alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (postaloc.cpp)

This example Java source code file (postaloc.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

block, c\-, dead, end, node, node_list, nodesentinel, null, optoreg::name, optoreg\:\:add, regmask\:\:can_represent, regmask\:\:num_registers, this, use

The postaloc.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/chaitin.hpp"
#include "opto/machnode.hpp"

// See if this register (or pairs, or vector) already contains the value.
static bool register_contains_value(Node* val, OptoReg::Name reg, int n_regs,
                                    Node_List& value) {
  for (int i = 0; i < n_regs; i++) {
    OptoReg::Name nreg = OptoReg::add(reg,-i);
    if (value[nreg] != val)
      return false;
  }
  return true;
}

//---------------------------may_be_copy_of_callee-----------------------------
// Check to see if we can possibly be a copy of a callee-save value.
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
  // Short circuit if there are no callee save registers
  if (_matcher.number_of_saved_registers() == 0) return false;

  // Expect only a spill-down and reload on exit for callee-save spills.
  // Chains of copies cannot be deep.
  // 5008997 - This is wishful thinking. Register allocator seems to
  // be splitting live ranges for callee save registers to such
  // an extent that in large methods the chains can be very long
  // (50+). The conservative answer is to return true if we don't
  // know as this prevents optimizations from occurring.

  const int limit = 60;
  int i;
  for( i=0; i < limit; i++ ) {
    if( def->is_Proj() && def->in(0)->is_Start() &&
        _matcher.is_save_on_entry(lrgs(_lrg_map.live_range_id(def)).reg()))
      return true;              // Direct use of callee-save proj
    if( def->is_Copy() )        // Copies carry value through
      def = def->in(def->is_Copy());
    else if( def->is_Phi() )    // Phis can merge it from any direction
      def = def->in(1);
    else
      break;
    guarantee(def != NULL, "must not resurrect dead copy");
  }
  // If we reached the end and didn't find a callee save proj
  // then this may be a callee save proj so we return true
  // as the conservative answer. If we didn't reach then end
  // we must have discovered that it was not a callee save
  // else we would have returned.
  return i == limit;
}

//------------------------------yank-----------------------------------
// Helper function for yank_if_dead
int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  int blk_adjust=0;
  Block *oldb = _cfg.get_block_for_node(old);
  oldb->find_remove(old);
  // Count 1 if deleting an instruction from the current block
  if (oldb == current_block) {
    blk_adjust++;
  }
  _cfg.unmap_node_from_block(old);
  OptoReg::Name old_reg = lrgs(_lrg_map.live_range_id(old)).reg();
  if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    value->map(old_reg,NULL);  // Yank from value/regnd maps
    regnd->map(old_reg,NULL);  // This register's value is now unknown
  }
  return blk_adjust;
}

#ifdef ASSERT
static bool expected_yanked_node(Node *old, Node *orig_old) {
  // This code is expected only next original nodes:
  // - load from constant table node which may have next data input nodes:
  //     MachConstantBase, MachTemp, MachSpillCopy
  // - Phi nodes that are considered Junk
  // - load constant node which may have next data input nodes:
  //     MachTemp, MachSpillCopy
  // - MachSpillCopy
  // - MachProj and Copy dead nodes
  if (old->is_MachSpillCopy()) {
    return true;
  } else if (old->is_Con()) {
    return true;
  } else if (old->is_MachProj()) { // Dead kills projection of Con node
    return (old == orig_old);
  } else if (old->is_Copy()) {     // Dead copy of a callee-save value
    return (old == orig_old);
  } else if (old->is_MachTemp()) {
    return orig_old->is_Con();
  } else if (old->is_Phi()) { // Junk phi's
    return true;
  } else if (old->is_MachConstantBase()) {
    return (orig_old->is_Con() && orig_old->is_MachConstant());
  }
  return false;
}
#endif

