alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (thread.cpp)

This example Java source code file (thread.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

all_java_threads, assert, check_0, handle, include_all_gcs, intptr_format, javathread, lockbit, mutex\:\:_no_safepoint_check_flag, mutexlockerex, null, product, resourcemark, thread

The thread.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/scopeDesc.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "interpreter/oopMapCache.hpp"
#include "jvmtifiles/jvmtiEnv.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/oopFactory.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "prims/jvm_misc.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/privilegedStack.hpp"
#include "runtime/arguments.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/jniPeriodicChecker.hpp"
#include "runtime/memprofiler.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/task.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/threadLocalStorage.hpp"
#include "runtime/vframe.hpp"
#include "runtime/vframeArray.hpp"
#include "runtime/vframe_hp.hpp"
#include "runtime/vmThread.hpp"
#include "runtime/vm_operations.hpp"
#include "services/attachListener.hpp"
#include "services/management.hpp"
#include "services/memTracker.hpp"
#include "services/threadService.hpp"
#include "trace/tracing.hpp"
#include "trace/traceMacros.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#include "utilities/preserveException.hpp"
#include "utilities/macros.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_bsd
# include "os_bsd.inline.hpp"
#endif
#if INCLUDE_ALL_GCS
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
#include "c1/c1_Compiler.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2compiler.hpp"
#include "opto/idealGraphPrinter.hpp"
#endif

#ifdef DTRACE_ENABLED

// Only bother with this argument setup if dtrace is available

#ifndef USDT2
HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  intptr_t, intptr_t, bool);
HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  intptr_t, intptr_t, bool);

#define DTRACE_THREAD_PROBE(probe, javathread)                             \
  {                                                                        \
    ResourceMark rm(this);                                                 \
    int len = 0;                                                           \
    const char* name = (javathread)->get_thread_name();                    \
    len = strlen(name);                                                    \
    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
      name, len,                                                           \
      java_lang_Thread::thread_id((javathread)->threadObj()),              \
      (javathread)->osthread()->thread_id(),                               \
      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  }

#else /* USDT2 */

#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP

#define DTRACE_THREAD_PROBE(probe, javathread)                             \
  {                                                                        \
    ResourceMark rm(this);                                                 \
    int len = 0;                                                           \
    const char* name = (javathread)->get_thread_name();                    \
    len = strlen(name);                                                    \
    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
      (char *) name, len,                                                           \
      java_lang_Thread::thread_id((javathread)->threadObj()),              \
      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  }

#endif /* USDT2 */

#else //  ndef DTRACE_ENABLED

#define DTRACE_THREAD_PROBE(probe, javathread)

#endif // ndef DTRACE_ENABLED


// Class hierarchy
// - Thread
//   - VMThread
//   - WatcherThread
//   - ConcurrentMarkSweepThread
//   - JavaThread
//     - CompilerThread

// ======= Thread ========
// Support for forcing alignment of thread objects for biased locking
void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
  if (UseBiasedLocking) {
    const int alignment = markOopDesc::biased_lock_alignment;
    size_t aligned_size = size + (alignment - sizeof(intptr_t));
    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
                                              AllocFailStrategy::RETURN_NULL);
    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
           "JavaThread alignment code overflowed allocated storage");
    if (TraceBiasedLocking) {
      if (aligned_addr != real_malloc_addr)
        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
                      real_malloc_addr, aligned_addr);
    }
    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    return aligned_addr;
  } else {
    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
  }
}

void Thread::operator delete(void* p) {
  if (UseBiasedLocking) {
    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    FreeHeap(real_malloc_addr, mtThread);
  } else {
    FreeHeap(p, mtThread);
  }
}


// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
// JavaThread


Thread::Thread() {
  // stack and get_thread
  set_stack_base(NULL);
  set_stack_size(0);
  set_self_raw_id(0);
  set_lgrp_id(-1);

  // allocated data structures
  set_osthread(NULL);
  set_resource_area(new (mtThread)ResourceArea());
  DEBUG_ONLY(_current_resource_mark = NULL;)
  set_handle_area(new (mtThread) HandleArea(NULL));
  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
  set_active_handles(NULL);
  set_free_handle_block(NULL);
  set_last_handle_mark(NULL);

  // This initial value ==> never claimed.
  _oops_do_parity = 0;

  // the handle mark links itself to last_handle_mark
  new HandleMark(this);

  // plain initialization
  debug_only(_owned_locks = NULL;)
  debug_only(_allow_allocation_count = 0;)
  NOT_PRODUCT(_allow_safepoint_count = 0;)
  NOT_PRODUCT(_skip_gcalot = false;)
  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
  _jvmti_env_iteration_count = 0;
  set_allocated_bytes(0);
  _vm_operation_started_count = 0;
  _vm_operation_completed_count = 0;
  _current_pending_monitor = NULL;
  _current_pending_monitor_is_from_java = true;
  _current_waiting_monitor = NULL;
  _num_nested_signal = 0;
  omFreeList = NULL ;
  omFreeCount = 0 ;
  omFreeProvision = 32 ;
  omInUseList = NULL ;
  omInUseCount = 0 ;

#ifdef ASSERT
  _visited_for_critical_count = false;
#endif

  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
  _suspend_flags = 0;

  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
  _hashStateX = os::random() ;
  _hashStateY = 842502087 ;
  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
  _hashStateW = 273326509 ;

  _OnTrap   = 0 ;
  _schedctl = NULL ;
  _Stalled  = 0 ;
  _TypeTag  = 0x2BAD ;

  // Many of the following fields are effectively final - immutable
  // Note that nascent threads can't use the Native Monitor-Mutex
  // construct until the _MutexEvent is initialized ...
  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
  // we might instead use a stack of ParkEvents that we could provision on-demand.
  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
  // and ::Release()
  _ParkEvent   = ParkEvent::Allocate (this) ;
  _SleepEvent  = ParkEvent::Allocate (this) ;
  _MutexEvent  = ParkEvent::Allocate (this) ;
  _MuxEvent    = ParkEvent::Allocate (this) ;

#ifdef CHECK_UNHANDLED_OOPS
  if (CheckUnhandledOops) {
    _unhandled_oops = new UnhandledOops(this);
  }
#endif // CHECK_UNHANDLED_OOPS
#ifdef ASSERT
  if (UseBiasedLocking) {
    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
    assert(this == _real_malloc_address ||
           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
           "bug in forced alignment of thread objects");
  }
#endif /* ASSERT */
}

void Thread::initialize_thread_local_storage() {
  // Note: Make sure this method only calls
  // non-blocking operations. Otherwise, it might not work
  // with the thread-startup/safepoint interaction.

  // During Java thread startup, safepoint code should allow this
  // method to complete because it may need to allocate memory to
  // store information for the new thread.

  // initialize structure dependent on thread local storage
  ThreadLocalStorage::set_thread(this);
}

void Thread::record_stack_base_and_size() {
  set_stack_base(os::current_stack_base());
  set_stack_size(os::current_stack_size());
  // CR 7190089: on Solaris, primordial thread's stack is adjusted
  // in initialize_thread(). Without the adjustment, stack size is
  // incorrect if stack is set to unlimited (ulimit -s unlimited).
  // So far, only Solaris has real implementation of initialize_thread().
  //
  // set up any platform-specific state.
  os::initialize_thread(this);

#if INCLUDE_NMT
  // record thread's native stack, stack grows downward
  address stack_low_addr = stack_base() - stack_size();
  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
      CURRENT_PC);
#endif // INCLUDE_NMT
}


Thread::~Thread() {
  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
  ObjectSynchronizer::omFlush (this) ;

  EVENT_THREAD_DESTRUCT(this);

  // stack_base can be NULL if the thread is never started or exited before
  // record_stack_base_and_size called. Although, we would like to ensure
  // that all started threads do call record_stack_base_and_size(), there is
  // not proper way to enforce that.
#if INCLUDE_NMT
  if (_stack_base != NULL) {
    address low_stack_addr = stack_base() - stack_size();
    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
#ifdef ASSERT
    set_stack_base(NULL);
#endif
  }
#endif // INCLUDE_NMT

  // deallocate data structures
  delete resource_area();
  // since the handle marks are using the handle area, we have to deallocated the root
  // handle mark before deallocating the thread's handle area,
  assert(last_handle_mark() != NULL, "check we have an element");
  delete last_handle_mark();
  assert(last_handle_mark() == NULL, "check we have reached the end");

  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
  // We NULL out the fields for good hygiene.
  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;

  delete handle_area();
  delete metadata_handles();

  // osthread() can be NULL, if creation of thread failed.
  if (osthread() != NULL) os::free_thread(osthread());

  delete _SR_lock;

  // clear thread local storage if the Thread is deleting itself
  if (this == Thread::current()) {
    ThreadLocalStorage::set_thread(NULL);
  } else {
    // In the case where we're not the current thread, invalidate all the
    // caches in case some code tries to get the current thread or the
    // thread that was destroyed, and gets stale information.
    ThreadLocalStorage::invalidate_all();
  }
  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
}

// NOTE: dummy function for assertion purpose.
void Thread::run() {
  ShouldNotReachHere();
}

#ifdef ASSERT
// Private method to check for dangling thread pointer
void check_for_dangling_thread_pointer(Thread *thread) {
 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
         "possibility of dangling Thread pointer");
}
#endif


#ifndef PRODUCT
// Tracing method for basic thread operations
void Thread::trace(const char* msg, const Thread* const thread) {
  if (!TraceThreadEvents) return;
  ResourceMark rm;
  ThreadCritical tc;
  const char *name = "non-Java thread";
  int prio = -1;
  if (thread->is_Java_thread()
      && !thread->is_Compiler_thread()) {
    // The Threads_lock must be held to get information about
    // this thread but may not be in some situations when
    // tracing  thread events.
    bool release_Threads_lock = false;
    if (!Threads_lock->owned_by_self()) {
      Threads_lock->lock();
      release_Threads_lock = true;
    }
    JavaThread* jt = (JavaThread *)thread;
    name = (char *)jt->get_thread_name();
    oop thread_oop = jt->threadObj();
    if (thread_oop != NULL) {
      prio = java_lang_Thread::priority(thread_oop);
    }
    if (release_Threads_lock) {
      Threads_lock->unlock();
    }
  }
  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
}
#endif


