpreter doesn't // do profiling and by the time we get to the lower tier from the interpreter // the path may be cold again. Make sure it doesn't look untaken profile_taken_branch(target_bci, !ProfileInterpreter); uncommon_trap(Deoptimization::Reason_unreached, Deoptimization::Action_reinterpret, NULL, "cold"); if (C->eliminate_boxing()) { // Mark the successor blocks as parsed branch_block->next_path_num(); next_block->next_path_num(); } return; } explicit_null_checks_inserted++; // Generate real control flow Node *tst = _gvn.transform( new (C) BoolNode( c, btest ) ); // Sanity check the probability value assert(prob > 0.0f,"Bad probability in Parser"); // Need xform to put node in hash table IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); // True branch { PreserveJVMState pjvms(this); Node* iftrue = _gvn.transform( new (C) IfTrueNode (iff) ); set_control(iftrue); if (stopped()) { // Path is dead? explicit_null_checks_elided++; if (C->eliminate_boxing()) { // Mark the successor block as parsed branch_block->next_path_num(); } } else { // Path is live. // Update method data profile_taken_branch(target_bci); adjust_map_after_if(btest, c, prob, branch_block, next_block); if (!stopped()) { merge(target_bci); } } } // False branch Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) ); set_control(iffalse); if (stopped()) { // Path is dead? explicit_null_checks_elided++; if (C->eliminate_boxing()) { // Mark the successor block as parsed next_block->next_path_num(); } } else { // Path is live. // Update method data profile_not_taken_branch(); adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block, branch_block); } } //------------------------------------do_if------------------------------------ void Parse::do_if(BoolTest::mask btest, Node* c) { int target_bci = iter().get_dest(); Block* branch_block = successor_for_bci(target_bci); Block* next_block = successor_for_bci(iter().next_bci()); float cnt; float prob = branch_prediction(cnt, btest, target_bci); float untaken_prob = 1.0 - prob; if (prob == PROB_UNKNOWN) { #ifndef PRODUCT if (PrintOpto && Verbose) tty->print_cr("Never-taken edge stops compilation at bci %d",bci()); #endif repush_if_args(); // to gather stats on loop // We need to mark this branch as taken so that if we recompile we will // see that it is possible. In the tiered system the interpreter doesn't // do profiling and by the time we get to the lower tier from the interpreter // the path may be cold again. Make sure it doesn't look untaken profile_taken_branch(target_bci, !ProfileInterpreter); uncommon_trap(Deoptimization::Reason_unreached, Deoptimization::Action_reinterpret, NULL, "cold"); if (C->eliminate_boxing()) { // Mark the successor blocks as parsed branch_block->next_path_num(); next_block->next_path_num(); } return; } // Sanity check the probability value assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); bool taken_if_true = true; // Convert BoolTest to canonical form: if (!BoolTest(btest).is_canonical()) { btest = BoolTest(btest).negate(); taken_if_true = false; // prob is NOT updated here; it remains the probability of the taken // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). } assert(btest != BoolTest::eq, "!= is the only canonical exact test"); Node* tst0 = new (C) BoolNode(c, btest); Node* tst = _gvn.transform(tst0); BoolTest::mask taken_btest = BoolTest::illegal; BoolTest::mask untaken_btest = BoolTest::illegal; if (tst->is_Bool()) { // Refresh c from the transformed bool node, since it may be // simpler than the original c. Also re-canonicalize btest. // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)). // That can arise from statements like: if (x instanceof C) ... if (tst != tst0) { // Canonicalize one more time since transform can change it. btest = tst->as_Bool()->_test._test; if (!BoolTest(btest).is_canonical()) { // Reverse edges one more time... tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); btest = tst->as_Bool()->_test._test; assert(BoolTest(btest).is_canonical(), "sanity"); taken_if_true = !taken_if_true; } c = tst->in(1); } BoolTest::mask neg_btest = BoolTest(btest).negate(); taken_btest = taken_if_true ? btest : neg_btest; untaken_btest = taken_if_true ? neg_btest : btest; } // Generate real control flow float true_prob = (taken_if_true ? prob : untaken_prob); IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); Node* taken_branch = new (C) IfTrueNode(iff); Node* untaken_branch = new (C) IfFalseNode(iff); if (!taken_if_true) { // Finish conversion to canonical form Node* tmp = taken_branch; taken_branch = untaken_branch; untaken_branch = tmp; } // Branch is taken: { PreserveJVMState pjvms(this); taken_branch = _gvn.transform(taken_branch); set_control(taken_branch); if (stopped()) { if (C->eliminate_boxing()) { // Mark the successor block as parsed branch_block->next_path_num(); } } else { // Update method data profile_taken_branch(target_bci); adjust_map_after_if(taken_btest, c, prob, branch_block, next_block); if (!stopped()) { merge(target_bci); } } } untaken_branch = _gvn.transform(untaken_branch); set_control(untaken_branch); // Branch not taken. if (stopped()) { if (C->eliminate_boxing()) { // Mark the successor block as parsed next_block->next_path_num(); } } else { // Update method data profile_not_taken_branch(); adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, branch_block); } } //----------------------------adjust_map_after_if------------------------------ // Adjust the JVM state to reflect the result of taking this path. // Basically, it means inspecting the CmpNode controlling this // branch, seeing how it constrains a tested value, and then // deciding if it's worth our while to encode this constraint // as graph nodes in the current abstract interpretation map. void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, Block* other_path) { if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal) return; // nothing to do bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) { // If this might possibly turn into an implicit null check, // and the null has never yet been seen, we need to generate // an uncommon trap, so as to recompile instead of suffering // with very slow branches. (We'll get the slow branches if // the program ever changes phase and starts seeing nulls here.) // // We do not inspect for a null constant, since a node may // optimize to 'null' later on. // // Null checks, and other tests which expect inequality, // show btest == BoolTest::eq along the non-taken branch. // On the other hand, type tests, must-be-null tests, // and other tests which expect pointer equality, // show btest == BoolTest::ne along the non-taken branch. // We prune both types of branches if they look unused. repush_if_args(); // We need to mark this branch as taken so that if we recompile we will // see that it is possible. In the tiered system the interpreter doesn't // do profiling and by the time we get to the lower tier from the interpreter // the path may be cold again. Make sure it doesn't look untaken if (is_fallthrough) { profile_not_taken_branch(!ProfileInterpreter); } else { profile_taken_branch(iter().get_dest(), !ProfileInterpreter); } uncommon_trap(Deoptimization::Reason_unreached, Deoptimization::Action_reinterpret, NULL, (is_fallthrough ? "taken always" : "taken never")); return; } Node* val = c->in(1); Node* con = c->in(2); const Type* tcon = _gvn.type(con); const Type* tval = _gvn.type(val); bool have_con = tcon->singleton(); if (tval->singleton()) { if (!have_con) { // Swap, so constant is in con. con = val; tcon = tval; val = c->in(2); tval = _gvn.type(val); btest = BoolTest(btest).commute(); have_con = true; } else { // Do we have two constants? Then leave well enough alone. have_con = false; } } if (!have_con) // remaining adjustments need a con return; sharpen_type_after_if(btest, con, tcon, val, tval); } static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { Node* ldk; if (n->is_DecodeNKlass()) { if (n->in(1)->Opcode() != Op_LoadNKlass) { return NULL; } else { ldk = n->in(1); } } else if (n->Opcode() != Op_LoadKlass) { return NULL; } else { ldk = n; } assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); Node* adr = ldk->in(MemNode::Address); intptr_t off = 0; Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? return NULL; const TypePtr* tp = gvn->type(obj)->is_ptr(); if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? return NULL; return obj; } void Parse::sharpen_type_after_if(BoolTest::mask btest, Node* con, const Type* tcon, Node* val, const Type* tval) { // Look for opportunities to sharpen the type of a node // whose klass is compared with a constant klass. if (btest == BoolTest::eq && tcon->isa_klassptr()) { Node* obj = extract_obj_from_klass_load(&_gvn, val); const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) { // Found: // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) // or the narrowOop equivalent. const Type* obj_type = _gvn.type(obj); const TypeOopPtr* tboth = obj_type->join(con_type)->isa_oopptr(); if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type && tboth->higher_equal(obj_type)) { // obj has to be of the exact type Foo if the CmpP succeeds. int obj_in_map = map()->find_edge(obj); JVMState* jvms = this->jvms(); if (obj_in_map >= 0 && (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth); const Type* tcc = ccast->as_Type()->type(); assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); // Delay transform() call to allow recovery of pre-cast value // at the control merge. _gvn.set_type_bottom(ccast); record_for_igvn(ccast); // Here's the payoff. replace_in_map(obj, ccast); } } } } int val_in_map = map()->find_edge(val); if (val_in_map < 0) return; // replace_in_map would be useless { JVMState* jvms = this->jvms(); if (!(jvms->is_loc(val_in_map) || jvms->is_stk(val_in_map))) return; // again, it would be useless } // Check for a comparison to a constant, and "know" that the compared // value is constrained on this path. assert(tcon->singleton(), ""); ConstraintCastNode* ccast = NULL; Node* cast = NULL; switch (btest) { case BoolTest::eq: // Constant test? { const Type* tboth = tcon->join(tval); if (tboth == tval) break; // Nothing to gain. if (tcon->isa_int()) { ccast = new (C) CastIINode(val, tboth); } else if (tcon == TypePtr::NULL_PTR) { // Cast to null, but keep the pointer identity temporarily live. ccast = new (C) CastPPNode(val, tboth); } else { const TypeF* tf = tcon->isa_float_constant(); const TypeD* td = tcon->isa_double_constant(); // Exclude tests vs float/double 0 as these could be // either +0 or -0. Just because you are equal to +0 // doesn't mean you ARE +0! // Note, following code also replaces Long and Oop values. if ((!tf || tf->_f != 0.0) && (!td || td->_d != 0.0)) cast = con; // Replace non-constant val by con. } } break; case BoolTest::ne: if (tcon == TypePtr::NULL_PTR) { cast = cast_not_null(val, false); } break; default: // (At this point we could record int range types with CastII.) break; } if (ccast != NULL) { const Type* tcc = ccast->as_Type()->type(); assert(tcc != tval && tcc->higher_equal(tval), "must improve"); // Delay transform() call to allow recovery of pre-cast value // at the control merge. ccast->set_req(0, control()); _gvn.set_type_bottom(ccast); record_for_igvn(ccast); cast = ccast; } if (cast != NULL) { // Here's the payoff. replace_in_map(val, cast); } } /** * Use speculative type to optimize CmpP node: if comparison is * against the low level class, cast the object to the speculative * type if any. CmpP should then go away. * * @param c expected CmpP node * @return result of CmpP on object casted to speculative type * */ Node* Parse::optimize_cmp_with_klass(Node* c) { // If this is transformed by the _gvn to a comparison with the low // level klass then we may be able to use speculation if (c->Opcode() == Op_CmpP && (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && c->in(2)->is_Con()) { Node* load_klass = NULL; Node* decode = NULL; if (c->in(1)->Opcode() == Op_DecodeNKlass) { decode = c->in(1); load_klass = c->in(1)->in(1); } else { load_klass = c->in(1); } if (load_klass->in(2)->is_AddP()) { Node* addp = load_klass->in(2); Node* obj = addp->in(AddPNode::Address); const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); if (obj_type->speculative_type() != NULL) { ciKlass* k = obj_type->speculative_type(); inc_sp(2); obj = maybe_cast_profiled_obj(obj, k); dec_sp(2); // Make the CmpP use the casted obj addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); load_klass = load_klass->clone(); load_klass->set_req(2, addp); load_klass = _gvn.transform(load_klass); if (decode != NULL) { decode = decode->clone(); decode->set_req(1, load_klass); load_klass = _gvn.transform(decode); } c = c->clone(); c->set_req(1, load_klass); c = _gvn.transform(c); } } } return c; } //------------------------------do_one_bytecode-------------------------------- // Parse this bytecode, and alter the Parsers JVM->Node mapping void Parse::do_one_bytecode() { Node *a, *b, *c, *d; // Handy temps BoolTest::mask btest; int i; assert(!has_exceptions(), "bytecode entry state must be clear of throws"); if (C->check_node_count(NodeLimitFudgeFactor * 5, "out of nodes parsing method")) { return; } #ifdef ASSERT // for setting breakpoints if (TraceOptoParse) { tty->print(" @"); dump_bci(bci()); tty->cr(); } #endif switch (bc()) { case Bytecodes::_nop: // do nothing break; case Bytecodes::_lconst_0: push_pair(longcon(0)); break; case Bytecodes::_lconst_1: push_pair(longcon(1)); break; case Bytecodes::_fconst_0: push(zerocon(T_FLOAT)); break; case Bytecodes::_fconst_1: push(makecon(TypeF::ONE)); break; case Bytecodes::_fconst_2: push(makecon(TypeF::make(2.0f))); break; case Bytecodes::_dconst_0: push_pair(zerocon(T_DOUBLE)); break; case Bytecodes::_dconst_1: push_pair(makecon(TypeD::ONE)); break; case Bytecodes::_iconst_m1:push(intcon(-1)); break; case Bytecodes::_iconst_0: push(intcon( 0)); break; case Bytecodes::_iconst_1: push(intcon( 1)); break; case Bytecodes::_iconst_2: push(intcon( 2)); break; case Bytecodes::_iconst_3: push(intcon( 3)); break; case Bytecodes::_iconst_4: push(intcon( 4)); break; case Bytecodes::_iconst_5: push(intcon( 5)); break; case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; case Bytecodes::_aconst_null: push(null()); break; case Bytecodes::_ldc: case Bytecodes::_ldc_w: case Bytecodes::_ldc2_w: // If the constant is unresolved, run this BC once in the interpreter. { ciConstant constant = iter().get_constant(); if (constant.basic_type() == T_OBJECT && !constant.as_object()->is_loaded()) { int index = iter().get_constant_pool_index(); constantTag tag = iter().get_constant_pool_tag(index); uncommon_trap(Deoptimization::make_trap_request (Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, index), NULL, tag.internal_name()); break; } assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(), "must be java_mirror of klass"); bool pushed = push_constant(constant, true); guarantee(pushed, "must be possible to push this constant"); } break; case Bytecodes::_aload_0: push( local(0) ); break; case Bytecodes::_aload_1: push( local(1) ); break; case Bytecodes::_aload_2: push( local(2) ); break; case Bytecodes::_aload_3: push( local(3) ); break; case Bytecodes::_aload: push( local(iter().get_index()) ); break; case Bytecodes::_fload_0: case Bytecodes::_iload_0: push( local(0) ); break; case Bytecodes::_fload_1: case Bytecodes::_iload_1: push( local(1) ); break; case Bytecodes::_fload_2: case Bytecodes::_iload_2: push( local(2) ); break; case Bytecodes::_fload_3: case Bytecodes::_iload_3: push( local(3) ); break; case Bytecodes::_fload: case Bytecodes::_iload: push( local(iter().get_index()) ); break; case Bytecodes::_lload_0: push_pair_local( 0 ); break; case Bytecodes::_lload_1: push_pair_local( 1 ); break; case Bytecodes::_lload_2: push_pair_local( 2 ); break; case Bytecodes::_lload_3: push_pair_local( 3 ); break; case Bytecodes::_lload: push_pair_local( iter().get_index() ); break; case Bytecodes::_dload_0: push_pair_local(0); break; case Bytecodes::_dload_1: push_pair_local(1); break; case Bytecodes::_dload_2: push_pair_local(2); break; case Bytecodes::_dload_3: push_pair_local(3); break; case Bytecodes::_dload: push_pair_local(iter().get_index()); break; case Bytecodes::_fstore_0: case Bytecodes::_istore_0: case Bytecodes::_astore_0: set_local( 0, pop() ); break; case Bytecodes::_fstore_1: case Bytecodes::_istore_1: case Bytecodes::_astore_1: set_local( 1, pop() ); break; case Bytecodes::_fstore_2: case Bytecodes::_istore_2: case Bytecodes::_astore_2: set_local( 2, pop() ); break; case Bytecodes::_fstore_3: case Bytecodes::_istore_3: case Bytecodes::_astore_3: set_local( 3, pop() ); break; case Bytecodes::_fstore: case Bytecodes::_istore: case Bytecodes::_astore: set_local( iter().get_index(), pop() ); break; // long stores case Bytecodes::_lstore_0: set_pair_local( 0, pop_pair() ); break; case Bytecodes::_lstore_1: set_pair_local( 1, pop_pair() ); break; case Bytecodes::_lstore_2: set_pair_local( 2, pop_pair() ); break; case Bytecodes::_lstore_3: set_pair_local( 3, pop_pair() ); break; case Bytecodes::_lstore: set_pair_local( iter().get_index(), pop_pair() ); break; // double stores case Bytecodes::_dstore_0: set_pair_local( 0, dstore_rounding(pop_pair()) ); break; case Bytecodes::_dstore_1: set_pair_local( 1, dstore_rounding(pop_pair()) ); break; case Bytecodes::_dstore_2: set_pair_local( 2, dstore_rounding(pop_pair()) ); break; case Bytecodes::_dstore_3: set_pair_local( 3, dstore_rounding(pop_pair()) ); break; case Bytecodes::_dstore: set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) ); break; case Bytecodes::_pop: dec_sp(1); break; case Bytecodes::_pop2: dec_sp(2); break; case Bytecodes::_swap: a = pop(); b = pop(); push(a); push(b); break; case Bytecodes::_dup: a = pop(); push(a); push(a); break; case Bytecodes::_dup_x1: a = pop(); b = pop(); push( a ); push( b ); push( a ); break; case Bytecodes::_dup_x2: a = pop(); b = pop(); c = pop(); push( a ); push( c ); push( b ); push( a ); break; case Bytecodes::_dup2: a = pop(); b = pop(); push( b ); push( a ); push( b ); push( a ); break; case Bytecodes::_dup2_x1: // before: .. c, b, a // after: .. b, a, c, b, a // not tested a = pop(); b = pop(); c = pop(); push( b ); push( a ); push( c ); push( b ); push( a ); break; case Bytecodes::_dup2_x2: // before: .. d, c, b, a // after: .. b, a, d, c, b, a // not tested a = pop(); b = pop(); c = pop(); d = pop(); push( b ); push( a ); push( d ); push( c ); push( b ); push( a ); break; case Bytecodes::_arraylength: { // Must do null-check with value on expression stack Node *ary = null_check(peek(), T_ARRAY); // Compile-time detect of null-exception? if (stopped()) return; a = pop(); push(load_array_length(a)); break; } case Bytecodes::_baload: array_load(T_BYTE); break; case Bytecodes::_caload: array_load(T_CHAR); break; case Bytecodes::_iaload: array_load(T_INT); break; case Bytecodes::_saload: array_load(T_SHORT); break; case Bytecodes::_faload: array_load(T_FLOAT); break; case Bytecodes::_aaload: array_load(T_OBJECT); break; case Bytecodes::_laload: { a = array_addressing(T_LONG, 0); if (stopped()) return; // guaranteed null or range check dec_sp(2); // Pop array and index push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS)); break; } case Bytecodes::_daload: { a = array_addressing(T_DOUBLE, 0); if (stopped()) return; // guaranteed null or range check dec_sp(2); // Pop array and index push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES)); break; } case Bytecodes::_bastore: array_store(T_BYTE); break; case Bytecodes::_castore: array_store(T_CHAR); break; case Bytecodes::_iastore: array_store(T_INT); break; case Bytecodes::_sastore: array_store(T_SHORT); break; case Bytecodes::_fastore: array_store(T_FLOAT); break; case Bytecodes::_aastore: { d = array_addressing(T_OBJECT, 1); if (stopped()) return; // guaranteed null or range check array_store_check(); c = pop(); // Oop to store b = pop(); // index (already used) a = pop(); // the array itself const TypeOopPtr* elemtype = _gvn.type(a)->is_aryptr()->elem()->make_oopptr(); const TypeAryPtr* adr_type = TypeAryPtr::OOPS; Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT); break; } case Bytecodes::_lastore: { a = array_addressing(T_LONG, 2); if (stopped()) return; // guaranteed null or range check c = pop_pair(); dec_sp(2); // Pop array and index store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS); break; } case Bytecodes::_dastore: { a = array_addressing(T_DOUBLE, 2); if (stopped()) return; // guaranteed null or range check c = pop_pair(); dec_sp(2); // Pop array and index c = dstore_rounding(c); store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES); break; } case Bytecodes::_getfield: do_getfield(); break; case Bytecodes::_getstatic: do_getstatic(); break; case Bytecodes::_putfield: do_putfield(); break; case Bytecodes::_putstatic: do_putstatic(); break; case Bytecodes::_irem: do_irem(); break; case Bytecodes::_idiv: // Must keep both values on the expression-stack during null-check zero_check_int(peek()); // Compile-time detect of null-exception? if (stopped()) return; b = pop(); a = pop(); push( _gvn.transform( new (C) DivINode(control(),a,b) ) ); break; case Bytecodes::_imul: b = pop(); a = pop(); push( _gvn.transform( new (C) MulINode(a,b) ) ); break; case Bytecodes::_iadd: b = pop(); a = pop(); push( _gvn.transform( new (C) AddINode(a,b) ) ); break; case Bytecodes::_ineg: a = pop(); push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) ); break; case Bytecodes::_isub: b = pop(); a = pop(); push( _gvn.transform( new (C) SubINode(a,b) ) ); break; case Bytecodes::_iand: b = pop(); a = pop(); push( _gvn.transform( new (C) AndINode(a,b) ) ); break; case Bytecodes::_ior: b = pop(); a = pop(); push( _gvn.transform( new (C) OrINode(a,b) ) ); break; case Bytecodes::_ixor: b = pop(); a = pop(); push( _gvn.transform( new (C) XorINode(a,b) ) ); break; case Bytecodes::_ishl: b = pop(); a = pop(); push( _gvn.transform( new (C) LShiftINode(a,b) ) ); break; case Bytecodes::_ishr: b = pop(); a = pop(); push( _gvn.transform( new (C) RShiftINode(a,b) ) ); break; case Bytecodes::_iushr: b = pop(); a = pop(); push( _gvn.transform( new (C) URShiftINode(a,b) ) ); break; case Bytecodes::_fneg: a = pop(); b = _gvn.transform(new (C) NegFNode (a)); push(b); break; case Bytecodes::_fsub: b = pop(); a = pop(); c = _gvn.transform( new (C) SubFNode(a,b) ); d = precision_rounding(c); push( d ); break; case Bytecodes::_fadd: b = pop(); a = pop(); c = _gvn.transform( new (C) AddFNode(a,b) ); d = precision_rounding(c); push( d ); break; case Bytecodes::_fmul: b = pop(); a = pop(); c = _gvn.transform( new (C) MulFNode(a,b) ); d = precision_rounding(c); push( d ); break; case Bytecodes::_fdiv: b = pop(); a = pop(); c = _gvn.transform( new (C) DivFNode(0,a,b) ); d = precision_rounding(c); push( d ); break; case Bytecodes::_frem: if (Matcher::has_match_rule(Op_ModF)) { // Generate a ModF node. b = pop(); a = pop(); c = _gvn.transform( new (C) ModFNode(0,a,b) ); d = precision_rounding(c); push( d ); } else { // Generate a call. modf(); } break; case Bytecodes::_fcmpl: b = pop(); a = pop(); c = _gvn.transform( new (C) CmpF3Node( a, b)); push(c); break; case Bytecodes::_fcmpg: b = pop(); a = pop(); // Same as fcmpl but need to flip the unordered case. Swap the inputs, // which negates the result sign except for unordered. Flip the unordered // as well by using CmpF3 which implements unordered-lesser instead of // unordered-greater semantics. Finally, commute the result bits. Result // is same as using a CmpF3Greater except we did it with CmpF3 alone. c = _gvn.transform( new (C) CmpF3Node( b, a)); c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) ); push(c); break; case Bytecodes::_f2i: a = pop(); push(_gvn.transform(new (C) ConvF2INode(a))); break; case Bytecodes::_d2i: a = pop_pair(); b = _gvn.transform(new (C) ConvD2INode(a)); push( b ); break; case Bytecodes::_f2d: a = pop(); b = _gvn.transform( new (C) ConvF2DNode(a)); push_pair( b ); break; case Bytecodes::_d2f: a = pop_pair(); b = _gvn.transform( new (C) ConvD2FNode(a)); // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) //b = _gvn.transform(new (C) RoundFloatNode(0, b) ); push( b ); break; case Bytecodes::_l2f: if (Matcher::convL2FSupported()) { a = pop_pair(); b = _gvn.transform( new (C) ConvL2FNode(a)); // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits. // Rather than storing the result into an FP register then pushing // out to memory to round, the machine instruction that implements // ConvL2D is responsible for rounding. // c = precision_rounding(b); c = _gvn.transform(b); push(c); } else { l2f(); } break; case Bytecodes::_l2d: a = pop_pair(); b = _gvn.transform( new (C) ConvL2DNode(a)); // For i486.ad, rounding is always necessary (see _l2f above). // c = dprecision_rounding(b); c = _gvn.transform(b); push_pair(c); break; case Bytecodes::_f2l: a = pop(); b = _gvn.transform( new (C) ConvF2LNode(a)); push_pair(b); break; case Bytecodes::_d2l: a = pop_pair(); b = _gvn.transform( new (C) ConvD2LNode(a)); push_pair(b); break; case Bytecodes::_dsub: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) SubDNode(a,b) ); d = dprecision_rounding(c); push_pair( d ); break; case Bytecodes::_dadd: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) AddDNode(a,b) ); d = dprecision_rounding(c); push_pair( d ); break; case Bytecodes::_dmul: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) MulDNode(a,b) ); d = dprecision_rounding(c); push_pair( d ); break; case Bytecodes::_ddiv: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) DivDNode(0,a,b) ); d = dprecision_rounding(c); push_pair( d ); break; case Bytecodes::_dneg: a = pop_pair(); b = _gvn.transform(new (C) NegDNode (a)); push_pair(b); break; case Bytecodes::_drem: if (Matcher::has_match_rule(Op_ModD)) { // Generate a ModD node. b = pop_pair(); a = pop_pair(); // a % b c = _gvn.transform( new (C) ModDNode(0,a,b) ); d = dprecision_rounding(c); push_pair( d ); } else { // Generate a call. modd(); } break; case Bytecodes::_dcmpl: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) CmpD3Node( a, b)); push(c); break; case Bytecodes::_dcmpg: b = pop_pair(); a = pop_pair(); // Same as dcmpl but need to flip the unordered case. // Commute the inputs, which negates the result sign except for unordered. // Flip the unordered as well by using CmpD3 which implements // unordered-lesser instead of unordered-greater semantics. // Finally, negate