alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (parse3.cpp)

This example Java source code file (parse3.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

c\-, deoptimization\:\:action_reinterpret, node, null, rc_no_io, t_object, type, typeinstptr, typeinstptr\:\:make, typeklassptr, typeoopptr, typeoopptr\:\:make_from_klass, typeptr

The parse3.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "interpreter/linkResolver.hpp"
#include "memory/universe.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/memnode.hpp"
#include "opto/parse.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/handles.inline.hpp"

//=============================================================================
// Helper methods for _get* and _put* bytecodes
//=============================================================================
bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  // Could be the field_holder's <clinit> method, or  for a subklass.
  // Better to check now than to Deoptimize as soon as we execute
  assert( field->is_static(), "Only check if field is static");
  // is_being_initialized() is too generous.  It allows access to statics
  // by threads that are not running the <clinit> before the  finishes.
  // return field->holder()->is_being_initialized();

  // The following restriction is correct but conservative.
  // It is also desirable to allow compilation of methods called from <clinit>
  // but this generated code will need to be made safe for execution by
  // other threads, or the transition from interpreted to compiled code would
  // need to be guarded.
  ciInstanceKlass *field_holder = field->holder();

  bool access_OK = false;
  if (method->holder()->is_subclass_of(field_holder)) {
    if (method->is_static()) {
      if (method->name() == ciSymbol::class_initializer_name()) {
        // OK to access static fields inside initializer
        access_OK = true;
      }
    } else {
      if (method->name() == ciSymbol::object_initializer_name()) {
        // It's also OK to access static fields inside a constructor,
        // because any thread calling the constructor must first have
        // synchronized on the class by executing a '_new' bytecode.
        access_OK = true;
      }
    }
  }

  return access_OK;

}


void Parse::do_field_access(bool is_get, bool is_field) {
  bool will_link;
  ciField* field = iter().get_field(will_link);
  assert(will_link, "getfield: typeflow responsibility");

  ciInstanceKlass* field_holder = field->holder();

  if (is_field == field->is_static()) {
    // Interpreter will throw java_lang_IncompatibleClassChangeError
    // Check this before allowing <clinit> methods to access static fields
    uncommon_trap(Deoptimization::Reason_unhandled,
                  Deoptimization::Action_none);
    return;
  }

  if (!is_field && !field_holder->is_initialized()) {
    if (!static_field_ok_in_clinit(field, method())) {
      uncommon_trap(Deoptimization::Reason_uninitialized,
                    Deoptimization::Action_reinterpret,
                    NULL, "!static_field_ok_in_clinit");
      return;
    }
  }

  // Deoptimize on putfield writes to call site target field.
  if (!is_get && field->is_call_site_target()) {
    uncommon_trap(Deoptimization::Reason_unhandled,
                  Deoptimization::Action_reinterpret,
                  NULL, "put to call site target field");
    return;
  }

  assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");

  // Note:  We do not check for an unloaded field type here any more.

  // Generate code for the object pointer.
  Node* obj;
  if (is_field) {
    int obj_depth = is_get ? 0 : field->type()->size();
    obj = null_check(peek(obj_depth));
    // Compile-time detect of null-exception?
    if (stopped())  return;

#ifdef ASSERT
    const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
    assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
#endif

    if (is_get) {
      (void) pop();  // pop receiver before getting
      do_get_xxx(obj, field, is_field);
    } else {
      do_put_xxx(obj, field, is_field);
      (void) pop();  // pop receiver after putting
    }
  } else {
    const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
    obj = _gvn.makecon(tip);
    if (is_get) {
      do_get_xxx(obj, field, is_field);
    } else {
      do_put_xxx(obj, field, is_field);
    }
  }
}