ThreadPriority Thread::get_priority(const Thread* const thread) {
  trace("get priority", thread);
  ThreadPriority priority;
  // Can return an error!
  (void)os::get_priority(thread, priority);
  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
  return priority;
}

void Thread::set_priority(Thread* thread, ThreadPriority priority) {
  trace("set priority", thread);
  debug_only(check_for_dangling_thread_pointer(thread);)
  // Can return an error!
  (void)os::set_priority(thread, priority);
}


void Thread::start(Thread* thread) {
  trace("start", thread);
  // Start is different from resume in that its safety is guaranteed by context or
  // being called from a Java method synchronized on the Thread object.
  if (!DisableStartThread) {
    if (thread->is_Java_thread()) {
      // Initialize the thread state to RUNNABLE before starting this thread.
      // Can not set it after the thread started because we do not know the
      // exact thread state at that time. It could be in MONITOR_WAIT or
      // in SLEEPING or some other state.
      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
                                          java_lang_Thread::RUNNABLE);
    }
    os::start_thread(thread);
  }
}

// Enqueue a VM_Operation to do the job for us - sometime later
void Thread::send_async_exception(oop java_thread, oop java_throwable) {
  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
  VMThread::execute(vm_stop);
}


//
// Check if an external suspend request has completed (or has been
// cancelled). Returns true if the thread is externally suspended and
// false otherwise.
//
// The bits parameter returns information about the code path through
// the routine. Useful for debugging:
//
// set in is_ext_suspend_completed():
// 0x00000001 - routine was entered
// 0x00000010 - routine return false at end
// 0x00000100 - thread exited (return false)
// 0x00000200 - suspend request cancelled (return false)
// 0x00000400 - thread suspended (return true)
// 0x00001000 - thread is in a suspend equivalent state (return true)
// 0x00002000 - thread is native and walkable (return true)
// 0x00004000 - thread is native_trans and walkable (needed retry)
//
// set in wait_for_ext_suspend_completion():
// 0x00010000 - routine was entered
// 0x00020000 - suspend request cancelled before loop (return false)
// 0x00040000 - thread suspended before loop (return true)
// 0x00080000 - suspend request cancelled in loop (return false)
// 0x00100000 - thread suspended in loop (return true)
// 0x00200000 - suspend not completed during retry loop (return false)
//

// Helper class for tracing suspend wait debug bits.
//
// 0x00000100 indicates that the target thread exited before it could
// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
// 0x00080000 each indicate a cancelled suspend request so they don't
// count as wait failures either.
#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)

class TraceSuspendDebugBits : public StackObj {
 private:
  JavaThread * jt;
  bool         is_wait;
  bool         called_by_wait;  // meaningful when !is_wait
  uint32_t *   bits;

 public:
  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
                        uint32_t *_bits) {
    jt             = _jt;
    is_wait        = _is_wait;
    called_by_wait = _called_by_wait;
    bits           = _bits;
  }

  ~TraceSuspendDebugBits() {
    if (!is_wait) {
#if 1
      // By default, don't trace bits for is_ext_suspend_completed() calls.
      // That trace is very chatty.
      return;
#else
      if (!called_by_wait) {
        // If tracing for is_ext_suspend_completed() is enabled, then only
        // trace calls to it from wait_for_ext_suspend_completion()
        return;
      }
#endif
    }

    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
        ResourceMark rm;

        tty->print_cr(
            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
            jt->get_thread_name(), *bits);

        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
      }
    }
  }
};
#undef DEBUG_FALSE_BITS


bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);

  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
  bool do_trans_retry;           // flag to force the retry

  *bits |= 0x00000001;

  do {
    do_trans_retry = false;

    if (is_exiting()) {
      // Thread is in the process of exiting. This is always checked
      // first to reduce the risk of dereferencing a freed JavaThread.
      *bits |= 0x00000100;
      return false;
    }

    if (!is_external_suspend()) {
      // Suspend request is cancelled. This is always checked before
      // is_ext_suspended() to reduce the risk of a rogue resume
      // confusing the thread that made the suspend request.
      *bits |= 0x00000200;
      return false;
    }

    if (is_ext_suspended()) {
      // thread is suspended
      *bits |= 0x00000400;
      return true;
    }

    // Now that we no longer do hard suspends of threads running
    // native code, the target thread can be changing thread state
    // while we are in this routine:
    //
    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
    //
    // We save a copy of the thread state as observed at this moment
    // and make our decision about suspend completeness based on the
    // copy. This closes the race where the thread state is seen as
    // _thread_in_native_trans in the if-thread_blocked check, but is
    // seen as _thread_blocked in if-thread_in_native_trans check.
    JavaThreadState save_state = thread_state();

    if (save_state == _thread_blocked && is_suspend_equivalent()) {
      // If the thread's state is _thread_blocked and this blocking
      // condition is known to be equivalent to a suspend, then we can
      // consider the thread to be externally suspended. This means that
      // the code that sets _thread_blocked has been modified to do
      // self-suspension if the blocking condition releases. We also
      // used to check for CONDVAR_WAIT here, but that is now covered by
      // the _thread_blocked with self-suspension check.
      //
      // Return true since we wouldn't be here unless there was still an
      // external suspend request.
      *bits |= 0x00001000;
      return true;
    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
      // Threads running native code will self-suspend on native==>VM/Java
      // transitions. If its stack is walkable (should always be the case
      // unless this function is called before the actual java_suspend()
      // call), then the wait is done.
      *bits |= 0x00002000;
      return true;
    } else if (!called_by_wait && !did_trans_retry &&
               save_state == _thread_in_native_trans &&
               frame_anchor()->walkable()) {
      // The thread is transitioning from thread_in_native to another
      // thread state. check_safepoint_and_suspend_for_native_trans()
      // will force the thread to self-suspend. If it hasn't gotten
      // there yet we may have caught the thread in-between the native
      // code check above and the self-suspend. Lucky us. If we were
      // called by wait_for_ext_suspend_completion(), then it
      // will be doing the retries so we don't have to.
      //
      // Since we use the saved thread state in the if-statement above,
      // there is a chance that the thread has already transitioned to
      // _thread_blocked by the time we get here. In that case, we will
      // make a single unnecessary pass through the logic below. This
      // doesn't hurt anything since we still do the trans retry.

      *bits |= 0x00004000;

      // Once the thread leaves thread_in_native_trans for another
      // thread state, we break out of this retry loop. We shouldn't
      // need this flag to prevent us from getting back here, but
      // sometimes paranoia is good.
      did_trans_retry = true;

      // We wait for the thread to transition to a more usable state.
      for (int i = 1; i <= SuspendRetryCount; i++) {
        // We used to do an "os::yield_all(i)" call here with the intention
        // that yielding would increase on each retry. However, the parameter
        // is ignored on Linux which means the yield didn't scale up. Waiting
        // on the SR_lock below provides a much more predictable scale up for
        // the delay. It also provides a simple/direct point to check for any
        // safepoint requests from the VMThread

        // temporarily drops SR_lock while doing wait with safepoint check
        // (if we're a JavaThread - the WatcherThread can also call this)
        // and increase delay with each retry
        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);

        // check the actual thread state instead of what we saved above
        if (thread_state() != _thread_in_native_trans) {
          // the thread has transitioned to another thread state so
          // try all the checks (except this one) one more time.
          do_trans_retry = true;
          break;
        }
      } // end retry loop


    }
  } while (do_trans_retry);

  *bits |= 0x00000010;
  return false;
}

//
// Wait for an external suspend request to complete (or be cancelled).
// Returns true if the thread is externally suspended and false otherwise.
//
bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
       uint32_t *bits) {
  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
                             false /* !called_by_wait */, bits);

  // local flag copies to minimize SR_lock hold time
  bool is_suspended;
  bool pending;
  uint32_t reset_bits;

  // set a marker so is_ext_suspend_completed() knows we are the caller
  *bits |= 0x00010000;

  // We use reset_bits to reinitialize the bits value at the top of
  // each retry loop. This allows the caller to make use of any
  // unused bits for their own marking purposes.
  reset_bits = *bits;

  {
    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
                                            delay, bits);
    pending = is_external_suspend();
  }
  // must release SR_lock to allow suspension to complete

  if (!pending) {
    // A cancelled suspend request is the only false return from
    // is_ext_suspend_completed() that keeps us from entering the
    // retry loop.
    *bits |= 0x00020000;
    return false;
  }

  if (is_suspended) {
    *bits |= 0x00040000;
    return true;
  }

  for (int i = 1; i <= retries; i++) {
    *bits = reset_bits;  // reinit to only track last retry

    // We used to do an "os::yield_all(i)" call here with the intention
    // that yielding would increase on each retry. However, the parameter
    // is ignored on Linux which means the yield didn't scale up. Waiting
    // on the SR_lock below provides a much more predictable scale up for
    // the delay. It also provides a simple/direct point to check for any
    // safepoint requests from the VMThread

    {
      MutexLocker ml(SR_lock());
      // wait with safepoint check (if we're a JavaThread - the WatcherThread
      // can also call this)  and increase delay with each retry
      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);

      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
                                              delay, bits);

      // It is possible for the external suspend request to be cancelled
      // (by a resume) before the actual suspend operation is completed.
      // Refresh our local copy to see if we still need to wait.
      pending = is_external_suspend();
    }

    if (!pending) {
      // A cancelled suspend request is the only false return from
      // is_ext_suspend_completed() that keeps us from staying in the
      // retry loop.
      *bits |= 0x00080000;
      return false;
    }

    if (is_suspended) {
      *bits |= 0x00100000;
      return true;
    }
  } // end retry loop