//------------------------------yank_if_dead-----------------------------------
// Removed edges from 'old'.  Yank if dead.  Return adjustment counts to
// iterators in the current block.
int PhaseChaitin::yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
                                       Node_List *value, Node_List *regnd) {
  int blk_adjust=0;
  if (old->outcnt() == 0 && old != C->top()) {
#ifdef ASSERT
    if (!expected_yanked_node(old, orig_old)) {
      tty->print_cr("==============================================");
      tty->print_cr("orig_old:");
      orig_old->dump();
      tty->print_cr("old:");
      old->dump();
      assert(false, "unexpected yanked node");
    }
    if (old->is_Con())
      orig_old = old; // Reset to satisfy expected nodes checks.
#endif
    blk_adjust += yank(old, current_block, value, regnd);

    for (uint i = 1; i < old->req(); i++) {
      Node* n = old->in(i);
      if (n != NULL) {
        old->set_req(i, NULL);
        blk_adjust += yank_if_dead_recurse(n, orig_old, current_block, value, regnd);
      }
    }
    // Disconnect control and remove precedence edges if any exist
    old->disconnect_inputs(NULL, C);
  }
  return blk_adjust;
}

//------------------------------use_prior_register-----------------------------
// Use the prior value instead of the current value, in an effort to make
// the current value go dead.  Return block iterator adjustment, in case
// we yank some instructions from this block.
int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List ®nd ) {
  // No effect?
  if( def == n->in(idx) ) return 0;
  // Def is currently dead and can be removed?  Do not resurrect
  if( def->outcnt() == 0 ) return 0;

  // Not every pair of physical registers are assignment compatible,
  // e.g. on sparc floating point registers are not assignable to integer
  // registers.
  const LRG &def_lrg = lrgs(_lrg_map.live_range_id(def));
  OptoReg::Name def_reg = def_lrg.reg();
  const RegMask &use_mask = n->in_RegMask(idx);
  bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
                                                   : (use_mask.is_AllStack() != 0));
  if (!RegMask::is_vector(def->ideal_reg())) {
    // Check for a copy to or from a misaligned pair.
    // It is workaround for a sparc with misaligned pairs.
    can_use = can_use && !use_mask.is_misaligned_pair() && !def_lrg.mask().is_misaligned_pair();
  }
  if (!can_use)
    return 0;

  // Capture the old def in case it goes dead...
  Node *old = n->in(idx);

  // Save-on-call copies can only be elided if the entire copy chain can go
  // away, lest we get the same callee-save value alive in 2 locations at
  // once.  We check for the obvious trivial case here.  Although it can
  // sometimes be elided with cooperation outside our scope, here we will just
  // miss the opportunity.  :-(
  if( may_be_copy_of_callee(def) ) {
    if( old->outcnt() > 1 ) return 0; // We're the not last user
    int idx = old->is_Copy();
    assert( idx, "chain of copies being removed" );
    Node *old2 = old->in(idx);  // Chain of copies
    if( old2->outcnt() > 1 ) return 0; // old is not the last user
    int idx2 = old2->is_Copy();
    if( !idx2 ) return 0;       // Not a chain of 2 copies
    if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
  }

  // Use the new def
  n->set_req(idx,def);
  _post_alloc++;

  // Is old def now dead?  We successfully yanked a copy?
  return yank_if_dead(old,current_block,&value,®nd);
}


//------------------------------skip_copies------------------------------------
// Skip through any number of copies (that don't mod oop-i-ness)
Node *PhaseChaitin::skip_copies( Node *c ) {
  int idx = c->is_Copy();
  uint is_oop = lrgs(_lrg_map.live_range_id(c))._is_oop;
  while (idx != 0) {
    guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
    if (lrgs(_lrg_map.live_range_id(c->in(idx)))._is_oop != is_oop) {
      break;  // casting copy, not the same value
    }
    c = c->in(idx);
    idx = c->is_Copy();
  }
  return c;
}

//------------------------------elide_copy-------------------------------------
// Remove (bypass) copies along Node n, edge k.
int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List ®nd, bool can_change_regs ) {
  int blk_adjust = 0;

  uint nk_idx = _lrg_map.live_range_id(n->in(k));
  OptoReg::Name nk_reg = lrgs(nk_idx).reg();

  // Remove obvious same-register copies
  Node *x = n->in(k);
  int idx;
  while( (idx=x->is_Copy()) != 0 ) {
    Node *copy = x->in(idx);
    guarantee(copy != NULL, "must not resurrect dead copy");
    if(lrgs(_lrg_map.live_range_id(copy)).reg() != nk_reg) {
      break;
    }
    blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
    if (n->in(k) != copy) {
      break; // Failed for some cutout?
    }
    x = copy;                   // Progress, try again
  }

  // Phis and 2-address instructions cannot change registers so easily - their
  // outputs must match their input.
  if( !can_change_regs )
    return blk_adjust;          // Only check stupid copies!