void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
  // Does this field have a constant value?  If so, just push the value.
  if (field->is_constant()) {
    // final or stable field
    const Type* stable_type = NULL;
    if (FoldStableValues && field->is_stable()) {
      stable_type = Type::get_const_type(field->type());
      if (field->type()->is_array_klass()) {
        int stable_dimension = field->type()->as_array_klass()->dimension();
        stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
      }
    }
    if (field->is_static()) {
      // final static field
      if (C->eliminate_boxing()) {
        // The pointers in the autobox arrays are always non-null.
        ciSymbol* klass_name = field->holder()->name();
        if (field->name() == ciSymbol::cache_field_name() &&
            field->holder()->uses_default_loader() &&
            (klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
             klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
             klass_name == ciSymbol::java_lang_Short_ShortCache() ||
             klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
             klass_name == ciSymbol::java_lang_Long_LongCache())) {
          bool require_const = true;
          bool autobox_cache = true;
          if (push_constant(field->constant_value(), require_const, autobox_cache)) {
            return;
          }
        }
      }
      if (push_constant(field->constant_value(), false, false, stable_type))
        return;
    } else {
      // final or stable non-static field
      // Treat final non-static fields of trusted classes (classes in
      // java.lang.invoke and sun.invoke packages and subpackages) as
      // compile time constants.
      if (obj->is_Con()) {
        const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
        ciObject* constant_oop = oop_ptr->const_oop();
        ciConstant constant = field->constant_value_of(constant_oop);
        if (FoldStableValues && field->is_stable() && constant.is_null_or_zero()) {
          // fall through to field load; the field is not yet initialized
        } else {
          if (push_constant(constant, true, false, stable_type))
            return;
        }
      }
    }
  }

  ciType* field_klass = field->type();
  bool is_vol = field->is_volatile();

  // Compute address and memory type.
  int offset = field->offset_in_bytes();
  const TypePtr* adr_type = C->alias_type(field)->adr_type();
  Node *adr = basic_plus_adr(obj, obj, offset);
  BasicType bt = field->layout_type();

  // Build the resultant type of the load
  const Type *type;

  bool must_assert_null = false;

  if( bt == T_OBJECT ) {
    if (!field->type()->is_loaded()) {
      type = TypeInstPtr::BOTTOM;
      must_assert_null = true;
    } else if (field->is_constant() && field->is_static()) {
      // This can happen if the constant oop is non-perm.
      ciObject* con = field->constant_value().as_object();
      // Do not "join" in the previous type; it doesn't add value,
      // and may yield a vacuous result if the field is of interface type.
      type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
      assert(type != NULL, "field singleton type must be consistent");
    } else {
      type = TypeOopPtr::make_from_klass(field_klass->as_klass());
    }
  } else {
    type = Type::get_const_basic_type(bt);
  }
  // Build the load.
  Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);

  // Adjust Java stack
  if (type2size[bt] == 1)
    push(ld);
  else
    push_pair(ld);

  if (must_assert_null) {
    // Do not take a trap here.  It's possible that the program
    // will never load the field's class, and will happily see
    // null values in this field forever.  Don't stumble into a
    // trap for such a program, or we might get a long series
    // of useless recompilations.  (Or, we might load a class
    // which should not be loaded.)  If we ever see a non-null
    // value, we will then trap and recompile.  (The trap will
    // not need to mention the class index, since the class will
    // already have been loaded if we ever see a non-null value.)
    // uncommon_trap(iter().get_field_signature_index());
#ifndef PRODUCT
    if (PrintOpto && (Verbose || WizardMode)) {
      method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
    }
#endif
    if (C->log() != NULL) {
      C->log()->elem("assert_null reason='field' klass='%d'",
                     C->log()->identify(field->type()));
    }
    // If there is going to be a trap, put it at the next bytecode:
    set_bci(iter().next_bci());
    null_assert(peek());
    set_bci(iter().cur_bci()); // put it back
  }

  // If reference is volatile, prevent following memory ops from
  // floating up past the volatile read.  Also prevents commoning
  // another volatile read.
  if (field->is_volatile()) {
    // Memory barrier includes bogus read of value to force load BEFORE membar
    insert_mem_bar(Op_MemBarAcquire, ld);
  }
}

void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
  bool is_vol = field->is_volatile();
  // If reference is volatile, prevent following memory ops from
  // floating down past the volatile write.  Also prevents commoning
  // another volatile read.
  if (is_vol)  insert_mem_bar(Op_MemBarRelease);