  // thread did not suspend after all our retries
  *bits |= 0x00200000;
  return false;
}

#ifndef PRODUCT
void JavaThread::record_jump(address target, address instr, const char* file, int line) {

  // This should not need to be atomic as the only way for simultaneous
  // updates is via interrupts. Even then this should be rare or non-existant
  // and we don't care that much anyway.

  int index = _jmp_ring_index;
  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
  _jmp_ring[index]._target = (intptr_t) target;
  _jmp_ring[index]._instruction = (intptr_t) instr;
  _jmp_ring[index]._file = file;
  _jmp_ring[index]._line = line;
}
#endif /* PRODUCT */

// Called by flat profiler
// Callers have already called wait_for_ext_suspend_completion
// The assertion for that is currently too complex to put here:
bool JavaThread::profile_last_Java_frame(frame* _fr) {
  bool gotframe = false;
  // self suspension saves needed state.
  if (has_last_Java_frame() && _anchor.walkable()) {
     *_fr = pd_last_frame();
     gotframe = true;
  }
  return gotframe;
}

void Thread::interrupt(Thread* thread) {
  trace("interrupt", thread);
  debug_only(check_for_dangling_thread_pointer(thread);)
  os::interrupt(thread);
}

bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
  trace("is_interrupted", thread);
  debug_only(check_for_dangling_thread_pointer(thread);)
  // Note:  If clear_interrupted==false, this simply fetches and
  // returns the value of the field osthread()->interrupted().
  return os::is_interrupted(thread, clear_interrupted);
}


// GC Support
bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
  jint thread_parity = _oops_do_parity;
  if (thread_parity != strong_roots_parity) {
    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
    if (res == thread_parity) {
      return true;
    } else {
      guarantee(res == strong_roots_parity, "Or else what?");
      assert(SharedHeap::heap()->workers()->active_workers() > 0,
         "Should only fail when parallel.");
      return false;
    }
  }
  assert(SharedHeap::heap()->workers()->active_workers() > 0,
         "Should only fail when parallel.");
  return false;
}

void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  active_handles()->oops_do(f);
  // Do oop for ThreadShadow
  f->do_oop((oop*)&_pending_exception);
  handle_area()->oops_do(f);
}

void Thread::nmethods_do(CodeBlobClosure* cf) {
  // no nmethods in a generic thread...
}

void Thread::metadata_do(void f(Metadata*)) {
  if (metadata_handles() != NULL) {
    for (int i = 0; i< metadata_handles()->length(); i++) {
      f(metadata_handles()->at(i));
    }
  }
}

void Thread::print_on(outputStream* st) const {
  // get_priority assumes osthread initialized
  if (osthread() != NULL) {
    int os_prio;
    if (os::get_native_priority(this, &os_prio) == OS_OK) {
      st->print("os_prio=%d ", os_prio);
    }
    st->print("tid=" INTPTR_FORMAT " ", this);
    osthread()->print_on(st);
  }
  debug_only(if (WizardMode) print_owned_locks_on(st);)
}

// Thread::print_on_error() is called by fatal error handler. Don't use
// any lock or allocate memory.
void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
  if      (is_VM_thread())                  st->print("VMThread");
  else if (is_Compiler_thread())            st->print("CompilerThread");
  else if (is_Java_thread())                st->print("JavaThread");
  else if (is_GC_task_thread())             st->print("GCTaskThread");
  else if (is_Watcher_thread())             st->print("WatcherThread");
  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
  else st->print("Thread");

  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
            _stack_base - _stack_size, _stack_base);

  if (osthread()) {
    st->print(" [id=%d]", osthread()->thread_id());
  }
}

#ifdef ASSERT
void Thread::print_owned_locks_on(outputStream* st) const {
  Monitor *cur = _owned_locks;
  if (cur == NULL) {
    st->print(" (no locks) ");
  } else {
    st->print_cr(" Locks owned:");
    while(cur) {
      cur->print_on(st);
      cur = cur->next();
    }
  }
}

static int ref_use_count  = 0;

bool Thread::owns_locks_but_compiled_lock() const {
  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
    if (cur != Compile_lock) return true;
  }
  return false;
}


#endif

#ifndef PRODUCT

// The flag: potential_vm_operation notifies if this particular safepoint state could potential
// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
// no threads which allow_vm_block's are held
void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
    // Check if current thread is allowed to block at a safepoint
    if (!(_allow_safepoint_count == 0))
      fatal("Possible safepoint reached by thread that does not allow it");
    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
      fatal("LEAF method calling lock?");
    }

#ifdef ASSERT
    if (potential_vm_operation && is_Java_thread()
        && !Universe::is_bootstrapping()) {
      // Make sure we do not hold any locks that the VM thread also uses.
      // This could potentially lead to deadlocks
      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
        // Threads_lock is special, since the safepoint synchronization will not start before this is
        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
        // since it is used to transfer control between JavaThreads and the VMThread
        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
        if ( (cur->allow_vm_block() &&
              cur != Threads_lock &&
              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
              cur != VMOperationRequest_lock &&
              cur != VMOperationQueue_lock) ||
              cur->rank() == Mutex::special) {
          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
        }
      }
    }

    if (GCALotAtAllSafepoints) {
      // We could enter a safepoint here and thus have a gc
      InterfaceSupport::check_gc_alot();
    }
#endif
}
#endif

bool Thread::is_in_stack(address adr) const {
  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
  address end = os::current_stack_pointer();
  // Allow non Java threads to call this without stack_base
  if (_stack_base == NULL) return true;
  if (stack_base() >= adr && adr >= end) return true;

  return false;
}


bool Thread::is_in_usable_stack(address adr) const {
  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
  size_t usable_stack_size = _stack_size - stack_guard_size;

  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
}


// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
// used for compilation in the future. If that change is made, the need for these methods
// should be revisited, and they should be removed if possible.

bool Thread::is_lock_owned(address adr) const {
  return on_local_stack(adr);
}

bool Thread::set_as_starting_thread() {
 // NOTE: this must be called inside the main thread.
  return os::create_main_thread((JavaThread*)this);
}

static void initialize_class(Symbol* class_name, TRAPS) {
  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
  InstanceKlass::cast(klass)->initialize(CHECK);
}


// Creates the initial ThreadGroup
static Handle create_initial_thread_group(TRAPS) {
  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
  instanceKlassHandle klass (THREAD, k);

  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
  {
    JavaValue result(T_VOID);
    JavaCalls::call_special(&result,
                            system_instance,
                            klass,
                            vmSymbols::object_initializer_name(),
                            vmSymbols::void_method_signature(),
                            CHECK_NH);
  }
  Universe::set_system_thread_group(system_instance());

  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
  {
    JavaValue result(T_VOID);
    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
    JavaCalls::call_special(&result,
                            main_instance,
                            klass,
                            vmSymbols::object_initializer_name(),
                            vmSymbols::threadgroup_string_void_signature(),
                            system_instance,
                            string,
                            CHECK_NH);
  }
  return main_instance;
}

// Creates the initial Thread
static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  instanceKlassHandle klass (THREAD, k);
  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);

  java_lang_Thread::set_thread(thread_oop(), thread);
  java_lang_Thread::set_priority(thread_oop(), NormPriority);
  thread->set_threadObj(thread_oop());

  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);

  JavaValue result(T_VOID);
  JavaCalls::call_special(&result, thread_oop,
                                   klass,
                                   vmSymbols::object_initializer_name(),
                                   vmSymbols::threadgroup_string_void_signature(),
                                   thread_group,
                                   string,
                                   CHECK_NULL);
  return thread_oop();
}

static void call_initializeSystemClass(TRAPS) {
  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  instanceKlassHandle klass (THREAD, k);

  JavaValue result(T_VOID);
  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
                                         vmSymbols::void_method_signature(), CHECK);
}

char java_runtime_name[128] = "";
char java_runtime_version[128] = "";

// extract the JRE name from sun.misc.Version.java_runtime_name
static const char* get_java_runtime_name(TRAPS) {
  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  fieldDescriptor fd;
  bool found = k != NULL &&
               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
                                                        vmSymbols::string_signature(), &fd);
  if (found) {
    oop name_oop = k->java_mirror()->obj_field(fd.offset());
    if (name_oop == NULL)
      return NULL;
    const char* name = java_lang_String::as_utf8_string(name_oop,
                                                        java_runtime_name,
                                                        sizeof(java_runtime_name));
    return name;
  } else {
    return NULL;
  }
}

// extract the JRE version from sun.misc.Version.java_runtime_version
static const char* get_java_runtime_version(TRAPS) {
  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  fieldDescriptor fd;
  bool found = k != NULL &&
               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
                                                        vmSymbols::string_signature(), &fd);
  if (found) {
    oop name_oop = k->java_mirror()->obj_field(fd.offset());
    if (name_oop == NULL)
      return NULL;
    const char* name = java_lang_String::as_utf8_string(name_oop,
                                                        java_runtime_version,
                                                        sizeof(java_runtime_version));
    return name;
  } else {
    return NULL;
  }
}

// General purpose hook into Java code, run once when the VM is initialized.
// The Java library method itself may be changed independently from the VM.
static void call_postVMInitHook(TRAPS) {
  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
  instanceKlassHandle klass (THREAD, k);
  if (klass.not_null()) {
    JavaValue result(T_VOID);
    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
                                           vmSymbols::void_method_signature(),
                                           CHECK);
  }
}

static void reset_vm_info_property(TRAPS) {
  // the vm info string
  ResourceMark rm(THREAD);
  const char *vm_info = VM_Version::vm_info_string();

  // java.lang.System class
  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  instanceKlassHandle klass (THREAD, k);

  // setProperty arguments
  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);

  // return value
  JavaValue r(T_OBJECT);