  // Loop backedges won't have a value-mapping yet
  if( &value == NULL ) return blk_adjust;

  // Skip through all copies to the _value_ being used.  Do not change from
  // int to pointer.  This attempts to jump through a chain of copies, where
  // intermediate copies might be illegal, i.e., value is stored down to stack
  // then reloaded BUT survives in a register the whole way.
  Node *val = skip_copies(n->in(k));

  if (val == x && nk_idx != 0 &&
      regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
      _lrg_map.live_range_id(x) == _lrg_map.live_range_id(regnd[nk_reg])) {
    // When rematerialzing nodes and stretching lifetimes, the
    // allocator will reuse the original def for multidef LRG instead
    // of the current reaching def because it can't know it's safe to
    // do so.  After allocation completes if they are in the same LRG
    // then it should use the current reaching def instead.
    n->set_req(k, regnd[nk_reg]);
    blk_adjust += yank_if_dead(val, current_block, &value, ®nd);
    val = skip_copies(n->in(k));
  }

  if (val == x) return blk_adjust; // No progress?

  int n_regs = RegMask::num_registers(val->ideal_reg());
  uint val_idx = _lrg_map.live_range_id(val);
  OptoReg::Name val_reg = lrgs(val_idx).reg();

  // See if it happens to already be in the correct register!
  // (either Phi's direct register, or the common case of the name
  // never-clobbered original-def register)
  if (register_contains_value(val, val_reg, n_regs, value)) {
    blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
    if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
      return blk_adjust;
  }

  // See if we can skip the copy by changing registers.  Don't change from
  // using a register to using the stack unless we know we can remove a
  // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
  // ops reading from memory instead of just loading once and using the
  // register.

  // Also handle duplicate copies here.
  const Type *t = val->is_Con() ? val->bottom_type() : NULL;

  // Scan all registers to see if this value is around already
  for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
    if (reg == (uint)nk_reg) {
      // Found ourselves so check if there is only one user of this
      // copy and keep on searching for a better copy if so.
      bool ignore_self = true;
      x = n->in(k);
      DUIterator_Fast imax, i = x->fast_outs(imax);
      Node* first = x->fast_out(i); i++;
      while (i < imax && ignore_self) {
        Node* use = x->fast_out(i); i++;
        if (use != first) ignore_self = false;
      }
      if (ignore_self) continue;
    }

    Node *vv = value[reg];
    if (n_regs > 1) { // Doubles and vectors check for aligned-adjacent set
      uint last = (n_regs-1); // Looking for the last part of a set
      if ((reg&last) != last) continue; // Wrong part of a set
      if (!register_contains_value(vv, reg, n_regs, value)) continue; // Different value
    }
    if( vv == val ||            // Got a direct hit?
        (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
         vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
      assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
      if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
          OptoReg::is_reg(reg) || // turning into a register use OR
          regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
        blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
        if( n->in(k) == regnd[reg] ) // Success!  Quit trying
          return blk_adjust;
      } // End of if not degrading to a stack
    } // End of if found value in another register
  } // End of scan all machine registers
  return blk_adjust;
}


//
// Check if nreg already contains the constant value val.  Normal copy
// elimination doesn't doesn't work on constants because multiple
// nodes can represent the same constant so the type and rule of the
// MachNode must be checked to ensure equivalence.
//
bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
                                              Block *current_block,
                                              Node_List& value, Node_List& regnd,
                                              OptoReg::Name nreg, OptoReg::Name nreg2) {
  if (value[nreg] != val && val->is_Con() &&
      value[nreg] != NULL && value[nreg]->is_Con() &&
      (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
      value[nreg]->bottom_type() == val->bottom_type() &&
      value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
    // This code assumes that two MachNodes representing constants
    // which have the same rule and the same bottom type will produce
    // identical effects into a register.  This seems like it must be
    // objectively true unless there are hidden inputs to the nodes
    // but if that were to change this code would need to updated.
    // Since they are equivalent the second one if redundant and can
    // be removed.
    //
    // n will be replaced with the old value but n might have
    // kills projections associated with it so remove them now so that
    // yank_if_dead will be able to eliminate the copy once the uses
    // have been transferred to the old[value].
    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
      Node* use = n->fast_out(i);
      if (use->is_Proj() && use->outcnt() == 0) {
        // Kill projections have no users and one input
        use->set_req(0, C->top());
        yank_if_dead(use, current_block, &value, ®nd);
        --i; --imax;
      }
    }
    _post_alloc++;
    return true;
  }
  return false;
}


