alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (fprofiler.cpp)

This example Java source code file (fprofiler.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

codeblob, flatprofiler\:\:unknown_ticks, growablearray, javathread, method, mutexlocker, new_c_heap_array, null, profilernode, profilernode\:\:print, registermap, threadprofiler, tickposition, total

The fprofiler.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/classLoader.hpp"
#include "code/vtableStubs.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/universe.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "oops/symbol.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/task.hpp"
#include "runtime/vframe.hpp"
#include "utilities/macros.hpp"

// Static fields of FlatProfiler
int               FlatProfiler::received_gc_ticks   = 0;
int               FlatProfiler::vm_operation_ticks  = 0;
int               FlatProfiler::threads_lock_ticks  = 0;
int               FlatProfiler::class_loader_ticks  = 0;
int               FlatProfiler::extra_ticks         = 0;
int               FlatProfiler::blocked_ticks       = 0;
int               FlatProfiler::deopt_ticks         = 0;
int               FlatProfiler::unknown_ticks       = 0;
int               FlatProfiler::interpreter_ticks   = 0;
int               FlatProfiler::compiler_ticks      = 0;
int               FlatProfiler::received_ticks      = 0;
int               FlatProfiler::delivered_ticks     = 0;
int*              FlatProfiler::bytecode_ticks      = NULL;
int*              FlatProfiler::bytecode_ticks_stub = NULL;
int               FlatProfiler::all_int_ticks       = 0;
int               FlatProfiler::all_comp_ticks      = 0;
int               FlatProfiler::all_ticks           = 0;
bool              FlatProfiler::full_profile_flag   = false;
ThreadProfiler*   FlatProfiler::thread_profiler     = NULL;
ThreadProfiler*   FlatProfiler::vm_thread_profiler  = NULL;
FlatProfilerTask* FlatProfiler::task                = NULL;
elapsedTimer      FlatProfiler::timer;
int               FlatProfiler::interval_ticks_previous = 0;
IntervalData*     FlatProfiler::interval_data       = NULL;

ThreadProfiler::ThreadProfiler() {
  // Space for the ProfilerNodes
  const int area_size = 1 * ProfilerNodeSize * 1024;
  area_bottom = AllocateHeap(area_size, mtInternal);
  area_top    = area_bottom;
  area_limit  = area_bottom + area_size;

  // ProfilerNode pointer table
  table = NEW_C_HEAP_ARRAY(ProfilerNode*, table_size, mtInternal);
  initialize();
  engaged = false;
}

ThreadProfiler::~ThreadProfiler() {
  FreeHeap(area_bottom);
  area_bottom = NULL;
  area_top = NULL;
  area_limit = NULL;
  FreeHeap(table);
  table = NULL;
}

// Statics for ThreadProfiler
int ThreadProfiler::table_size = 1024;

int ThreadProfiler::entry(int  value) {
  value = (value > 0) ? value : -value;
  return value % table_size;
}

ThreadProfilerMark::ThreadProfilerMark(ThreadProfilerMark::Region r) {
  _r = r;
  _pp = NULL;
  assert(((r > ThreadProfilerMark::noRegion) && (r < ThreadProfilerMark::maxRegion)), "ThreadProfilerMark::Region out of bounds");
  Thread* tp = Thread::current();
  if (tp != NULL && tp->is_Java_thread()) {
    JavaThread* jtp = (JavaThread*) tp;
    ThreadProfiler* pp = jtp->get_thread_profiler();
    _pp = pp;
    if (pp != NULL) {
      pp->region_flag[r] = true;
    }
  }
}

ThreadProfilerMark::~ThreadProfilerMark() {
  if (_pp != NULL) {
    _pp->region_flag[_r] = false;
  }
  _pp = NULL;
}

// Random other statics
static const int col1 = 2;      // position of output column 1
static const int col2 = 11;     // position of output column 2
static const int col3 = 25;     // position of output column 3
static const int col4 = 55;     // position of output column 4


// Used for detailed profiling of nmethods.
class PCRecorder : AllStatic {
 private:
  static int*    counters;
  static address base;
  enum {
   bucket_size = 16
  };
  static int     index_for(address pc) { return (pc - base)/bucket_size;   }
  static address pc_for(int index)     { return base + (index * bucket_size); }
  static int     size() {
    return ((int)CodeCache::max_capacity())/bucket_size * BytesPerWord;
  }
 public:
  static address bucket_start_for(address pc) {
    if (counters == NULL) return NULL;
    return pc_for(index_for(pc));
  }
  static int bucket_count_for(address pc)  { return counters[index_for(pc)]; }
  static void init();
  static void record(address pc);
  static void print();
  static void print_blobs(CodeBlob* cb);
};

int*    PCRecorder::counters = NULL;
address PCRecorder::base     = NULL;

void PCRecorder::init() {
  MutexLockerEx lm(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  int s = size();
  counters = NEW_C_HEAP_ARRAY(int, s, mtInternal);
  for (int index = 0; index < s; index++) {
    counters[index] = 0;
  }
  base = CodeCache::first_address();
}

void PCRecorder::record(address pc) {
  if (counters == NULL) return;
  assert(CodeCache::contains(pc), "must be in CodeCache");
  counters[index_for(pc)]++;
}


address FlatProfiler::bucket_start_for(address pc) {
  return PCRecorder::bucket_start_for(pc);
}

int FlatProfiler::bucket_count_for(address pc) {
  return PCRecorder::bucket_count_for(pc);
}

void PCRecorder::print() {
  if (counters == NULL) return;

  tty->cr();
  tty->print_cr("Printing compiled methods with PC buckets having more than %d ticks", ProfilerPCTickThreshold);
  tty->print_cr("===================================================================");
  tty->cr();