  // public static String setProperty(String key, String value);
  JavaCalls::call_static(&r,
                         klass,
                         vmSymbols::setProperty_name(),
                         vmSymbols::string_string_string_signature(),
                         key_str,
                         value_str,
                         CHECK);
}


void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  assert(thread_group.not_null(), "thread group should be specified");
  assert(threadObj() == NULL, "should only create Java thread object once");

  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  instanceKlassHandle klass (THREAD, k);
  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);

  java_lang_Thread::set_thread(thread_oop(), this);
  java_lang_Thread::set_priority(thread_oop(), NormPriority);
  set_threadObj(thread_oop());

  JavaValue result(T_VOID);
  if (thread_name != NULL) {
    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
    // Thread gets assigned specified name and null target
    JavaCalls::call_special(&result,
                            thread_oop,
                            klass,
                            vmSymbols::object_initializer_name(),
                            vmSymbols::threadgroup_string_void_signature(),
                            thread_group, // Argument 1
                            name,         // Argument 2
                            THREAD);
  } else {
    // Thread gets assigned name "Thread-nnn" and null target
    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
    JavaCalls::call_special(&result,
                            thread_oop,
                            klass,
                            vmSymbols::object_initializer_name(),
                            vmSymbols::threadgroup_runnable_void_signature(),
                            thread_group, // Argument 1
                            Handle(),     // Argument 2
                            THREAD);
  }


  if (daemon) {
      java_lang_Thread::set_daemon(thread_oop());
  }

  if (HAS_PENDING_EXCEPTION) {
    return;
  }

  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  Handle threadObj(this, this->threadObj());

  JavaCalls::call_special(&result,
                         thread_group,
                         group,
                         vmSymbols::add_method_name(),
                         vmSymbols::thread_void_signature(),
                         threadObj,          // Arg 1
                         THREAD);


}

// NamedThread --  non-JavaThread subclasses with multiple
// uniquely named instances should derive from this.
NamedThread::NamedThread() : Thread() {
  _name = NULL;
  _processed_thread = NULL;
}

NamedThread::~NamedThread() {
  if (_name != NULL) {
    FREE_C_HEAP_ARRAY(char, _name, mtThread);
    _name = NULL;
  }
}

void NamedThread::set_name(const char* format, ...) {
  guarantee(_name == NULL, "Only get to set name once.");
  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  guarantee(_name != NULL, "alloc failure");
  va_list ap;
  va_start(ap, format);
  jio_vsnprintf(_name, max_name_len, format, ap);
  va_end(ap);
}

// ======= WatcherThread ========

// The watcher thread exists to simulate timer interrupts.  It should
// be replaced by an abstraction over whatever native support for
// timer interrupts exists on the platform.

WatcherThread* WatcherThread::_watcher_thread   = NULL;
bool WatcherThread::_startable = false;
volatile bool  WatcherThread::_should_terminate = false;

WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  if (os::create_thread(this, os::watcher_thread)) {
    _watcher_thread = this;

    // Set the watcher thread to the highest OS priority which should not be
    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
    // is created. The only normal thread using this priority is the reference
    // handler thread, which runs for very short intervals only.
    // If the VMThread's priority is not lower than the WatcherThread profiling
    // will be inaccurate.
    os::set_priority(this, MaxPriority);
    if (!DisableStartThread) {
      os::start_thread(this);
    }
  }
}

int WatcherThread::sleep() const {
  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);

  // remaining will be zero if there are no tasks,
  // causing the WatcherThread to sleep until a task is
  // enrolled
  int remaining = PeriodicTask::time_to_wait();
  int time_slept = 0;

  // we expect this to timeout - we only ever get unparked when
  // we should terminate or when a new task has been enrolled
  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);

  jlong time_before_loop = os::javaTimeNanos();

  for (;;) {
    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
    jlong now = os::javaTimeNanos();

    if (remaining == 0) {
        // if we didn't have any tasks we could have waited for a long time
        // consider the time_slept zero and reset time_before_loop
        time_slept = 0;
        time_before_loop = now;
    } else {
        // need to recalulate since we might have new tasks in _tasks
        time_slept = (int) ((now - time_before_loop) / 1000000);
    }

    // Change to task list or spurious wakeup of some kind
    if (timedout || _should_terminate) {
        break;
    }

    remaining = PeriodicTask::time_to_wait();
    if (remaining == 0) {
        // Last task was just disenrolled so loop around and wait until
        // another task gets enrolled
        continue;
    }

    remaining -= time_slept;
    if (remaining <= 0)
      break;
  }

  return time_slept;
}

void WatcherThread::run() {
  assert(this == watcher_thread(), "just checking");

  this->record_stack_base_and_size();
  this->initialize_thread_local_storage();
  this->set_active_handles(JNIHandleBlock::allocate_block());
  while(!_should_terminate) {
    assert(watcher_thread() == Thread::current(),  "thread consistency check");
    assert(watcher_thread() == this,  "thread consistency check");

    // Calculate how long it'll be until the next PeriodicTask work
    // should be done, and sleep that amount of time.
    int time_waited = sleep();

    if (is_error_reported()) {
      // A fatal error has happened, the error handler(VMError::report_and_die)
      // should abort JVM after creating an error log file. However in some
      // rare cases, the error handler itself might deadlock. Here we try to
      // kill JVM if the fatal error handler fails to abort in 2 minutes.
      //
      // This code is in WatcherThread because WatcherThread wakes up
      // periodically so the fatal error handler doesn't need to do anything;
      // also because the WatcherThread is less likely to crash than other
      // threads.

      for (;;) {
        if (!ShowMessageBoxOnError
         && (OnError == NULL || OnError[0] == '\0')
         && Arguments::abort_hook() == NULL) {
             os::sleep(this, 2 * 60 * 1000, false);
             fdStream err(defaultStream::output_fd());
             err.print_raw_cr("# [ timer expired, abort... ]");
             // skip atexit/vm_exit/vm_abort hooks
             os::die();
        }

        // Wake up 5 seconds later, the fatal handler may reset OnError or
        // ShowMessageBoxOnError when it is ready to abort.
        os::sleep(this, 5 * 1000, false);
      }
    }

    PeriodicTask::real_time_tick(time_waited);
  }

  // Signal that it is terminated
  {
    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
    _watcher_thread = NULL;
    Terminator_lock->notify();
  }

  // Thread destructor usually does this..
  ThreadLocalStorage::set_thread(NULL);
}

void WatcherThread::start() {
  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");

  if (watcher_thread() == NULL && _startable) {
    _should_terminate = false;
    // Create the single instance of WatcherThread
    new WatcherThread();
  }
}

void WatcherThread::make_startable() {
  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  _startable = true;
}

void WatcherThread::stop() {
  {
    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
    _should_terminate = true;
    OrderAccess::fence();  // ensure WatcherThread sees update in main loop

    WatcherThread* watcher = watcher_thread();
    if (watcher != NULL)
      watcher->unpark();
  }

  // it is ok to take late safepoints here, if needed
  MutexLocker mu(Terminator_lock);

  while(watcher_thread() != NULL) {
    // This wait should make safepoint checks, wait without a timeout,
    // and wait as a suspend-equivalent condition.
    //
    // Note: If the FlatProfiler is running, then this thread is waiting
    // for the WatcherThread to terminate and the WatcherThread, via the
    // FlatProfiler task, is waiting for the external suspend request on
    // this thread to complete. wait_for_ext_suspend_completion() will
    // eventually timeout, but that takes time. Making this wait a
    // suspend-equivalent condition solves that timeout problem.
    //
    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
                          Mutex::_as_suspend_equivalent_flag);
  }
}

void WatcherThread::unpark() {
  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  PeriodicTask_lock->notify();
}

void WatcherThread::print_on(outputStream* st) const {
  st->print("\"%s\" ", name());
  Thread::print_on(st);
  st->cr();
}

// ======= JavaThread ========

// A JavaThread is a normal Java thread

void JavaThread::initialize() {
  // Initialize fields

  // Set the claimed par_id to -1 (ie not claiming any par_ids)
  set_claimed_par_id(-1);

  set_saved_exception_pc(NULL);
  set_threadObj(NULL);
  _anchor.clear();
  set_entry_point(NULL);
  set_jni_functions(jni_functions());
  set_callee_target(NULL);
  set_vm_result(NULL);
  set_vm_result_2(NULL);
  set_vframe_array_head(NULL);
  set_vframe_array_last(NULL);
  set_deferred_locals(NULL);
  set_deopt_mark(NULL);
  set_deopt_nmethod(NULL);
  clear_must_deopt_id();
  set_monitor_chunks(NULL);
  set_next(NULL);
  set_thread_state(_thread_new);
#if INCLUDE_NMT
  set_recorder(NULL);
#endif
  _terminated = _not_terminated;
  _privileged_stack_top = NULL;
  _array_for_gc = NULL;
  _suspend_equivalent = false;
  _in_deopt_handler = 0;
  _doing_unsafe_access = false;
  _stack_guard_state = stack_guard_unused;
  (void)const_cast<oop&>(_exception_oop = NULL);
  _exception_pc  = 0;
  _exception_handler_pc = 0;
  _is_method_handle_return = 0;
  _jvmti_thread_state= NULL;
  _should_post_on_exceptions_flag = JNI_FALSE;
  _jvmti_get_loaded_classes_closure = NULL;
  _interp_only_mode    = 0;
  _special_runtime_exit_condition = _no_async_condition;
  _pending_async_exception = NULL;
  _thread_stat = NULL;
  _thread_stat = new ThreadStatistics();
  _blocked_on_compilation = false;
  _jni_active_critical = 0;
  _do_not_unlock_if_synchronized = false;
  _cached_monitor_info = NULL;
  _parker = Parker::Allocate(this) ;