the result bits. Result is same as using a // CmpD3Greater except we did it with CmpD3 alone. c = _gvn.transform( new (C) CmpD3Node( b, a)); c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) ); push(c); break; // Note for longs -> lo word is on TOS, hi word is on TOS - 1 case Bytecodes::_land: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) AndLNode(a,b) ); push_pair(c); break; case Bytecodes::_lor: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) OrLNode(a,b) ); push_pair(c); break; case Bytecodes::_lxor: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) XorLNode(a,b) ); push_pair(c); break; case Bytecodes::_lshl: b = pop(); // the shift count a = pop_pair(); // value to be shifted c = _gvn.transform( new (C) LShiftLNode(a,b) ); push_pair(c); break; case Bytecodes::_lshr: b = pop(); // the shift count a = pop_pair(); // value to be shifted c = _gvn.transform( new (C) RShiftLNode(a,b) ); push_pair(c); break; case Bytecodes::_lushr: b = pop(); // the shift count a = pop_pair(); // value to be shifted c = _gvn.transform( new (C) URShiftLNode(a,b) ); push_pair(c); break; case Bytecodes::_lmul: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) MulLNode(a,b) ); push_pair(c); break; case Bytecodes::_lrem: // Must keep both values on the expression-stack during null-check assert(peek(0) == top(), "long word order"); zero_check_long(peek(1)); // Compile-time detect of null-exception? if (stopped()) return; b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) ModLNode(control(),a,b) ); push_pair(c); break; case Bytecodes::_ldiv: // Must keep both values on the expression-stack during null-check assert(peek(0) == top(), "long word order"); zero_check_long(peek(1)); // Compile-time detect of null-exception? if (stopped()) return; b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) DivLNode(control(),a,b) ); push_pair(c); break; case Bytecodes::_ladd: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) AddLNode(a,b) ); push_pair(c); break; case Bytecodes::_lsub: b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) SubLNode(a,b) ); push_pair(c); break; case Bytecodes::_lcmp: // Safepoints are now inserted _before_ branches. The long-compare // bytecode painfully produces a 3-way value (-1,0,+1) which requires a // slew of control flow. These are usually followed by a CmpI vs zero and // a branch; this pattern then optimizes to the obvious long-compare and // branch. However, if the branch is backwards there's a Safepoint // inserted. The inserted Safepoint captures the JVM state at the // pre-branch point, i.e. it captures the 3-way value. Thus if a // long-compare is used to control a loop the debug info will force // computation of the 3-way value, even though the generated code uses a // long-compare and branch. We try to rectify the situation by inserting // a SafePoint here and have it dominate and kill the safepoint added at a // following backwards branch. At this point the JVM state merely holds 2 // longs but not the 3-way value. if( UseLoopSafepoints ) { switch( iter().next_bc() ) { case Bytecodes::_ifgt: case Bytecodes::_iflt: case Bytecodes::_ifge: case Bytecodes::_ifle: case Bytecodes::_ifne: case Bytecodes::_ifeq: // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(iter().next_get_dest()); } } b = pop_pair(); a = pop_pair(); c = _gvn.transform( new (C) CmpL3Node( a, b )); push(c); break; case Bytecodes::_lneg: a = pop_pair(); b = _gvn.transform( new (C) SubLNode(longcon(0),a)); push_pair(b); break; case Bytecodes::_l2i: a = pop_pair(); push( _gvn.transform( new (C) ConvL2INode(a))); break; case Bytecodes::_i2l: a = pop(); b = _gvn.transform( new (C) ConvI2LNode(a)); push_pair(b); break; case Bytecodes::_i2b: // Sign extend a = pop(); a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) ); a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) ); push( a ); break; case Bytecodes::_i2s: a = pop(); a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) ); a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) ); push( a ); break; case Bytecodes::_i2c: a = pop(); push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) ); break; case Bytecodes::_i2f: a = pop(); b = _gvn.transform( new (C) ConvI2FNode(a) ) ; c = precision_rounding(b); push (b); break; case Bytecodes::_i2d: a = pop(); b = _gvn.transform( new (C) ConvI2DNode(a)); push_pair(b); break; case Bytecodes::_iinc: // Increment local