  // Compute address and memory type.
  int offset = field->offset_in_bytes();
  const TypePtr* adr_type = C->alias_type(field)->adr_type();
  Node* adr = basic_plus_adr(obj, obj, offset);
  BasicType bt = field->layout_type();
  // Value to be stored
  Node* val = type2size[bt] == 1 ? pop() : pop_pair();
  // Round doubles before storing
  if (bt == T_DOUBLE)  val = dstore_rounding(val);

  // Store the value.
  Node* store;
  if (bt == T_OBJECT) {
    const TypeOopPtr* field_type;
    if (!field->type()->is_loaded()) {
      field_type = TypeInstPtr::BOTTOM;
    } else {
      field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
    }
    store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
  } else {
    store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
  }

  // If reference is volatile, prevent following volatiles ops from
  // floating up before the volatile write.
  if (is_vol) {
    insert_mem_bar(Op_MemBarVolatile); // Use fat membar
  }

  // If the field is final, the rules of Java say we are in <init> or .
  // Note the presence of writes to final non-static fields, so that we
  // can insert a memory barrier later on to keep the writes from floating
  // out of the constructor.
  // Any method can write a @Stable field; insert memory barriers after those also.
  if (is_field && (field->is_final() || field->is_stable())) {
    set_wrote_final(true);
    // Preserve allocation ptr to create precedent edge to it in membar
    // generated on exit from constructor.
    if (C->eliminate_boxing() &&
        adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
        AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
      set_alloc_with_final(obj);
    }
  }
}



bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache, const Type* stable_type) {
  const Type* con_type = Type::make_from_constant(constant, require_constant, is_autobox_cache);
  switch (constant.basic_type()) {
  case T_ARRAY:
  case T_OBJECT:
    // cases:
    //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
    //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
    // An oop is not scavengable if it is in the perm gen.
    if (stable_type != NULL && con_type != NULL && con_type->isa_oopptr())
      con_type = con_type->join(stable_type);
    break;

  case T_ILLEGAL:
    // Invalid ciConstant returned due to OutOfMemoryError in the CI
    assert(C->env()->failing(), "otherwise should not see this");
    // These always occur because of object types; we are going to
    // bail out anyway, so make the stack depths match up
    push( zerocon(T_OBJECT) );
    return false;
  }

  if (con_type == NULL)
    // we cannot inline the oop, but we can use it later to narrow a type
    return false;

  push_node(constant.basic_type(), makecon(con_type));
  return true;
}


//=============================================================================
void Parse::do_anewarray() {
  bool will_link;
  ciKlass* klass = iter().get_klass(will_link);

  // Uncommon Trap when class that array contains is not loaded
  // we need the loaded class for the rest of graph; do not
  // initialize the container class (see Java spec)!!!
  assert(will_link, "anewarray: typeflow responsibility");

  ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
  // Check that array_klass object is loaded
  if (!array_klass->is_loaded()) {
    // Generate uncommon_trap for unloaded array_class
    uncommon_trap(Deoptimization::Reason_unloaded,
                  Deoptimization::Action_reinterpret,
                  array_klass);
    return;
  }

  kill_dead_locals();

  const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
  Node* count_val = pop();
  Node* obj = new_array(makecon(array_klass_type), count_val, 1);
  push(obj);
}


void Parse::do_newarray(BasicType elem_type) {
  kill_dead_locals();

  Node*   count_val = pop();
  const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
  Node*   obj = new_array(makecon(array_klass), count_val, 1);
  // Push resultant oop onto stack
  push(obj);
}

// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
// Also handle the degenerate 1-dimensional case of anewarray.
Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
  Node* length = lengths[0];
  assert(length != NULL, "");
  Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
  if (ndimensions > 1) {
    jint length_con = find_int_con(length, -1);
    guarantee(length_con >= 0, "non-constant multianewarray");
    ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
    const TypePtr* adr_type = TypeAryPtr::OOPS;
    const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
    const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
    for (jint i = 0; i < length_con; i++) {
      Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
      intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
      Node*    eaddr  = basic_plus_adr(array, offset);
      store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
    }
  }
  return array;
}

void Parse::do_multianewarray() {
  int ndimensions = iter().get_dimensions();