  GrowableArray<CodeBlob*>* candidates = new GrowableArray(20);


  int s;
  {
    MutexLockerEx lm(CodeCache_lock, Mutex::_no_safepoint_check_flag);
    s = size();
  }

  for (int index = 0; index < s; index++) {
    int count = counters[index];
    if (count > ProfilerPCTickThreshold) {
      address pc = pc_for(index);
      CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
      if (cb != NULL && candidates->find(cb) < 0) {
        candidates->push(cb);
      }
    }
  }
  for (int i = 0; i < candidates->length(); i++) {
    print_blobs(candidates->at(i));
  }
}

void PCRecorder::print_blobs(CodeBlob* cb) {
  if (cb != NULL) {
    cb->print();
    if (cb->is_nmethod()) {
      ((nmethod*)cb)->print_code();
    }
    tty->cr();
  } else {
    tty->print_cr("stub code");
  }
}

class tick_counter {            // holds tick info for one node
 public:
  int ticks_in_code;
  int ticks_in_native;

  tick_counter()                     {  ticks_in_code = ticks_in_native = 0; }
  tick_counter(int code, int native) {  ticks_in_code = code; ticks_in_native = native; }

  int total() const {
    return (ticks_in_code + ticks_in_native);
  }

  void add(tick_counter* a) {
    ticks_in_code += a->ticks_in_code;
    ticks_in_native += a->ticks_in_native;
  }

  void update(TickPosition where) {
    switch(where) {
      case tp_code:     ticks_in_code++;       break;
      case tp_native:   ticks_in_native++;      break;
    }
  }

  void print_code(outputStream* st, int total_ticks) {
    st->print("%5.1f%% %5d ", total() * 100.0 / total_ticks, ticks_in_code);
  }

  void print_native(outputStream* st) {
    st->print(" + %5d ", ticks_in_native);
  }
};

class ProfilerNode {
 private:
  ProfilerNode* _next;
 public:
  tick_counter ticks;

 public:

  void* operator new(size_t size, ThreadProfiler* tp) throw();
  void  operator delete(void* p);

  ProfilerNode() {
    _next = NULL;
  }

  virtual ~ProfilerNode() {
    if (_next)
      delete _next;
  }

  void set_next(ProfilerNode* n) { _next = n; }
  ProfilerNode* next()           { return _next; }

  void update(TickPosition where) { ticks.update(where);}
  int total_ticks() { return ticks.total(); }

  virtual bool is_interpreted() const { return false; }
  virtual bool is_compiled()    const { return false; }
  virtual bool is_stub()        const { return false; }
  virtual bool is_runtime_stub() const{ return false; }
  virtual void oops_do(OopClosure* f) = 0;

  virtual bool interpreted_match(Method* m) const { return false; }
  virtual bool compiled_match(Method* m ) const { return false; }
  virtual bool stub_match(Method* m, const char* name) const { return false; }
  virtual bool adapter_match() const { return false; }
  virtual bool runtimeStub_match(const CodeBlob* stub, const char* name) const { return false; }
  virtual bool unknown_compiled_match(const CodeBlob* cb) const { return false; }

  static void print_title(outputStream* st) {
    st->print(" + native");
    st->fill_to(col3);
    st->print("Method");
    st->fill_to(col4);
    st->cr();
  }

  static void print_total(outputStream* st, tick_counter* t, int total, const char* msg) {
    t->print_code(st, total);
    st->fill_to(col2);
    t->print_native(st);
    st->fill_to(col3);
    st->print(msg);
    st->cr();
  }

  virtual Method* method()         = 0;

  virtual void print_method_on(outputStream* st) {
    int limit;
    int i;
    Method* m = method();
    Symbol* k = m->klass_name();
    // Print the class name with dots instead of slashes
    limit = k->utf8_length();
    for (i = 0 ; i < limit ; i += 1) {
      char c = (char) k->byte_at(i);
      if (c == '/') {
        c = '.';
      }
      st->print("%c", c);
    }
    if (limit > 0) {
      st->print(".");
    }
    Symbol* n = m->name();
    limit = n->utf8_length();
    for (i = 0 ; i < limit ; i += 1) {
      char c = (char) n->byte_at(i);
      st->print("%c", c);
    }
    if (Verbose || WizardMode) {
      // Disambiguate overloaded methods
      Symbol* sig = m->signature();
      sig->print_symbol_on(st);
    } else if (MethodHandles::is_signature_polymorphic(m->intrinsic_id()))
      // compare with Method::print_short_name
      MethodHandles::print_as_basic_type_signature_on(st, m->signature(), true);
  }

  virtual void print(outputStream* st, int total_ticks) {
    ticks.print_code(st, total_ticks);
    st->fill_to(col2);
    ticks.print_native(st);
    st->fill_to(col3);
    print_method_on(st);
    st->cr();
  }

  // for hashing into the table
  static int hash(Method* method) {
      // The point here is to try to make something fairly unique
      // out of the fields we can read without grabbing any locks
      // since the method may be locked when we need the hash.
      return (
          method->code_size() ^
          method->max_stack() ^
          method->max_locals() ^
          method->size_of_parameters());
  }

  // for sorting
  static int compare(ProfilerNode** a, ProfilerNode** b) {
    return (*b)->total_ticks() - (*a)->total_ticks();
  }
};

void* ProfilerNode::operator new(size_t size, ThreadProfiler* tp) throw() {
  void* result = (void*) tp->area_top;
  tp->area_top += size;

  if (tp->area_top > tp->area_limit) {
    fatal("flat profiler buffer overflow");
  }
  return result;
}

void ProfilerNode::operator delete(void* p){
}

class interpretedNode : public ProfilerNode {
 private:
   Method* _method;
   oop       _class_loader;  // needed to keep metadata for the method alive
 public:
   interpretedNode(Method* method, TickPosition where) : ProfilerNode() {
     _method = method;
     _class_loader = method->method_holder()->class_loader();
     update(where);
   }

   bool is_interpreted() const { return true; }

   bool interpreted_match(Method* m) const {
      return _method == m;
   }

   void oops_do(OopClosure* f) {
     f->do_oop(&_class_loader);
   }

   Method* method() { return _method; }

   static void print_title(outputStream* st) {
     st->fill_to(col1);
     st->print("%11s", "Interpreted");
     ProfilerNode::print_title(st);
   }