#ifndef PRODUCT
  _jmp_ring_index = 0;
  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
    record_jump(NULL, NULL, NULL, 0);
  }
#endif /* PRODUCT */

  set_thread_profiler(NULL);
  if (FlatProfiler::is_active()) {
    // This is where we would decide to either give each thread it's own profiler
    // or use one global one from FlatProfiler,
    // or up to some count of the number of profiled threads, etc.
    ThreadProfiler* pp = new ThreadProfiler();
    pp->engage();
    set_thread_profiler(pp);
  }

  // Setup safepoint state info for this thread
  ThreadSafepointState::create(this);

  debug_only(_java_call_counter = 0);

  // JVMTI PopFrame support
  _popframe_condition = popframe_inactive;
  _popframe_preserved_args = NULL;
  _popframe_preserved_args_size = 0;

  pd_initialize();
}

#if INCLUDE_ALL_GCS
SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
#endif // INCLUDE_ALL_GCS

JavaThread::JavaThread(bool is_attaching_via_jni) :
  Thread()
#if INCLUDE_ALL_GCS
  , _satb_mark_queue(&_satb_mark_queue_set),
  _dirty_card_queue(&_dirty_card_queue_set)
#endif // INCLUDE_ALL_GCS
{
  initialize();
  if (is_attaching_via_jni) {
    _jni_attach_state = _attaching_via_jni;
  } else {
    _jni_attach_state = _not_attaching_via_jni;
  }
  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  _safepoint_visible = false;
}

bool JavaThread::reguard_stack(address cur_sp) {
  if (_stack_guard_state != stack_guard_yellow_disabled) {
    return true; // Stack already guarded or guard pages not needed.
  }

  if (register_stack_overflow()) {
    // For those architectures which have separate register and
    // memory stacks, we must check the register stack to see if
    // it has overflowed.
    return false;
  }

  // Java code never executes within the yellow zone: the latter is only
  // there to provoke an exception during stack banging.  If java code
  // is executing there, either StackShadowPages should be larger, or
  // some exception code in c1, c2 or the interpreter isn't unwinding
  // when it should.
  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");

  enable_stack_yellow_zone();
  return true;
}

bool JavaThread::reguard_stack(void) {
  return reguard_stack(os::current_stack_pointer());
}


void JavaThread::block_if_vm_exited() {
  if (_terminated == _vm_exited) {
    // _vm_exited is set at safepoint, and Threads_lock is never released
    // we will block here forever
    Threads_lock->lock_without_safepoint_check();
    ShouldNotReachHere();
  }
}


// Remove this ifdef when C1 is ported to the compiler interface.
static void compiler_thread_entry(JavaThread* thread, TRAPS);

JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  Thread()
#if INCLUDE_ALL_GCS
  , _satb_mark_queue(&_satb_mark_queue_set),
  _dirty_card_queue(&_dirty_card_queue_set)
#endif // INCLUDE_ALL_GCS
{
  if (TraceThreadEvents) {
    tty->print_cr("creating thread %p", this);
  }
  initialize();
  _jni_attach_state = _not_attaching_via_jni;
  set_entry_point(entry_point);
  // Create the native thread itself.
  // %note runtime_23
  os::ThreadType thr_type = os::java_thread;
  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
                                                     os::java_thread;
  os::create_thread(this, thr_type, stack_sz);
  _safepoint_visible = false;
  // The _osthread may be NULL here because we ran out of memory (too many threads active).
  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  // the exception consists of creating the exception object & initializing it, initialization
  // will leave the VM via a JavaCall and then all locks must be unlocked).
  //
  // The thread is still suspended when we reach here. Thread must be explicit started
  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  // by calling Threads:add. The reason why this is not done here, is because the thread
  // object must be fully initialized (take a look at JVM_Start)
}

JavaThread::~JavaThread() {
  if (TraceThreadEvents) {
      tty->print_cr("terminate thread %p", this);
  }

  // By now, this thread should already be invisible to safepoint,
  // and its per-thread recorder also collected.
  assert(!is_safepoint_visible(), "wrong state");
#if INCLUDE_NMT
  assert(get_recorder() == NULL, "Already collected");
#endif // INCLUDE_NMT

  // JSR166 -- return the parker to the free list
  Parker::Release(_parker);
  _parker = NULL ;

  // Free any remaining  previous UnrollBlock
  vframeArray* old_array = vframe_array_last();

  if (old_array != NULL) {
    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
    old_array->set_unroll_block(NULL);
    delete old_info;
    delete old_array;
  }

  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  if (deferred != NULL) {
    // This can only happen if thread is destroyed before deoptimization occurs.
    assert(deferred->length() != 0, "empty array!");
    do {
      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
      deferred->remove_at(0);
      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
      delete dlv;
    } while (deferred->length() != 0);
    delete deferred;
  }

  // All Java related clean up happens in exit
  ThreadSafepointState::destroy(this);
  if (_thread_profiler != NULL) delete _thread_profiler;
  if (_thread_stat != NULL) delete _thread_stat;
}


// The first routine called by a new Java thread
void JavaThread::run() {
  // initialize thread-local alloc buffer related fields
  this->initialize_tlab();

  // used to test validitity of stack trace backs
  this->record_base_of_stack_pointer();

  // Record real stack base and size.
  this->record_stack_base_and_size();

  // Initialize thread local storage; set before calling MutexLocker
  this->initialize_thread_local_storage();

  this->create_stack_guard_pages();

  this->cache_global_variables();

  // Thread is now sufficient initialized to be handled by the safepoint code as being
  // in the VM. Change thread state from _thread_new to _thread_in_vm
  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);

  assert(JavaThread::current() == this, "sanity check");
  assert(!Thread::current()->owns_locks(), "sanity check");

  DTRACE_THREAD_PROBE(start, this);

  // This operation might block. We call that after all safepoint checks for a new thread has
  // been completed.
  this->set_active_handles(JNIHandleBlock::allocate_block());

  if (JvmtiExport::should_post_thread_life()) {
    JvmtiExport::post_thread_start(this);
  }

  EventThreadStart event;
  if (event.should_commit()) {
     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
     event.commit();
  }

  // We call another function to do the rest so we are sure that the stack addresses used
  // from there will be lower than the stack base just computed
  thread_main_inner();

  // Note, thread is no longer valid at this point!
}


void JavaThread::thread_main_inner() {
  assert(JavaThread::current() == this, "sanity check");
  assert(this->threadObj() != NULL, "just checking");

  // Execute thread entry point unless this thread has a pending exception
  // or has been stopped before starting.
  // Note: Due to JVM_StopThread we can have pending exceptions already!
  if (!this->has_pending_exception() &&
      !java_lang_Thread::is_stillborn(this->threadObj())) {
    {
      ResourceMark rm(this);
      this->set_native_thread_name(this->get_thread_name());
    }
    HandleMark hm(this);
    this->entry_point()(this, this);
  }

  DTRACE_THREAD_PROBE(stop, this);

  this->exit(false);
  delete this;
}


static void ensure_join(JavaThread* thread) {
  // We do not need to grap the Threads_lock, since we are operating on ourself.
  Handle threadObj(thread, thread->threadObj());
  assert(threadObj.not_null(), "java thread object must exist");
  ObjectLocker lock(threadObj, thread);
  // Ignore pending exception (ThreadDeath), since we are exiting anyway
  thread->clear_pending_exception();
  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  // Clear the native thread instance - this makes isAlive return false and allows the join()
  // to complete once we've done the notify_all below
  java_lang_Thread::set_thread(threadObj(), NULL);
  lock.notify_all(thread);
  // Ignore pending exception (ThreadDeath), since we are exiting anyway
  thread->clear_pending_exception();
}


// For any new cleanup additions, please check to see if they need to be applied to
// cleanup_failed_attach_current_thread as well.
void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  assert(this == JavaThread::current(),  "thread consistency check");

  HandleMark hm(this);
  Handle uncaught_exception(this, this->pending_exception());
  this->clear_pending_exception();
  Handle threadObj(this, this->threadObj());
  assert(threadObj.not_null(), "Java thread object should be created");

  if (get_thread_profiler() != NULL) {
    get_thread_profiler()->disengage();
    ResourceMark rm;
    get_thread_profiler()->print(get_thread_name());
  }


  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  {
    EXCEPTION_MARK;

    CLEAR_PENDING_EXCEPTION;
  }
  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  // has to be fixed by a runtime query method
  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
    // JSR-166: change call from from ThreadGroup.uncaughtException to
    // java.lang.Thread.dispatchUncaughtException
    if (uncaught_exception.not_null()) {
      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
      {
        EXCEPTION_MARK;
        // Check if the method Thread.dispatchUncaughtException() exists. If so
        // call it.  Otherwise we have an older library without the JSR-166 changes,
        // so call ThreadGroup.uncaughtException()
        KlassHandle recvrKlass(THREAD, threadObj->klass());
        CallInfo callinfo;
        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
                                           vmSymbols::dispatchUncaughtException_name(),
                                           vmSymbols::throwable_void_signature(),
                                           KlassHandle(), false, false, THREAD);
        CLEAR_PENDING_EXCEPTION;
        methodHandle method = callinfo.selected_method();
        if (method.not_null()) {
          JavaValue result(T_VOID);
          JavaCalls::call_virtual(&result,
                                  threadObj, thread_klass,
                                  vmSymbols::dispatchUncaughtException_name(),
                                  vmSymbols::throwable_void_signature(),
                                  uncaught_exception,
                                  THREAD);
        } else {
          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
          JavaValue result(T_VOID);
          JavaCalls::call_virtual(&result,
                                  group, thread_group,
                                  vmSymbols::uncaughtException_name(),
                                  vmSymbols::thread_throwable_void_signature(),
                                  threadObj,           // Arg 1
                                  uncaught_exception,  // Arg 2
                                  THREAD);
        }
        if (HAS_PENDING_EXCEPTION) {
          ResourceMark rm(this);
          jio_fprintf(defaultStream::error_stream(),
                "\nException: %s thrown from the UncaughtExceptionHandler"
                " in thread \"%s\"\n",
                pending_exception()->klass()->external_name(),
                get_thread_name());
          CLEAR_PENDING_EXCEPTION;
        }
      }
    }