//------------------------------post_allocate_copy_removal---------------------
// Post-Allocation peephole copy removal.  We do this in 1 pass over the
// basic blocks.  We maintain a mapping of registers to Nodes (an  array of
// Nodes indexed by machine register or stack slot number).  NULL means that a
// register is not mapped to any Node.  We can (want to have!) have several
// registers map to the same Node.  We walk forward over the instructions
// updating the mapping as we go.  At merge points we force a NULL if we have
// to merge 2 different Nodes into the same register.  Phi functions will give
// us a new Node if there is a proper value merging.  Since the blocks are
// arranged in some RPO, we will visit all parent blocks before visiting any
// successor blocks (except at loops).
//
// If we find a Copy we look to see if the Copy's source register is a stack
// slot and that value has already been loaded into some machine register; if
// so we use machine register directly.  This turns a Load into a reg-reg
// Move.  We also look for reloads of identical constants.
//
// When we see a use from a reg-reg Copy, we will attempt to use the copy's
// source directly and make the copy go dead.
void PhaseChaitin::post_allocate_copy_removal() {
  NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
  ResourceMark rm;

  // Need a mapping from basic block Node_Lists.  We need a Node_List to
  // map from register number to value-producing Node.
  Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
  memset(blk2value, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));
  // Need a mapping from basic block Node_Lists.  We need a Node_List to
  // map from register number to register-defining Node.
  Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
  memset(blk2regnd, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));

  // We keep unused Node_Lists on a free_list to avoid wasting
  // memory.
  GrowableArray<Node_List*> free_list = GrowableArray(16);

  // For all blocks
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
    uint j;
    Block* block = _cfg.get_block(i);

    // Count of Phis in block
    uint phi_dex;
    for (phi_dex = 1; phi_dex < block->number_of_nodes(); phi_dex++) {
      Node* phi = block->get_node(phi_dex);
      if (!phi->is_Phi()) {
        break;
      }
    }

    // If any predecessor has not been visited, we do not know the state
    // of registers at the start.  Check for this, while updating copies
    // along Phi input edges
    bool missing_some_inputs = false;
    Block *freed = NULL;
    for (j = 1; j < block->num_preds(); j++) {
      Block* pb = _cfg.get_block_for_node(block->pred(j));
      // Remove copies along phi edges
      for (uint k = 1; k < phi_dex; k++) {
        elide_copy(block->get_node(k), j, block, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false);
      }
      if (blk2value[pb->_pre_order]) { // Have a mapping on this edge?
        // See if this predecessor's mappings have been used by everybody
        // who wants them.  If so, free 'em.
        uint k;
        for (k = 0; k < pb->_num_succs; k++) {
          Block* pbsucc = pb->_succs[k];
          if (!blk2value[pbsucc->_pre_order] && pbsucc != block) {
            break;              // Found a future user
          }
        }
        if (k >= pb->_num_succs) { // No more uses, free!
          freed = pb;           // Record last block freed
          free_list.push(blk2value[pb->_pre_order]);
          free_list.push(blk2regnd[pb->_pre_order]);
        }
      } else {                  // This block has unvisited (loopback) inputs
        missing_some_inputs = true;
      }
    }


    // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
    // 'freed's blocks off the list
    Node_List ®nd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
    Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
    assert( !freed || blk2value[freed->_pre_order] == &value, "" );
    value.map(_max_reg,NULL);
    regnd.map(_max_reg,NULL);
    // Set mappings as OUR mappings
    blk2value[block->_pre_order] = &value;
    blk2regnd[block->_pre_order] = ®nd;