i = iter().get_index(); // Get local index set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); break; // Exit points of synchronized methods must have an unlock node case Bytecodes::_return: return_current(NULL); break; case Bytecodes::_ireturn: case Bytecodes::_areturn: case Bytecodes::_freturn: return_current(pop()); break; case Bytecodes::_lreturn: return_current(pop_pair()); break; case Bytecodes::_dreturn: return_current(pop_pair()); break; case Bytecodes::_athrow: // null exception oop throws NULL pointer exception null_check(peek()); if (stopped()) return; // Hook the thrown exception directly to subsequent handlers. if (BailoutToInterpreterForThrows) { // Keep method interpreted from now on. uncommon_trap(Deoptimization::Reason_unhandled, Deoptimization::Action_make_not_compilable); return; } if (env()->jvmti_can_post_on_exceptions()) { // check if we must post exception events, take uncommon trap if so (with must_throw = false) uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); } // Here if either can_post_on_exceptions or should_post_on_exceptions is false add_exception_state(make_exception_state(peek())); break; case Bytecodes::_goto: // fall through case Bytecodes::_goto_w: { int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(target_bci); // Update method data profile_taken_branch(target_bci); // Merge the current control into the target basic block merge(target_bci); // See if we can get some profile data and hand it off to the next block Block *target_block = block()->successor_for_bci(target_bci); if (target_block->pred_count() != 1) break; ciMethodData* methodData = method()->method_data(); if (!methodData->is_mature()) break; ciProfileData* data = methodData->bci_to_data(bci()); assert( data->is_JumpData(), "" ); int taken = ((ciJumpData*)data)->taken(); taken = method()->scale_count(taken); target_block->set_count(taken); break; } case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; handle_if_null: // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(iter().get_dest()); a = null(); b = pop(); c = _gvn.transform( new (C) CmpPNode(b, a) ); do_ifnull(btest, c); break; case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; handle_if_acmp: // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(iter().get_dest()); a = pop(); b = pop(); c = _gvn.transform( new (C) CmpPNode(b, a) ); c = optimize_cmp_with_klass(c); do_if(btest, c); break; case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; handle_ifxx: // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(iter().get_dest()); a = _gvn.intcon(0); b = pop(); c = _gvn.transform( new (C) CmpINode(b, a) ); do_if(btest, c); break; case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; handle_if_icmp: // If this is a backwards branch in the bytecodes, add Safepoint maybe_add_safepoint(iter().get_dest()); a = pop(); b = pop(); c = _gvn.transform( new (C) CmpINode( b, a ) ); do_if(btest, c); break; case Bytecodes::_tableswitch: do_tableswitch(); break; case Bytecodes::_lookupswitch: do_lookupswitch(); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: do_call(); break; case Bytecodes::_checkcast: do_checkcast(); break; case Bytecodes::_instanceof: do_instanceof(); break; case Bytecodes::_anewarray: do_anewarray(); break; case Bytecodes::_newarray: do_newarray((BasicType)iter().get_index()); break; case Bytecodes::_multianewarray: do_multianewarray(); break; case Bytecodes::_new: do_new(); break; case Bytecodes::_jsr: case Bytecodes::_jsr_w: do_jsr(); break; case Bytecodes::_ret: do_ret(); break; case Bytecodes::_monitorenter: do_monitor_enter(); break; case Bytecodes::_monitorexit: do_monitor_exit(); break; case Bytecodes::_breakpoint: // Breakpoint set concurrently to compile // %%% use an uncommon trap? C->record_failure("breakpoint in method"); return; default: #ifndef PRODUCT map()->dump(99); #endif tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); ShouldNotReachHere(); } #ifndef PRODUCT IdealGraphPrinter *printer = IdealGraphPrinter::printer(); if(printer) { char buffer[256]; sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc())); bool old = printer->traverse_outs(); printer->set_traverse_outs(true); printer->print_method(C, buffer, 4); printer->set_traverse_outs(old); } #endif } Other Java examples (source code examples)Here is a short list of links related to this Java parse2.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.