   void print(outputStream* st, int total_ticks) {
     ProfilerNode::print(st, total_ticks);
   }

   void print_method_on(outputStream* st) {
     ProfilerNode::print_method_on(st);
     MethodCounters* mcs = method()->method_counters();
     if (Verbose && mcs != NULL) mcs->invocation_counter()->print_short();
   }
};

class compiledNode : public ProfilerNode {
 private:
   Method* _method;
   oop       _class_loader;  // needed to keep metadata for the method alive
 public:
   compiledNode(Method* method, TickPosition where) : ProfilerNode() {
     _method = method;
     _class_loader = method->method_holder()->class_loader();
     update(where);
  }
  bool is_compiled()    const { return true; }

  bool compiled_match(Method* m) const {
    return _method == m;
  }

  Method* method()         { return _method; }

  void oops_do(OopClosure* f) {
    f->do_oop(&_class_loader);
  }

  static void print_title(outputStream* st) {
    st->fill_to(col1);
    st->print("%11s", "Compiled");
    ProfilerNode::print_title(st);
  }

  void print(outputStream* st, int total_ticks) {
    ProfilerNode::print(st, total_ticks);
  }

  void print_method_on(outputStream* st) {
    ProfilerNode::print_method_on(st);
  }
};

class stubNode : public ProfilerNode {
 private:
  Method* _method;
  oop       _class_loader;  // needed to keep metadata for the method alive
  const char* _symbol;   // The name of the nearest VM symbol (for +ProfileVM). Points to a unique string
 public:
   stubNode(Method* method, const char* name, TickPosition where) : ProfilerNode() {
     _method = method;
     _class_loader = method->method_holder()->class_loader();
     _symbol = name;
     update(where);
   }

   bool is_stub() const { return true; }

   void oops_do(OopClosure* f) {
     f->do_oop(&_class_loader);
   }

   bool stub_match(Method* m, const char* name) const {
     return (_method == m) && (_symbol == name);
   }

   Method* method() { return _method; }

   static void print_title(outputStream* st) {
     st->fill_to(col1);
     st->print("%11s", "Stub");
     ProfilerNode::print_title(st);
   }

   void print(outputStream* st, int total_ticks) {
     ProfilerNode::print(st, total_ticks);
   }

   void print_method_on(outputStream* st) {
     ProfilerNode::print_method_on(st);
     print_symbol_on(st);
   }

  void print_symbol_on(outputStream* st) {
    if(_symbol) {
      st->print("  (%s)", _symbol);
    }
  }
};

class adapterNode : public ProfilerNode {
 public:
   adapterNode(TickPosition where) : ProfilerNode() {
     update(where);
  }
  bool is_compiled()    const { return true; }

  bool adapter_match() const { return true; }

  Method* method()         { return NULL; }

  void oops_do(OopClosure* f) {
    ;
  }

  void print(outputStream* st, int total_ticks) {
    ProfilerNode::print(st, total_ticks);
  }

  void print_method_on(outputStream* st) {
    st->print("%s", "adapters");
  }
};

class runtimeStubNode : public ProfilerNode {
 private:
   const CodeBlob* _stub;
  const char* _symbol;     // The name of the nearest VM symbol when ProfileVM is on. Points to a unique string.
 public:
   runtimeStubNode(const CodeBlob* stub, const char* name, TickPosition where) : ProfilerNode(), _stub(stub),  _symbol(name) {
     assert(stub->is_runtime_stub(), "wrong code blob");
     update(where);
   }

  bool is_runtime_stub() const { return true; }

  bool runtimeStub_match(const CodeBlob* stub, const char* name) const {
    assert(stub->is_runtime_stub(), "wrong code blob");
    return ((RuntimeStub*)_stub)->entry_point() == ((RuntimeStub*)stub)->entry_point() &&
            (_symbol == name);
  }

  Method* method() { return NULL; }

  static void print_title(outputStream* st) {
    st->fill_to(col1);
    st->print("%11s", "Runtime stub");
    ProfilerNode::print_title(st);
  }

  void oops_do(OopClosure* f) {
    ;
  }

  void print(outputStream* st, int total_ticks) {
    ProfilerNode::print(st, total_ticks);
  }

  void print_method_on(outputStream* st) {
    st->print("%s", ((RuntimeStub*)_stub)->name());
    print_symbol_on(st);
  }

  void print_symbol_on(outputStream* st) {
    if(_symbol) {
      st->print("  (%s)", _symbol);
    }
  }
};


class unknown_compiledNode : public ProfilerNode {
 const char *_name;
 public:
   unknown_compiledNode(const CodeBlob* cb, TickPosition where) : ProfilerNode() {
     if ( cb->is_buffer_blob() )
       _name = ((BufferBlob*)cb)->name();
     else
       _name = ((SingletonBlob*)cb)->name();
     update(where);
  }
  bool is_compiled()    const { return true; }

  bool unknown_compiled_match(const CodeBlob* cb) const {
     if ( cb->is_buffer_blob() )
       return !strcmp(((BufferBlob*)cb)->name(), _name);
     else
       return !strcmp(((SingletonBlob*)cb)->name(), _name);
  }