    // Called before the java thread exit since we want to read info
    // from java_lang_Thread object
    EventThreadEnd event;
    if (event.should_commit()) {
        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
        event.commit();
    }

    // Call after last event on thread
    EVENT_THREAD_EXIT(this);

    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
    // is deprecated anyhow.
    if (!is_Compiler_thread()) {
      int count = 3;
      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
        EXCEPTION_MARK;
        JavaValue result(T_VOID);
        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
        JavaCalls::call_virtual(&result,
                              threadObj, thread_klass,
                              vmSymbols::exit_method_name(),
                              vmSymbols::void_method_signature(),
                              THREAD);
        CLEAR_PENDING_EXCEPTION;
      }
    }
    // notify JVMTI
    if (JvmtiExport::should_post_thread_life()) {
      JvmtiExport::post_thread_end(this);
    }

    // We have notified the agents that we are exiting, before we go on,
    // we must check for a pending external suspend request and honor it
    // in order to not surprise the thread that made the suspend request.
    while (true) {
      {
        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
        if (!is_external_suspend()) {
          set_terminated(_thread_exiting);
          ThreadService::current_thread_exiting(this);
          break;
        }
        // Implied else:
        // Things get a little tricky here. We have a pending external
        // suspend request, but we are holding the SR_lock so we
        // can't just self-suspend. So we temporarily drop the lock
        // and then self-suspend.
      }

      ThreadBlockInVM tbivm(this);
      java_suspend_self();

      // We're done with this suspend request, but we have to loop around
      // and check again. Eventually we will get SR_lock without a pending
      // external suspend request and will be able to mark ourselves as
      // exiting.
    }
    // no more external suspends are allowed at this point
  } else {
    // before_exit() has already posted JVMTI THREAD_END events
  }

  // Notify waiters on thread object. This has to be done after exit() is called
  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  // group should have the destroyed bit set before waiters are notified).
  ensure_join(this);
  assert(!this->has_pending_exception(), "ensure_join should have cleared");

  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  // held by this thread must be released.  A detach operation must only
  // get here if there are no Java frames on the stack.  Therefore, any
  // owned monitors at this point MUST be JNI-acquired monitors which are
  // pre-inflated and in the monitor cache.
  //
  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
    ObjectSynchronizer::release_monitors_owned_by_thread(this);
    assert(!this->has_pending_exception(), "release_monitors should have cleared");
  }

  // These things needs to be done while we are still a Java Thread. Make sure that thread
  // is in a consistent state, in case GC happens
  assert(_privileged_stack_top == NULL, "must be NULL when we get here");

  if (active_handles() != NULL) {
    JNIHandleBlock* block = active_handles();
    set_active_handles(NULL);
    JNIHandleBlock::release_block(block);
  }

  if (free_handle_block() != NULL) {
    JNIHandleBlock* block = free_handle_block();
    set_free_handle_block(NULL);
    JNIHandleBlock::release_block(block);
  }

  // These have to be removed while this is still a valid thread.
  remove_stack_guard_pages();

  if (UseTLAB) {
    tlab().make_parsable(true);  // retire TLAB
  }

  if (JvmtiEnv::environments_might_exist()) {
    JvmtiExport::cleanup_thread(this);
  }

  // We must flush any deferred card marks before removing a thread from
  // the list of active threads.
  Universe::heap()->flush_deferred_store_barrier(this);
  assert(deferred_card_mark().is_empty(), "Should have been flushed");

#if INCLUDE_ALL_GCS
  // We must flush the G1-related buffers before removing a thread
  // from the list of active threads. We must do this after any deferred
  // card marks have been flushed (above) so that any entries that are
  // added to the thread's dirty card queue as a result are not lost.
  if (UseG1GC) {
    flush_barrier_queues();
  }
#endif // INCLUDE_ALL_GCS

  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  Threads::remove(this);
}

#if INCLUDE_ALL_GCS
// Flush G1-related queues.
void JavaThread::flush_barrier_queues() {
  satb_mark_queue().flush();
  dirty_card_queue().flush();
}

void JavaThread::initialize_queues() {
  assert(!SafepointSynchronize::is_at_safepoint(),
         "we should not be at a safepoint");

  ObjPtrQueue& satb_queue = satb_mark_queue();
  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  // The SATB queue should have been constructed with its active
  // field set to false.
  assert(!satb_queue.is_active(), "SATB queue should not be active");
  assert(satb_queue.is_empty(), "SATB queue should be empty");
  // If we are creating the thread during a marking cycle, we should
  // set the active field of the SATB queue to true.
  if (satb_queue_set.is_active()) {
    satb_queue.set_active(true);
  }

  DirtyCardQueue& dirty_queue = dirty_card_queue();
  // The dirty card queue should have been constructed with its
  // active field set to true.
  assert(dirty_queue.is_active(), "dirty card queue should be active");
}
#endif // INCLUDE_ALL_GCS

void JavaThread::cleanup_failed_attach_current_thread() {
  if (get_thread_profiler() != NULL) {
    get_thread_profiler()->disengage();
    ResourceMark rm;
    get_thread_profiler()->print(get_thread_name());
  }

  if (active_handles() != NULL) {
    JNIHandleBlock* block = active_handles();
    set_active_handles(NULL);
    JNIHandleBlock::release_block(block);
  }

  if (free_handle_block() != NULL) {
    JNIHandleBlock* block = free_handle_block();
    set_free_handle_block(NULL);
    JNIHandleBlock::release_block(block);
  }

  // These have to be removed while this is still a valid thread.
  remove_stack_guard_pages();

  if (UseTLAB) {
    tlab().make_parsable(true);  // retire TLAB, if any
  }

#if INCLUDE_ALL_GCS
  if (UseG1GC) {
    flush_barrier_queues();
  }
#endif // INCLUDE_ALL_GCS

  Threads::remove(this);
  delete this;
}




JavaThread* JavaThread::active() {
  Thread* thread = ThreadLocalStorage::thread();
  assert(thread != NULL, "just checking");
  if (thread->is_Java_thread()) {
    return (JavaThread*) thread;
  } else {
    assert(thread->is_VM_thread(), "this must be a vm thread");
    VM_Operation* op = ((VMThread*) thread)->vm_operation();
    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
    assert(ret->is_Java_thread(), "must be a Java thread");
    return ret;
  }
}

bool JavaThread::is_lock_owned(address adr) const {
  if (Thread::is_lock_owned(adr)) return true;

  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
    if (chunk->contains(adr)) return true;
  }

  return false;
}


void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  chunk->set_next(monitor_chunks());
  set_monitor_chunks(chunk);
}

void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  guarantee(monitor_chunks() != NULL, "must be non empty");
  if (monitor_chunks() == chunk) {
    set_monitor_chunks(chunk->next());
  } else {
    MonitorChunk* prev = monitor_chunks();
    while (prev->next() != chunk) prev = prev->next();
    prev->set_next(chunk->next());
  }
}

// JVM support.

// Note: this function shouldn't block if it's called in
// _thread_in_native_trans state (such as from
// check_special_condition_for_native_trans()).
void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {

  if (has_last_Java_frame() && has_async_condition()) {
    // If we are at a polling page safepoint (not a poll return)
    // then we must defer async exception because live registers
    // will be clobbered by the exception path. Poll return is
    // ok because the call we a returning from already collides
    // with exception handling registers and so there is no issue.
    // (The exception handling path kills call result registers but
    //  this is ok since the exception kills the result anyway).

    if (is_at_poll_safepoint()) {
      // if the code we are returning to has deoptimized we must defer
      // the exception otherwise live registers get clobbered on the
      // exception path before deoptimization is able to retrieve them.
      //
      RegisterMap map(this, false);
      frame caller_fr = last_frame().sender(&map);
      assert(caller_fr.is_compiled_frame(), "what?");
      if (caller_fr.is_deoptimized_frame()) {
        if (TraceExceptions) {
          ResourceMark rm;
          tty->print_cr("deferred async exception at compiled safepoint");
        }
        return;
      }
    }
  }

  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  if (condition == _no_async_condition) {
    // Conditions have changed since has_special_runtime_exit_condition()
    // was called:
    // - if we were here only because of an external suspend request,
    //   then that was taken care of above (or cancelled) so we are done
    // - if we were here because of another async request, then it has
    //   been cleared between the has_special_runtime_exit_condition()
    //   and now so again we are done
    return;
  }

  // Check for pending async. exception
  if (_pending_async_exception != NULL) {
    // Only overwrite an already pending exception, if it is not a threadDeath.
    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {

      // We cannot call Exceptions::_throw(...) here because we cannot block
      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);

      if (TraceExceptions) {
        ResourceMark rm;
        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
        if (has_last_Java_frame() ) {
          frame f = last_frame();
          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
        }
        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
      }
      _pending_async_exception = NULL;
      clear_has_async_exception();
    }
  }

  if (check_unsafe_error &&
      condition == _async_unsafe_access_error && !has_pending_exception()) {
    condition = _no_async_condition;  // done
    switch (thread_state()) {
    case _thread_in_vm:
      {
        JavaThread* THREAD = this;
        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
      }
    case _thread_in_native:
      {
        ThreadInVMfromNative tiv(this);
        JavaThread* THREAD = this;
        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
      }
    case _thread_in_Java:
      {
        ThreadInVMfromJava tiv(this);
        JavaThread* THREAD = this;
        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
      }
    default:
      ShouldNotReachHere();
    }
  }

  assert(condition == _no_async_condition || has_pending_exception() ||
         (!check_unsafe_error && condition == _async_unsafe_access_error),
         "must have handled the async condition, if no exception");
}

void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  //
  // Check for pending external suspend. Internal suspend requests do
  // not use handle_special_runtime_exit_condition().
  // If JNIEnv proxies are allowed, don't self-suspend if the target
  // thread is not the current thread. In older versions of jdbx, jdbx
  // threads could call into the VM with another thread's JNIEnv so we
  // can be here operating on behalf of a suspended thread (4432884).
  bool do_self_suspend = is_external_suspend_with_lock();
  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
    //
    // Because thread is external suspended the safepoint code will count
    // thread as at a safepoint. This can be odd because we can be here
    // as _thread_in_Java which would normally transition to _thread_blocked
    // at a safepoint. We would like to mark the thread as _thread_blocked
    // before calling java_suspend_self like all other callers of it but
    // we must then observe proper safepoint protocol. (We can't leave
    // _thread_blocked with a safepoint in progress). However we can be
    // here as _thread_in_native_trans so we can't use a normal transition
    // constructor/destructor pair because they assert on that type of
    // transition. We could do something like:
    //
    // JavaThreadState state = thread_state();
    // set_thread_state(_thread_in_vm);
    // {
    //   ThreadBlockInVM tbivm(this);
    //   java_suspend_self()
    // }
    // set_thread_state(_thread_in_vm_trans);
    // if (safepoint) block;
    // set_thread_state(state);
    //
    // but that is pretty messy. Instead we just go with the way the
    // code has worked before and note that this is the only path to
    // java_suspend_self that doesn't put the thread in _thread_blocked
    // mode.

    frame_anchor()->make_walkable(this);
    java_suspend_self();

    // We might be here for reasons in addition to the self-suspend request
    // so check for other async requests.
  }

  if (check_asyncs) {
    check_and_handle_async_exceptions();
  }
}

void JavaThread::send_thread_stop(oop java_throwable)  {
  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");

  // Do not throw asynchronous exceptions against the compiler thread
  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  if (is_Compiler_thread()) return;

  {
    // Actually throw the Throwable against the target Thread - however
    // only if there is no thread death exception installed already.
    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
      // If the topmost frame is a runtime stub, then we are calling into
      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
      // must deoptimize the caller before continuing, as the compiled  exception handler table
      // may not be valid
      if (has_last_Java_frame()) {
        frame f = last_frame();
        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
          RegisterMap reg_map(this, UseBiasedLocking);
          frame compiled_frame = f.sender(®_map);
          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
            Deoptimization::deoptimize(this, compiled_frame, ®_map);
          }
        }
      }

      // Set async. pending exception in thread.
      set_pending_async_exception(java_throwable);

      if (TraceExceptions) {
       ResourceMark rm;
       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
      }
      // for AbortVMOnException flag
      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
    }
  }


  // Interrupt thread so it will wake up from a potential wait()
  Thread::interrupt(this);
}

// External suspension mechanism.
//
// Tell the VM to suspend a thread when ever it knows that it does not hold on
// to any VM_locks and it is at a transition
// Self-suspension will happen on the transition out of the vm.
// Catch "this" coming in from JNIEnv pointers when the thread has been freed
//
// Guarantees on return:
//   + Target thread will not execute any new bytecode (that's why we need to
//     force a safepoint)
//   + Target thread will not enter any new monitors
//
void JavaThread::java_suspend() {
  { MutexLocker mu(Threads_lock);
    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
       return;
    }
  }

  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
    if (!is_external_suspend()) {
      // a racing resume has cancelled us; bail out now
      return;
    }

    // suspend is done
    uint32_t debug_bits = 0;
    // Warning: is_ext_suspend_completed() may temporarily drop the
    // SR_lock to allow the thread to reach a stable thread state if
    // it is currently in a transient thread state.
    if (is_ext_suspend_completed(false /* !called_by_wait */,
                                 SuspendRetryDelay, &debug_bits) ) {
      return;
    }
  }

  VM_ForceSafepoint vm_suspend;
  VMThread::execute(&vm_suspend);
}

// Part II of external suspension.
// A JavaThread self suspends when it detects a pending external suspend
// request. This is usually on transitions. It is also done in places
// where continuing to the next transition would surprise the caller,
// e.g., monitor entry.
//
// Returns the number of times that the thread self-suspended.
//
// Note: DO NOT call java_suspend_self() when you just want to block current
//       thread. java_suspend_self() is the second stage of cooperative
//       suspension for external suspend requests and should only be used
//       to complete an external suspend request.
//
int JavaThread::java_suspend_self() {
  int ret = 0;

  // we are in the process of exiting so don't suspend
  if (is_exiting()) {
     clear_external_suspend();
     return ret;
  }

  assert(_anchor.walkable() ||
    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
    "must have walkable stack");

  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);

  assert(!this->is_ext_suspended(),
    "a thread trying to self-suspend should not already be suspended");

  if (this->is_suspend_equivalent()) {
    // If we are self-suspending as a result of the lifting of a
    // suspend equivalent condition, then the suspend_equivalent
    // flag is not cleared until we set the ext_suspended flag so
    // that wait_for_ext_suspend_completion() returns consistent
    // results.
    this->clear_suspend_equivalent();
  }

  // A racing resume may have cancelled us before we grabbed SR_lock
  // above. Or another external suspend request could be waiting for us
  // by the time we return from SR_lock()->wait(). The thread
  // that requested the suspension may already be trying to walk our
  // stack and if we return now, we can change the stack out from under
  // it. This would be a "bad thing (TM)" and cause the stack walker
  // to crash. We stay self-suspended until there are no more pending
  // external suspend requests.
  while (is_external_suspend()) {
    ret++;
    this->set_ext_suspended();

    // _ext_suspended flag is cleared by java_resume()
    while (is_ext_suspended()) {
      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
    }
  }

  return ret;
}

#ifdef ASSERT
// verify the JavaThread has not yet been published in the Threads::list, and
// hence doesn't need protection from concurrent access at this stage
void JavaThread::verify_not_published() {
  if (!Threads_lock->owned_by_self()) {
   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
   assert( !Threads::includes(this),
           "java thread shouldn't have been published yet!");
  }
  else {
   assert( !Threads::includes(this),
           "java thread shouldn't have been published yet!");
  }
}
#endif

// Slow path when the native==>VM/Java barriers detect a safepoint is in
// progress or when _suspend_flags is non-zero.
// Current thread needs to self-suspend if there is a suspend request and/or
// block if a safepoint is in progress.
// Async exception ISN'T checked.
// Note only the ThreadInVMfromNative transition can call this function
// directly and when thread state is _thread_in_native_trans
void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");

  JavaThread *curJT = JavaThread::current();
  bool do_self_suspend = thread->is_external_suspend();

  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");

  // If JNIEnv proxies are allowed, don't self-suspend if the target
  // thread is not the current thread. In older versions of jdbx, jdbx
  // threads could call into the VM with another thread's JNIEnv so we
  // can be here operating on behalf of a suspended thread (4432884).
  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
    JavaThreadState state = thread->thread_state();

    // We mark this thread_blocked state as a suspend-equivalent so
    // that a caller to is_ext_suspend_completed() won't be confused.
    // The suspend-equivalent state is cleared by java_suspend_self().
    thread->set_suspend_equivalent();

    // If the safepoint code sees the _thread_in_native_trans state, it will
    // wait until the thread changes to other thread state. There is no
    // guarantee on how soon we can obtain the SR_lock and complete the
    // self-suspend request. It would be a bad idea to let safepoint wait for
    // too long. Temporarily change the state to _thread_blocked to
    // let the VM thread know that this thread is ready for GC. The problem
    // of changing thread state is that safepoint could happen just after
    // java_suspend_self() returns after being resumed, and VM thread will
    // see the _thread_blocked state. We must check for safepoint
    // after restoring the state and make sure we won't leave while a safepoint
    // is in progress.
    thread->set_thread_state(_thread_blocked);
    thread->java_suspend_self();
    thread->set_thread_state(state);
    // Make sure new state is seen by VM thread
    if (os::is_MP()) {
      if (UseMembar) {
        // Force a fence between the write above and read below
        OrderAccess::fence();
      } else {
        // Must use this rather than serialization page in particular on Windows
        InterfaceSupport::serialize_memory(thread);
      }
    }
  }

  if (SafepointSynchronize::do_call_back()) {
    // If we are safepointing, then block the caller which may not be
    // the same as the target thread (see above).
    SafepointSynchronize::block(curJT);
  }

  if (thread->is_deopt_suspend()) {
    thread->clear_deopt_suspend();
    RegisterMap map(thread, false);
    frame f = thread->last_frame();
    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
      f = f.sender(&map);
    }
    if (f.id() == thread->must_deopt_id()) {
      thread->clear_must_deopt_id();
      f.deoptimize(thread);
    } else {
      fatal("missed deoptimization!");
    }
  }
}

// Slow path when the native==>VM/Java barriers detect a safepoint is in
// progress or when _suspend_flags is non-zero.
// Current thread needs to self-suspend if there is a suspend request and/or
// block if a safepoint is in progress.
// Also check for pending async exception (not including unsafe access error).
// Note only the native==>VM/Java barriers can call this function and when
// thread state is _thread_in_native_trans.
void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  check_safepoint_and_suspend_for_native_trans(thread);

  if (thread->has_async_exception()) {
    // We are in _thread_in_native_trans state, don't handle unsafe
    // access error since that may block.
    thread->check_and_handle_async_exceptions(false);
  }
}

// This is a variant of the normal
// check_special_condition_for_native_trans with slightly different
// semantics for use by critical native wrappers.  It does all the
// normal checks but also performs the transition back into
// thread_in_Java state.  This is required so that critical natives
// can potentially block and perform a GC if they are the last thread
// exiting the GC_locker.
void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  check_special_condition_for_native_trans(thread);

  // Finish the transition
  thread->set_thread_state(_thread_in_Java);

  if (thread->do_critical_native_unlock()) {
    ThreadInVMfromJavaNoAsyncException tiv(thread);
    GC_locker::unlock_critical(thread);
    thread->clear_critical_native_unlock();
  }
}