  // the m-dimensional array
  bool will_link;
  ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
  assert(will_link, "multianewarray: typeflow responsibility");

  // Note:  Array classes are always initialized; no is_initialized check.

  kill_dead_locals();

  // get the lengths from the stack (first dimension is on top)
  Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
  length[ndimensions] = NULL;  // terminating null for make_runtime_call
  int j;
  for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();

  // The original expression was of this form: new T[length0][length1]...
  // It is often the case that the lengths are small (except the last).
  // If that happens, use the fast 1-d creator a constant number of times.
  const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
  jint expand_count = 1;        // count of allocations in the expansion
  jint expand_fanout = 1;       // running total fanout
  for (j = 0; j < ndimensions-1; j++) {
    jint dim_con = find_int_con(length[j], -1);
    expand_fanout *= dim_con;
    expand_count  += expand_fanout; // count the level-J sub-arrays
    if (dim_con <= 0
        || dim_con > expand_limit
        || expand_count > expand_limit) {
      expand_count = 0;
      break;
    }
  }

  // Can use multianewarray instead of [a]newarray if only one dimension,
  // or if all non-final dimensions are small constants.
  if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
    Node* obj = NULL;
    // Set the original stack and the reexecute bit for the interpreter
    // to reexecute the multianewarray bytecode if deoptimization happens.
    // Do it unconditionally even for one dimension multianewarray.
    // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
    // when AllocateArray node for newarray is created.
    { PreserveReexecuteState preexecs(this);
      inc_sp(ndimensions);
      // Pass 0 as nargs since uncommon trap code does not need to restore stack.
      obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
    } //original reexecute and sp are set back here
    push(obj);
    return;
  }

  address fun = NULL;
  switch (ndimensions) {
  case 1: ShouldNotReachHere(); break;
  case 2: fun = OptoRuntime::multianewarray2_Java(); break;
  case 3: fun = OptoRuntime::multianewarray3_Java(); break;
  case 4: fun = OptoRuntime::multianewarray4_Java(); break;
  case 5: fun = OptoRuntime::multianewarray5_Java(); break;
  };
  Node* c = NULL;

  if (fun != NULL) {
    c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
                          OptoRuntime::multianewarray_Type(ndimensions),
                          fun, NULL, TypeRawPtr::BOTTOM,
                          makecon(TypeKlassPtr::make(array_klass)),
                          length[0], length[1], length[2],
                          (ndimensions > 2) ? length[3] : NULL,
                          (ndimensions > 3) ? length[4] : NULL);
  } else {
    // Create a java array for dimension sizes
    Node* dims = NULL;
    { PreserveReexecuteState preexecs(this);
      inc_sp(ndimensions);
      Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
      dims = new_array(dims_array_klass, intcon(ndimensions), 0);

      // Fill-in it with values
      for (j = 0; j < ndimensions; j++) {
        Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
        store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS);
      }
    }

    c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
                          OptoRuntime::multianewarrayN_Type(),
                          OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
                          makecon(TypeKlassPtr::make(array_klass)),
                          dims);
  }
  make_slow_call_ex(c, env()->Throwable_klass(), false);

  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms));

  const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);

  // Improve the type:  We know it's not null, exact, and of a given length.
  type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
  type = type->is_aryptr()->cast_to_exactness(true);

  const TypeInt* ltype = _gvn.find_int_type(length[0]);
  if (ltype != NULL)
    type = type->is_aryptr()->cast_to_size(ltype);

    // We cannot sharpen the nested sub-arrays, since the top level is mutable.

  Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) );
  push(cast);

  // Possible improvements:
  // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
  // - Issue CastII against length[*] values, to TypeInt::POS.
}

Other Java examples (source code examples)

Here is a short list of links related to this Java parse3.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.