  Method* method()         { return NULL; }

  void oops_do(OopClosure* f) {
    ;
  }

  void print(outputStream* st, int total_ticks) {
    ProfilerNode::print(st, total_ticks);
  }

  void print_method_on(outputStream* st) {
    st->print("%s", _name);
  }
};

class vmNode : public ProfilerNode {
 private:
  const char* _name; // "optional" name obtained by os means such as dll lookup
 public:
  vmNode(const TickPosition where) : ProfilerNode() {
    _name = NULL;
    update(where);
  }

  vmNode(const char* name, const TickPosition where) : ProfilerNode() {
    _name = name;
    update(where);
  }

  const char *name()    const { return _name; }
  bool is_compiled()    const { return true; }

  bool vm_match(const char* name) const { return strcmp(name, _name) == 0; }

  Method* method()          { return NULL; }

  static int hash(const char* name){
    // Compute a simple hash
    const char* cp = name;
    int h = 0;

    if(name != NULL){
      while(*cp != '\0'){
        h = (h << 1) ^ *cp;
        cp++;
      }
    }
    return h;
  }

  void oops_do(OopClosure* f) {
    ;
  }

  void print(outputStream* st, int total_ticks) {
    ProfilerNode::print(st, total_ticks);
  }

  void print_method_on(outputStream* st) {
    if(_name==NULL){
      st->print("%s", "unknown code");
    }
    else {
      st->print("%s", _name);
    }
  }
};

void ThreadProfiler::interpreted_update(Method* method, TickPosition where) {
  int index = entry(ProfilerNode::hash(method));
  if (!table[index]) {
    table[index] = new (this) interpretedNode(method, where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->interpreted_match(method)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) interpretedNode(method, where));
  }
}

void ThreadProfiler::compiled_update(Method* method, TickPosition where) {
  int index = entry(ProfilerNode::hash(method));
  if (!table[index]) {
    table[index] = new (this) compiledNode(method, where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->compiled_match(method)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) compiledNode(method, where));
  }
}

void ThreadProfiler::stub_update(Method* method, const char* name, TickPosition where) {
  int index = entry(ProfilerNode::hash(method));
  if (!table[index]) {
    table[index] = new (this) stubNode(method, name, where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->stub_match(method, name)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) stubNode(method, name, where));
  }
}

void ThreadProfiler::adapter_update(TickPosition where) {
  int index = 0;
  if (!table[index]) {
    table[index] = new (this) adapterNode(where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->adapter_match()) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) adapterNode(where));
  }
}

void ThreadProfiler::runtime_stub_update(const CodeBlob* stub, const char* name, TickPosition where) {
  int index = 0;
  if (!table[index]) {
    table[index] = new (this) runtimeStubNode(stub, name, where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->runtimeStub_match(stub, name)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) runtimeStubNode(stub, name, where));
  }
}


void ThreadProfiler::unknown_compiled_update(const CodeBlob* cb, TickPosition where) {
  int index = 0;
  if (!table[index]) {
    table[index] = new (this) unknown_compiledNode(cb, where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (node->unknown_compiled_match(cb)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) unknown_compiledNode(cb, where));
  }
}

void ThreadProfiler::vm_update(TickPosition where) {
  vm_update(NULL, where);
}

void ThreadProfiler::vm_update(const char* name, TickPosition where) {
  int index = entry(vmNode::hash(name));
  assert(index >= 0, "Must be positive");
  // Note that we call strdup below since the symbol may be resource allocated
  if (!table[index]) {
    table[index] = new (this) vmNode(os::strdup(name), where);
  } else {
    ProfilerNode* prev = table[index];
    for(ProfilerNode* node = prev; node; node = node->next()) {
      if (((vmNode *)node)->vm_match(name)) {
        node->update(where);
        return;
      }
      prev = node;
    }
    prev->set_next(new (this) vmNode(os::strdup(name), where));
  }
}


class FlatProfilerTask : public PeriodicTask {
public:
  FlatProfilerTask(int interval_time) : PeriodicTask(interval_time) {}
  void task();
};

void FlatProfiler::record_vm_operation() {
  if (Universe::heap()->is_gc_active()) {
    FlatProfiler::received_gc_ticks += 1;
    return;
  }

  if (DeoptimizationMarker::is_active()) {
    FlatProfiler::deopt_ticks += 1;
    return;
  }

  FlatProfiler::vm_operation_ticks += 1;
}

void FlatProfiler::record_vm_tick() {
  // Profile the VM Thread itself if needed
  // This is done without getting the Threads_lock and we can go deep
  // inside Safepoint, etc.
  if( ProfileVM  ) {
    ResourceMark rm;
    ExtendedPC epc;
    const char *name = NULL;
    char buf[256];
    buf[0] = '\0';

    vm_thread_profiler->inc_thread_ticks();

    // Get a snapshot of a current VMThread pc (and leave it running!)
    // The call may fail if, for instance the VM thread is interrupted while
    // holding the Interrupt_lock or for other reasons.
    epc = os::get_thread_pc(VMThread::vm_thread());
    if(epc.pc() != NULL) {
      if (os::dll_address_to_function_name(epc.pc(), buf, sizeof(buf), NULL)) {
         name = buf;
      }
    }
    if (name != NULL) {
      vm_thread_profiler->vm_update(name, tp_native);
    }
  }
}

void FlatProfiler::record_thread_ticks() {

  int maxthreads, suspendedthreadcount;
  JavaThread** threadsList;
  bool interval_expired = false;

  if (ProfileIntervals &&
      (FlatProfiler::received_ticks >= interval_ticks_previous + ProfileIntervalsTicks)) {
    interval_expired = true;
    interval_ticks_previous = FlatProfiler::received_ticks;
  }

  // Try not to wait for the Threads_lock
  if (Threads_lock->try_lock()) {
    {  // Threads_lock scope
      maxthreads = Threads::number_of_threads();
      threadsList = NEW_C_HEAP_ARRAY(JavaThread *, maxthreads, mtInternal);
      suspendedthreadcount = 0;
      for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
        if (tp->is_Compiler_thread()) {
          // Only record ticks for active compiler threads
          CompilerThread* cthread = (CompilerThread*)tp;
          if (cthread->task() != NULL) {
            // The compiler is active.  If we need to access any of the fields
            // of the compiler task we should suspend the CompilerThread first.
            FlatProfiler::compiler_ticks += 1;
            continue;
          }
        }