    // Initialize value & regnd for this block
    if (missing_some_inputs) {
      // Some predecessor has not yet been visited; zap map to empty
      for (uint k = 0; k < (uint)_max_reg; k++) {
        value.map(k,NULL);
        regnd.map(k,NULL);
      }
    } else {
      if( !freed ) {            // Didn't get a freebie prior block
        // Must clone some data
        freed = _cfg.get_block_for_node(block->pred(1));
        Node_List &f_value = *blk2value[freed->_pre_order];
        Node_List &f_regnd = *blk2regnd[freed->_pre_order];
        for( uint k = 0; k < (uint)_max_reg; k++ ) {
          value.map(k,f_value[k]);
          regnd.map(k,f_regnd[k]);
        }
      }
      // Merge all inputs together, setting to NULL any conflicts.
      for (j = 1; j < block->num_preds(); j++) {
        Block* pb = _cfg.get_block_for_node(block->pred(j));
        if (pb == freed) {
          continue; // Did self already via freelist
        }
        Node_List &p_regnd = *blk2regnd[pb->_pre_order];
        for( uint k = 0; k < (uint)_max_reg; k++ ) {
          if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
            value.map(k,NULL); // Then no value handy
            regnd.map(k,NULL);
          }
        }
      }
    }

    // For all Phi's
    for (j = 1; j < phi_dex; j++) {
      uint k;
      Node *phi = block->get_node(j);
      uint pidx = _lrg_map.live_range_id(phi);
      OptoReg::Name preg = lrgs(_lrg_map.live_range_id(phi)).reg();

      // Remove copies remaining on edges.  Check for junk phi.
      Node *u = NULL;
      for (k = 1; k < phi->req(); k++) {
        Node *x = phi->in(k);
        if( phi != x && u != x ) // Found a different input
          u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
      }
      if (u != NodeSentinel) {    // Junk Phi.  Remove
        phi->replace_by(u);
        j -= yank_if_dead(phi, block, &value, ®nd);
        phi_dex--;
        continue;
      }
      // Note that if value[pidx] exists, then we merged no new values here
      // and the phi is useless.  This can happen even with the above phi
      // removal for complex flows.  I cannot keep the better known value here
      // because locally the phi appears to define a new merged value.  If I
      // keep the better value then a copy of the phi, being unable to use the
      // global flow analysis, can't "peek through" the phi to the original
      // reaching value and so will act like it's defining a new value.  This
      // can lead to situations where some uses are from the old and some from
      // the new values.  Not illegal by itself but throws the over-strong
      // assert in scheduling.
      if( pidx ) {
        value.map(preg,phi);
        regnd.map(preg,phi);
        int n_regs = RegMask::num_registers(phi->ideal_reg());
        for (int l = 1; l < n_regs; l++) {
          OptoReg::Name preg_lo = OptoReg::add(preg,-l);
          value.map(preg_lo,phi);
          regnd.map(preg_lo,phi);
        }
      }
    }

    // For all remaining instructions
    for (j = phi_dex; j < block->number_of_nodes(); j++) {
      Node* n = block->get_node(j);

      if(n->outcnt() == 0 &&   // Dead?
         n != C->top() &&      // (ignore TOP, it has no du info)
         !n->is_Proj() ) {     // fat-proj kills
        j -= yank_if_dead(n, block, &value, ®nd);
        continue;
      }

      // Improve reaching-def info.  Occasionally post-alloc's liveness gives
      // up (at loop backedges, because we aren't doing a full flow pass).
      // The presence of a live use essentially asserts that the use's def is
      // alive and well at the use (or else the allocator fubar'd).  Take
      // advantage of this info to set a reaching def for the use-reg.
      uint k;
      for (k = 1; k < n->req(); k++) {
        Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
        guarantee(def != NULL, "no disconnected nodes at this point");
        uint useidx = _lrg_map.live_range_id(def); // useidx is the live range index for this USE

        if( useidx ) {
          OptoReg::Name ureg = lrgs(useidx).reg();
          if( !value[ureg] ) {
            int idx;            // Skip occasional useless copy
            while( (idx=def->is_Copy()) != 0 &&
                   def->in(idx) != NULL &&  // NULL should not happen
                   ureg == lrgs(_lrg_map.live_range_id(def->in(idx))).reg())
              def = def->in(idx);
            Node *valdef = skip_copies(def); // tighten up val through non-useless copies
            value.map(ureg,valdef); // record improved reaching-def info
            regnd.map(ureg,   def);
            // Record other half of doubles
            uint def_ideal_reg = def->ideal_reg();
            int n_regs = RegMask::num_registers(def_ideal_reg);
            for (int l = 1; l < n_regs; l++) {
              OptoReg::Name ureg_lo = OptoReg::add(ureg,-l);
              if (!value[ureg_lo] &&
                  (!RegMask::can_represent(ureg_lo) ||
                   lrgs(useidx).mask().Member(ureg_lo))) { // Nearly always adjacent
                value.map(ureg_lo,valdef); // record improved reaching-def info
                regnd.map(ureg_lo,   def);
              }
            }
          }
        }
      }

      const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;