        // First externally suspend all threads by marking each for
        // external suspension - so it will stop at its next transition
        // Then do a safepoint
        ThreadProfiler* pp = tp->get_thread_profiler();
        if (pp != NULL && pp->engaged) {
          MutexLockerEx ml(tp->SR_lock(), Mutex::_no_safepoint_check_flag);
          if (!tp->is_external_suspend() && !tp->is_exiting()) {
            tp->set_external_suspend();
            threadsList[suspendedthreadcount++] = tp;
          }
        }
      }
      Threads_lock->unlock();
    }
    // Suspend each thread. This call should just return
    // for any threads that have already self-suspended
    // Net result should be one safepoint
    for (int j = 0; j < suspendedthreadcount; j++) {
      JavaThread *tp = threadsList[j];
      if (tp) {
        tp->java_suspend();
      }
    }

    // We are responsible for resuming any thread on this list
    for (int i = 0; i < suspendedthreadcount; i++) {
      JavaThread *tp = threadsList[i];
      if (tp) {
        ThreadProfiler* pp = tp->get_thread_profiler();
        if (pp != NULL && pp->engaged) {
          HandleMark hm;
          FlatProfiler::delivered_ticks += 1;
          if (interval_expired) {
          FlatProfiler::interval_record_thread(pp);
          }
          // This is the place where we check to see if a user thread is
          // blocked waiting for compilation.
          if (tp->blocked_on_compilation()) {
            pp->compiler_ticks += 1;
            pp->interval_data_ref()->inc_compiling();
          } else {
            pp->record_tick(tp);
          }
        }
        MutexLocker ml(Threads_lock);
        tp->java_resume();
      }
    }
    if (interval_expired) {
      FlatProfiler::interval_print();
      FlatProfiler::interval_reset();
    }

    FREE_C_HEAP_ARRAY(JavaThread *, threadsList, mtInternal);
  } else {
    // Couldn't get the threads lock, just record that rather than blocking
    FlatProfiler::threads_lock_ticks += 1;
  }

}

void FlatProfilerTask::task() {
  FlatProfiler::received_ticks += 1;

  if (ProfileVM) {
    FlatProfiler::record_vm_tick();
  }

  VM_Operation* op = VMThread::vm_operation();
  if (op != NULL) {
    FlatProfiler::record_vm_operation();
    if (SafepointSynchronize::is_at_safepoint()) {
      return;
    }
  }
  FlatProfiler::record_thread_ticks();
}

void ThreadProfiler::record_interpreted_tick(JavaThread* thread, frame fr, TickPosition where, int* ticks) {
  FlatProfiler::all_int_ticks++;
  if (!FlatProfiler::full_profile()) {
    return;
  }

  if (!fr.is_interpreted_frame_valid(thread)) {
    // tick came at a bad time
    interpreter_ticks += 1;
    FlatProfiler::interpreter_ticks += 1;
    return;
  }

  // The frame has been fully validated so we can trust the method and bci

  Method* method = *fr.interpreter_frame_method_addr();

  interpreted_update(method, where);

  // update byte code table
  InterpreterCodelet* desc = Interpreter::codelet_containing(fr.pc());
  if (desc != NULL && desc->bytecode() >= 0) {
    ticks[desc->bytecode()]++;
  }
}

void ThreadProfiler::record_compiled_tick(JavaThread* thread, frame fr, TickPosition where) {
  const char *name = NULL;
  TickPosition localwhere = where;

  FlatProfiler::all_comp_ticks++;
  if (!FlatProfiler::full_profile()) return;

  CodeBlob* cb = fr.cb();

// For runtime stubs, record as native rather than as compiled
   if (cb->is_runtime_stub()) {
        RegisterMap map(thread, false);
        fr = fr.sender(&map);
        cb = fr.cb();
        localwhere = tp_native;
  }
  Method* method = (cb->is_nmethod()) ? ((nmethod *)cb)->method() :
                                          (Method*)NULL;

  if (method == NULL) {
    if (cb->is_runtime_stub())
      runtime_stub_update(cb, name, localwhere);
    else
      unknown_compiled_update(cb, localwhere);
  }
  else {
    if (method->is_native()) {
      stub_update(method, name, localwhere);
    } else {
      compiled_update(method, localwhere);
    }
  }
}

extern "C" void find(int x);


void ThreadProfiler::record_tick_for_running_frame(JavaThread* thread, frame fr) {
  // The tick happened in real code -> non VM code
  if (fr.is_interpreted_frame()) {
    interval_data_ref()->inc_interpreted();
    record_interpreted_tick(thread, fr, tp_code, FlatProfiler::bytecode_ticks);
    return;
  }

  if (CodeCache::contains(fr.pc())) {
    interval_data_ref()->inc_compiled();
    PCRecorder::record(fr.pc());
    record_compiled_tick(thread, fr, tp_code);
    return;
  }

  if (VtableStubs::stub_containing(fr.pc()) != NULL) {
    unknown_ticks_array[ut_vtable_stubs] += 1;
    return;
  }

  frame caller = fr.profile_find_Java_sender_frame(thread);

  if (caller.sp() != NULL && caller.pc() != NULL) {
    record_tick_for_calling_frame(thread, caller);
    return;
  }

  unknown_ticks_array[ut_running_frame] += 1;
  FlatProfiler::unknown_ticks += 1;
}

void ThreadProfiler::record_tick_for_calling_frame(JavaThread* thread, frame fr) {
  // The tick happened in VM code
  interval_data_ref()->inc_native();
  if (fr.is_interpreted_frame()) {
    record_interpreted_tick(thread, fr, tp_native, FlatProfiler::bytecode_ticks_stub);
    return;
  }
  if (CodeCache::contains(fr.pc())) {
    record_compiled_tick(thread, fr, tp_native);
    return;
  }

  frame caller = fr.profile_find_Java_sender_frame(thread);

  if (caller.sp() != NULL && caller.pc() != NULL) {
    record_tick_for_calling_frame(thread, caller);
    return;
  }

  unknown_ticks_array[ut_calling_frame] += 1;
  FlatProfiler::unknown_ticks += 1;
}

void ThreadProfiler::record_tick(JavaThread* thread) {
  FlatProfiler::all_ticks++;
  thread_ticks += 1;

  // Here's another way to track global state changes.
  // When the class loader starts it marks the ThreadProfiler to tell it it is in the class loader
  // and we check that here.
  // This is more direct, and more than one thread can be in the class loader at a time,
  // but it does mean the class loader has to know about the profiler.
  if (region_flag[ThreadProfilerMark::classLoaderRegion]) {
    class_loader_ticks += 1;
    FlatProfiler::class_loader_ticks += 1;
    return;
  } else if (region_flag[ThreadProfilerMark::extraRegion]) {
    extra_ticks += 1;
    FlatProfiler::extra_ticks += 1;
    return;
  }
  // Note that the WatcherThread can now stop for safepoints
  uint32_t debug_bits = 0;
  if (!thread->wait_for_ext_suspend_completion(SuspendRetryCount,
      SuspendRetryDelay, &debug_bits)) {
    unknown_ticks_array[ut_unknown_thread_state] += 1;
    FlatProfiler::unknown_ticks += 1;
    return;
  }

  frame fr;

  switch (thread->thread_state()) {
  case _thread_in_native:
  case _thread_in_native_trans:
  case _thread_in_vm:
  case _thread_in_vm_trans:
    if (thread->profile_last_Java_frame(&fr)) {
      if (fr.is_runtime_frame()) {
        RegisterMap map(thread, false);
        fr = fr.sender(&map);
      }
      record_tick_for_calling_frame(thread, fr);
    } else {
      unknown_ticks_array[ut_no_last_Java_frame] += 1;
      FlatProfiler::unknown_ticks += 1;
    }
    break;
  // handle_special_runtime_exit_condition self-suspends threads in Java
  case _thread_in_Java:
  case _thread_in_Java_trans:
    if (thread->profile_last_Java_frame(&fr)) {
      if (fr.is_safepoint_blob_frame()) {
        RegisterMap map(thread, false);
        fr = fr.sender(&map);
      }
      record_tick_for_running_frame(thread, fr);
    } else {
      unknown_ticks_array[ut_no_last_Java_frame] += 1;
      FlatProfiler::unknown_ticks += 1;
    }
    break;
  case _thread_blocked:
  case _thread_blocked_trans:
    if (thread->osthread() && thread->osthread()->get_state() == RUNNABLE) {
        if (thread->profile_last_Java_frame(&fr)) {
          if (fr.is_safepoint_blob_frame()) {
            RegisterMap map(thread, false);
            fr = fr.sender(&map);
            record_tick_for_running_frame(thread, fr);
          } else {
            record_tick_for_calling_frame(thread, fr);
          }
        } else {
          unknown_ticks_array[ut_no_last_Java_frame] += 1;
          FlatProfiler::unknown_ticks += 1;
        }
    } else {
          blocked_ticks += 1;
          FlatProfiler::blocked_ticks += 1;
    }
    break;
  case _thread_uninitialized:
  case _thread_new:
  // not used, included for completeness
  case _thread_new_trans:
     unknown_ticks_array[ut_no_last_Java_frame] += 1;
     FlatProfiler::unknown_ticks += 1;
     break;
  default:
    unknown_ticks_array[ut_unknown_thread_state] += 1;
    FlatProfiler::unknown_ticks += 1;
    break;
  }
  return;
}

void ThreadProfiler::engage() {
  engaged = true;
  timer.start();
}

void ThreadProfiler::disengage() {
  engaged = false;
  timer.stop();
}

void ThreadProfiler::initialize() {
  for (int index = 0; index < table_size; index++) {
    table[index] = NULL;
  }
  thread_ticks = 0;
  blocked_ticks = 0;
  compiler_ticks = 0;
  interpreter_ticks = 0;
  for (int ut = 0; ut < ut_end; ut += 1) {
    unknown_ticks_array[ut] = 0;
  }
  region_flag[ThreadProfilerMark::classLoaderRegion] = false;
  class_loader_ticks = 0;
  region_flag[ThreadProfilerMark::extraRegion] = false;
  extra_ticks = 0;
  timer.start();
  interval_data_ref()->reset();
}

void ThreadProfiler::reset() {
  timer.stop();
  if (table != NULL) {
    for (int index = 0; index < table_size; index++) {
      ProfilerNode* n = table[index];
      if (n != NULL) {
        delete n;
      }
    }
  }
  initialize();
}

void FlatProfiler::allocate_table() {
  { // Bytecode table
    bytecode_ticks      = NEW_C_HEAP_ARRAY(int, Bytecodes::number_of_codes, mtInternal);
    bytecode_ticks_stub = NEW_C_HEAP_ARRAY(int, Bytecodes::number_of_codes, mtInternal);
    for(int index = 0; index < Bytecodes::number_of_codes; index++) {
      bytecode_ticks[index]      = 0;
      bytecode_ticks_stub[index] = 0;
    }
  }

  if (ProfilerRecordPC) PCRecorder::init();

  interval_data         = NEW_C_HEAP_ARRAY(IntervalData, interval_print_size, mtInternal);
  FlatProfiler::interval_reset();
}

void FlatProfiler::engage(JavaThread* mainThread, bool fullProfile) {
  full_profile_flag = fullProfile;
  if (bytecode_ticks == NULL) {
    allocate_table();
  }
  if(ProfileVM && (vm_thread_profiler == NULL)){
    vm_thread_profiler = new ThreadProfiler();
  }
  if (task == NULL) {
    task = new FlatProfilerTask(WatcherThread::delay_interval);
    task->enroll();
  }
  timer.start();
  if (mainThread != NULL) {
    // When mainThread was created, it might not have a ThreadProfiler
    ThreadProfiler* pp = mainThread->get_thread_profiler();
    if (pp == NULL) {
      mainThread->set_thread_profiler(new ThreadProfiler());
    } else {
      pp->reset();
    }
    mainThread->get_thread_profiler()->engage();
  }
  // This is where we would assign thread_profiler
  // if we wanted only one thread_profiler for all threads.
  thread_profiler = NULL;
}