      // Remove copies along input edges
      for (k = 1; k < n->req(); k++) {
        j -= elide_copy(n, k, block, value, regnd, two_adr != k);
      }

      // Unallocated Nodes define no registers
      uint lidx = _lrg_map.live_range_id(n);
      if (!lidx) {
        continue;
      }

      // Update the register defined by this instruction
      OptoReg::Name nreg = lrgs(lidx).reg();
      // Skip through all copies to the _value_ being defined.
      // Do not change from int to pointer
      Node *val = skip_copies(n);

      // Clear out a dead definition before starting so that the
      // elimination code doesn't have to guard against it.  The
      // definition could in fact be a kill projection with a count of
      // 0 which is safe but since those are uninteresting for copy
      // elimination just delete them as well.
      if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
        regnd.map(nreg, NULL);
        value.map(nreg, NULL);
      }

      uint n_ideal_reg = n->ideal_reg();
      int n_regs = RegMask::num_registers(n_ideal_reg);
      if (n_regs == 1) {
        // If Node 'n' does not change the value mapped by the register,
        // then 'n' is a useless copy.  Do not update the register->node
        // mapping so 'n' will go dead.
        if( value[nreg] != val ) {
          if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, OptoReg::Bad)) {
            j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
          } else {
            // Update the mapping: record new Node defined by the register
            regnd.map(nreg,n);
            // Update mapping for defined *value*, which is the defined
            // Node after skipping all copies.
            value.map(nreg,val);
          }
        } else if( !may_be_copy_of_callee(n) ) {
          assert(n->is_Copy(), "");
          j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
        }
      } else if (RegMask::is_vector(n_ideal_reg)) {
        // If Node 'n' does not change the value mapped by the register,
        // then 'n' is a useless copy.  Do not update the register->node
        // mapping so 'n' will go dead.
        if (!register_contains_value(val, nreg, n_regs, value)) {
          // Update the mapping: record new Node defined by the register
          regnd.map(nreg,n);
          // Update mapping for defined *value*, which is the defined
          // Node after skipping all copies.
          value.map(nreg,val);
          for (int l = 1; l < n_regs; l++) {
            OptoReg::Name nreg_lo = OptoReg::add(nreg,-l);
            regnd.map(nreg_lo, n );
            value.map(nreg_lo,val);
          }
        } else if (n->is_Copy()) {
          // Note: vector can't be constant and can't be copy of calee.
          j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
        }
      } else {
        // If the value occupies a register pair, record same info
        // in both registers.
        OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
        if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
            !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
          // Sparc occasionally has non-adjacent pairs.
          // Find the actual other value
          RegMask tmp = lrgs(lidx).mask();
          tmp.Remove(nreg);
          nreg_lo = tmp.find_first_elem();
        }
        if (value[nreg] != val || value[nreg_lo] != val) {
          if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, nreg_lo)) {
            j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
          } else {
            regnd.map(nreg   , n );
            regnd.map(nreg_lo, n );
            value.map(nreg   ,val);
            value.map(nreg_lo,val);
          }
        } else if (!may_be_copy_of_callee(n)) {
          assert(n->is_Copy(), "");
          j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
        }
      }

      // Fat projections kill many registers
      if( n_ideal_reg == MachProjNode::fat_proj ) {
        RegMask rm = n->out_RegMask();
        // wow, what an expensive iterator...
        nreg = rm.find_first_elem();
        while( OptoReg::is_valid(nreg)) {
          rm.Remove(nreg);
          value.map(nreg,n);
          regnd.map(nreg,n);
          nreg = rm.find_first_elem();
        }
      }

    } // End of for all instructions in the block

  } // End for all blocks
}

Other Java examples (source code examples)

Here is a short list of links related to this Java postaloc.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.