void FlatProfiler::disengage() {
  if (!task) {
    return;
  }
  timer.stop();
  task->disenroll();
  delete task;
  task = NULL;
  if (thread_profiler != NULL) {
    thread_profiler->disengage();
  } else {
    MutexLocker tl(Threads_lock);
    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
      ThreadProfiler* pp = tp->get_thread_profiler();
      if (pp != NULL) {
        pp->disengage();
      }
    }
  }
}

void FlatProfiler::reset() {
  if (task) {
    disengage();
  }

  class_loader_ticks = 0;
  extra_ticks        = 0;
  received_gc_ticks  = 0;
  vm_operation_ticks = 0;
  compiler_ticks     = 0;
  deopt_ticks        = 0;
  interpreter_ticks  = 0;
  blocked_ticks      = 0;
  unknown_ticks      = 0;
  received_ticks     = 0;
  delivered_ticks    = 0;
  timer.stop();
}

bool FlatProfiler::is_active() {
  return task != NULL;
}

void FlatProfiler::print_byte_code_statistics() {
  GrowableArray <ProfilerNode*>* array = new GrowableArray(200);

  tty->print_cr(" Bytecode ticks:");
  for (int index = 0; index < Bytecodes::number_of_codes; index++) {
    if (FlatProfiler::bytecode_ticks[index] > 0 || FlatProfiler::bytecode_ticks_stub[index] > 0) {
      tty->print_cr("  %4d %4d = %s",
        FlatProfiler::bytecode_ticks[index],
        FlatProfiler::bytecode_ticks_stub[index],
        Bytecodes::name( (Bytecodes::Code) index));
    }
  }
  tty->cr();
}

void print_ticks(const char* title, int ticks, int total) {
  if (ticks > 0) {
    tty->print("%5.1f%% %5d", ticks * 100.0 / total, ticks);
    tty->fill_to(col3);
    tty->print("%s", title);
    tty->cr();
  }
}

void ThreadProfiler::print(const char* thread_name) {
  ResourceMark rm;
  MutexLocker ppl(ProfilePrint_lock);
  int index = 0; // Declared outside for loops for portability

  if (table == NULL) {
    return;
  }

  if (thread_ticks <= 0) {
    return;
  }

  const char* title = "too soon to tell";
  double secs = timer.seconds();

  GrowableArray <ProfilerNode*>* array = new GrowableArray(200);
  for(index = 0; index < table_size; index++) {
    for(ProfilerNode* node = table[index]; node; node = node->next())
      array->append(node);
  }

  array->sort(&ProfilerNode::compare);

  // compute total (sanity check)
  int active =
    class_loader_ticks +
    compiler_ticks +
    interpreter_ticks +
    unknown_ticks();
  for (index = 0; index < array->length(); index++) {
    active += array->at(index)->ticks.total();
  }
  int total = active + blocked_ticks;

  tty->cr();
  tty->print_cr("Flat profile of %3.2f secs (%d total ticks): %s", secs, total, thread_name);
  if (total != thread_ticks) {
    print_ticks("Lost ticks", thread_ticks-total, thread_ticks);
  }
  tty->cr();

  // print interpreted methods
  tick_counter interpreted_ticks;
  bool has_interpreted_ticks = false;
  int print_count = 0;
  for (index = 0; index < array->length(); index++) {
    ProfilerNode* n = array->at(index);
    if (n->is_interpreted()) {
      interpreted_ticks.add(&n->ticks);
      if (!has_interpreted_ticks) {
        interpretedNode::print_title(tty);
        has_interpreted_ticks = true;
      }
      if (print_count++ < ProfilerNumberOfInterpretedMethods) {
        n->print(tty, active);
      }
    }
  }
  if (has_interpreted_ticks) {
    if (print_count <= ProfilerNumberOfInterpretedMethods) {
      title = "Total interpreted";
    } else {
      title = "Total interpreted (including elided)";
    }
    interpretedNode::print_total(tty, &interpreted_ticks, active, title);
    tty->cr();
  }

  // print compiled methods
  tick_counter compiled_ticks;
  bool has_compiled_ticks = false;
  print_count = 0;
  for (index = 0; index < array->length(); index++) {
    ProfilerNode* n = array->at(index);
    if (n->is_compiled()) {
      compiled_ticks.add(&n->ticks);
      if (!has_compiled_ticks) {
        compiledNode::print_title(tty);
        has_compiled_ticks = true;
      }
      if (print_count++ < ProfilerNumberOfCompiledMethods) {
        n->print(tty, active);
      }
    }
  }
  if (has_compiled_ticks) {
    if (print_count <= ProfilerNumberOfCompiledMethods) {
      title = "Total compiled";
    } else {
      title = "Total compiled (including elided)";
    }
    compiledNode::print_total(tty, &compiled_ticks, active, title);
    tty->cr();
  }

  // print stub methods
  tick_counter stub_ticks;
  bool has_stub_ticks = false;
  print_count = 0;
  for (index = 0; index < array->length(); index++) {
    ProfilerNode* n = array->at(index);
    if (n->is_stub()) {
      stub_ticks.add(&n->ticks);
      if (!has_stub_ticks) {
        stubNode::print_title(tty);
        has_stub_ticks = true;
      }
      if (print_count++ < ProfilerNumberOfStubMethods) {
        n->print(tty, active);
      }
    }
  }
  if (has_stub_ticks) {
    if (print_count <= ProfilerNumberOfStubMethods) {
      title = "Total stub";
    } else {
      title = "Total stub (including elided)";
    }
    stubNode::print_total(tty, &stub_ticks, active, title);
    tty->cr();
  }

  // print runtime stubs
  tick_counter runtime_stub_ticks;
  bool has_runtime_stub_ticks = false;
  print_count = 0;
  for (index = 0; index < array->length(); index++) {
    ProfilerNode* n = array->at(index);
    if (n->is_runtime_stub()) {
      runtime_stub_ticks.add(&n->ticks);
      if (!has_runtime_stub_ticks) {
        runtimeStubNode::print_title(tty);
        has_runtime_stub_ticks = true;
      }
      if (print_count++ < ProfilerNumberOfRuntimeStubNodes) {
        n->print(tty, active);
      }
    }
  }
  if (has_runtime_stub_ticks) {
    if (print_count <= ProfilerNumberOfRuntimeStubNodes) {
      title = "Total runtime stubs";
    } else {
      title = "Total runtime stubs (including elided)";
    }
    runtimeStubNode::print_total(tty, &runtime_stub_ticks, active, title);
    tty->cr();
  }

  if (blocked_ticks + class_loader_ticks + interpreter_ticks + compiler_ticks + unknown_ticks() != 0) {
    tty->fill_to(col1);
    tty->print_cr("Thread-local ticks:");
    print_ticks("Blocked (of total)",  blocked_ticks,      total);
    print_ticks("Class loader",        class_loader_ticks, active);
    print_ticks("Extra",               extra_ticks,        active);
    print_ticks("Interpreter",         interpreter_ticks,  active);
    print_ticks("Compilation",         compiler_ticks,     active);
    print_ticks("Unknown: vtable stubs",  unknown_ticks_array[ut_vtable_stubs],         active);
    print_ticks("Unknown: null method",   unknown_ticks_array[ut_null_method],          active);
    print_ticks("Unknown: running frame", unknown_ticks_array[ut_running_frame],        active);
    print_ticks("Unknown: calling frame", unknown_ticks_array[ut_calling_frame],        active);
    print_ticks("Unknown: no pc",         unknown_ticks_array[ut_no_pc],                active);
    print_ticks("Unknown: no last frame", unknown_ticks_array[ut_no_last_Java_frame],   active);
    print_ticks("Unknown: thread_state",  unknown_ticks_array[ut_unknown_thread_state], active);
    tty->cr();
  }

  if (WizardMode) {
    tty->print_cr("Node area used: %dKb", (area_top - area_bottom) / 1024);
  }
  reset();
}

/*
ThreadProfiler::print_unknown(){
  if (table == NULL) {
    return;
  }

  if (thread_ticks <= 0) {
    return;
  }
} */

void FlatProfiler::print(int unused) {
  ResourceMark rm;
  if (thread_profiler != NULL) {
    thread_profiler->print("All threads");
  } else {
    MutexLocker tl(Threads_lock);
    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
      ThreadProfiler* pp = tp->get_thread_profiler();
      if (pp != NULL) {
        pp->print(tp->get_thread_name());
      }
    }
  }

  if (ProfilerPrintByteCodeStatistics) {
    print_byte_code_statistics();
  }

  if (non_method_ticks() > 0) {
    tty->cr();
    tty->print_cr("Global summary of %3.2f seconds:", timer.seconds());
    print_ticks("Received ticks",      received_ticks,     received_ticks);
    print_ticks("Received GC ticks",   received_gc_ticks,  received_ticks);
    print_ticks("Compilation",         compiler_ticks,     received_ticks);
    print_ticks("Deoptimization",      deopt_ticks,        received_ticks);
    print_ticks("Other VM operations", vm_operation_ticks, received_ticks);
#ifndef PRODUCT
    print_ticks("Blocked ticks",       blocked_ticks,      received_ticks);
    print_ticks("Threads_lock blocks", threads_lock_ticks, received_ticks);
    print_ticks("Delivered ticks",     delivered_ticks,    received_ticks);
    print_ticks("All ticks",           all_ticks,          received_ticks);
#endif
    print_ticks("Class loader",        class_loader_ticks, received_ticks);
    print_ticks("Extra       ",        extra_ticks,        received_ticks);
    print_ticks("Interpreter",         interpreter_ticks,  received_ticks);
    print_ticks("Unknown code",        unknown_ticks,      received_ticks);
  }

  PCRecorder::print();

  if(ProfileVM){
    tty->cr();
    vm_thread_profiler->print("VM Thread");
  }
}

void IntervalData::print_header(outputStream* st) {
  st->print("i/c/n/g");
}

void IntervalData::print_data(outputStream* st) {
  st->print("%d/%d/%d/%d", interpreted(), compiled(), native(), compiling());
}

void FlatProfiler::interval_record_thread(ThreadProfiler* tp) {
  IntervalData id = tp->interval_data();
  int total = id.total();
  tp->interval_data_ref()->reset();

  // Insertion sort the data, if it's relevant.
  for (int i = 0; i < interval_print_size; i += 1) {
    if (total > interval_data[i].total()) {
      for (int j = interval_print_size - 1; j > i; j -= 1) {
        interval_data[j] = interval_data[j-1];
      }
      interval_data[i] = id;
      break;
    }
  }
}

void FlatProfiler::interval_print() {
  if ((interval_data[0].total() > 0)) {
    tty->stamp();
    tty->print("\t");
    IntervalData::print_header(tty);
    for (int i = 0; i < interval_print_size; i += 1) {
      if (interval_data[i].total() > 0) {
        tty->print("\t");
        interval_data[i].print_data(tty);
      }
    }
    tty->cr();
  }
}

void FlatProfiler::interval_reset() {
  for (int i = 0; i < interval_print_size; i += 1) {
    interval_data[i].reset();
  }
}

void ThreadProfiler::oops_do(OopClosure* f) {
  if (table == NULL) return;

  for(int index = 0; index < table_size; index++) {
    for(ProfilerNode* node = table[index]; node; node = node->next())
      node->oops_do(f);
  }
}

void FlatProfiler::oops_do(OopClosure* f) {
  if (thread_profiler != NULL) {
    thread_profiler->oops_do(f);
  } else {
    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
      ThreadProfiler* pp = tp->get_thread_profiler();
      if (pp != NULL) {
        pp->oops_do(f);
      }
    }
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java fprofiler.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.