// We need to guarantee the Threads_lock here, since resumes are not
// allowed during safepoint synchronization
// Can only resume from an external suspension
void JavaThread::java_resume() {
  assert_locked_or_safepoint(Threads_lock);

  // Sanity check: thread is gone, has started exiting or the thread
  // was not externally suspended.
  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
    return;
  }

  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);

  clear_external_suspend();

  if (is_ext_suspended()) {
    clear_ext_suspended();
    SR_lock()->notify_all();
  }
}

void JavaThread::create_stack_guard_pages() {
  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  address low_addr = stack_base() - stack_size();
  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();

  int allocate = os::allocate_stack_guard_pages();
  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);

  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
    warning("Attempt to allocate stack guard pages failed.");
    return;
  }

  if (os::guard_memory((char *) low_addr, len)) {
    _stack_guard_state = stack_guard_enabled;
  } else {
    warning("Attempt to protect stack guard pages failed.");
    if (os::uncommit_memory((char *) low_addr, len)) {
      warning("Attempt to deallocate stack guard pages failed.");
    }
  }
}

void JavaThread::remove_stack_guard_pages() {
  assert(Thread::current() == this, "from different thread");
  if (_stack_guard_state == stack_guard_unused) return;
  address low_addr = stack_base() - stack_size();
  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();

  if (os::allocate_stack_guard_pages()) {
    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
      _stack_guard_state = stack_guard_unused;
    } else {
      warning("Attempt to deallocate stack guard pages failed.");
    }
  } else {
    if (_stack_guard_state == stack_guard_unused) return;
    if (os::unguard_memory((char *) low_addr, len)) {
      _stack_guard_state = stack_guard_unused;
    } else {
        warning("Attempt to unprotect stack guard pages failed.");
    }
  }
}

void JavaThread::enable_stack_yellow_zone() {
  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  assert(_stack_guard_state != stack_guard_enabled, "already enabled");

  // The base notation is from the stacks point of view, growing downward.
  // We need to adjust it to work correctly with guard_memory()
  address base = stack_yellow_zone_base() - stack_yellow_zone_size();

  guarantee(base < stack_base(),"Error calculating stack yellow zone");
  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");

  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
    _stack_guard_state = stack_guard_enabled;
  } else {
    warning("Attempt to guard stack yellow zone failed.");
  }
  enable_register_stack_guard();
}

void JavaThread::disable_stack_yellow_zone() {
  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");

  // Simply return if called for a thread that does not use guard pages.
  if (_stack_guard_state == stack_guard_unused) return;

  // The base notation is from the stacks point of view, growing downward.
  // We need to adjust it to work correctly with guard_memory()
  address base = stack_yellow_zone_base() - stack_yellow_zone_size();

  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
    _stack_guard_state = stack_guard_yellow_disabled;
  } else {
    warning("Attempt to unguard stack yellow zone failed.");
  }
  disable_register_stack_guard();
}

void JavaThread::enable_stack_red_zone() {
  // The base notation is from the stacks point of view, growing downward.
  // We need to adjust it to work correctly with guard_memory()
  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  address base = stack_red_zone_base() - stack_red_zone_size();

  guarantee(base < stack_base(),"Error calculating stack red zone");
  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");

  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
    warning("Attempt to guard stack red zone failed.");
  }
}

void JavaThread::disable_stack_red_zone() {
  // The base notation is from the stacks point of view, growing downward.
  // We need to adjust it to work correctly with guard_memory()
  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  address base = stack_red_zone_base() - stack_red_zone_size();
  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
    warning("Attempt to unguard stack red zone failed.");
  }
}

void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  // ignore is there is no stack
  if (!has_last_Java_frame()) return;
  // traverse the stack frames. Starts from top frame.
  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
    frame* fr = fst.current();
    f(fr, fst.register_map());
  }
}


#ifndef PRODUCT
// Deoptimization
// Function for testing deoptimization
void JavaThread::deoptimize() {
  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  StackFrameStream fst(this, UseBiasedLocking);
  bool deopt = false;           // Dump stack only if a deopt actually happens.
  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  // Iterate over all frames in the thread and deoptimize
  for(; !fst.is_done(); fst.next()) {
    if(fst.current()->can_be_deoptimized()) {

      if (only_at) {
        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
        // consists of comma or carriage return separated numbers so
        // search for the current bci in that string.
        address pc = fst.current()->pc();
        nmethod* nm =  (nmethod*) fst.current()->cb();
        ScopeDesc* sd = nm->scope_desc_at( pc);
        char buffer[8];
        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
        size_t len = strlen(buffer);
        const char * found = strstr(DeoptimizeOnlyAt, buffer);
        while (found != NULL) {
          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
            // Check that the bci found is bracketed by terminators.
            break;
          }
          found = strstr(found + 1, buffer);
        }
        if (!found) {
          continue;
        }
      }

      if (DebugDeoptimization && !deopt) {
        deopt = true; // One-time only print before deopt
        tty->print_cr("[BEFORE Deoptimization]");
        trace_frames();
        trace_stack();
      }
      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
    }
  }

  if (DebugDeoptimization && deopt) {
    tty->print_cr("[AFTER Deoptimization]");
    trace_frames();
  }
}


// Make zombies
void JavaThread::make_zombies() {
  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
    if (fst.current()->can_be_deoptimized()) {
      // it is a Java nmethod
      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
      nm->make_not_entrant();
    }
  }
}
#endif // PRODUCT


void JavaThread::deoptimized_wrt_marked_nmethods() {
  if (!has_last_Java_frame()) return;
  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  StackFrameStream fst(this, UseBiasedLocking);
  for(; !fst.is_done(); fst.next()) {
    if (fst.current()->should_be_deoptimized()) {
      if (LogCompilation && xtty != NULL) {
        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
                   this->name(), nm != NULL ? nm->compile_id() : -1);
      }

      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
    }
  }
}


// GC support
static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }

void JavaThread::gc_epilogue() {
  frames_do(frame_gc_epilogue);
}


static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }

void JavaThread::gc_prologue() {
  frames_do(frame_gc_prologue);
}

// If the caller is a NamedThread, then remember, in the current scope,
// the given JavaThread in its _processed_thread field.
class RememberProcessedThread: public StackObj {
  NamedThread* _cur_thr;
public:
  RememberProcessedThread(JavaThread* jthr) {
    Thread* thread = Thread::current();
    if (thread->is_Named_thread()) {
      _cur_thr = (NamedThread *)thread;
      _cur_thr->set_processed_thread(jthr);
    } else {
      _cur_thr = NULL;
    }
  }

  ~RememberProcessedThread() {
    if (_cur_thr) {
      _cur_thr->set_processed_thread(NULL);
    }
  }
};

void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  // Verify that the deferred card marks have been flushed.
  assert(deferred_card_mark().is_empty(), "Should be empty during GC");

  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  // since there may be more than one thread using each ThreadProfiler.

  // Traverse the GCHandles
  Thread::oops_do(f, cld_f, cf);

  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");

  if (has_last_Java_frame()) {
    // Record JavaThread to GC thread
    RememberProcessedThread rpt(this);

    // Traverse the privileged stack
    if (_privileged_stack_top != NULL) {
      _privileged_stack_top->oops_do(f);
    }

    // traverse the registered growable array
    if (_array_for_gc != NULL) {
      for (int index = 0; index < _array_for_gc->length(); index++) {
        f->do_oop(_array_for_gc->adr_at(index));
      }
    }

    // Traverse the monitor chunks
    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
      chunk->oops_do(f);
    }

    // Traverse the execution stack
    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
    }
  }

  // callee_target is never live across a gc point so NULL it here should
  // it still contain a methdOop.

  set_callee_target(NULL);

  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  // If we have deferred set_locals there might be oops waiting to be
  // written
  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  if (list != NULL) {
    for (int i = 0; i < list->length(); i++) {
      list->at(i)->oops_do(f);
    }
  }

  // Traverse instance variables at the end since the GC may be moving things
  // around using this function
  f->do_oop((oop*) &_threadObj);
  f->do_oop((oop*) &_vm_result);
  f->do_oop((oop*) &_exception_oop);
  f->do_oop((oop*) &_pending_async_exception);

  if (jvmti_thread_state() != NULL) {
    jvmti_thread_state()->oops_do(f);
  }
}

void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  Thread::nmethods_do(cf);  // (super method is a no-op)

  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");

  if (has_last_Java_frame()) {
    // Traverse the execution stack
    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
      fst.current()->nmethods_do(cf);
    }
  }
}

void JavaThread::metadata_do(void f(Metadata*)) {
  Thread::metadata_do(f);
  if (has_last_Java_frame()) {
    // Traverse the execution stack to call f() on the methods in the stack
    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
      fst.current()->metadata_do(f);
    }
  } else if (is_Compiler_thread()) {
    // need to walk ciMetadata in current compile tasks to keep alive.
    CompilerThread* ct = (CompilerThread*)this;
    if (ct->env() != NULL) {
      ct->env()->metadata_do(f);
    }
  }
}

// Printing
const char* _get_thread_state_name(JavaThreadState _thread_state) {
  switch (_thread_state) {
  case _thread_uninitialized:     return "_thread_uninitialized";
  case _thread_new:               return "_thread_new";
  case _thread_new_trans:         return "_thread_new_trans";
  case _thread_in_native:         return "_thread_in_native";
  case _thread_in_native_trans:   return "_thread_in_native_trans";
  case _thread_in_vm:             return "_thread_in_vm";
  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  case _thread_in_Java:           return "_thread_in_Java";
  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  case _thread_blocked:           return "_thread_blocked";
  case _thread_blocked_trans:     return "_thread_blocked_trans";
  default:                        return "unknown thread state";
  }
}

#ifndef PRODUCT
void JavaThread::print_thread_state_on(outputStream *st) const {
  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
};
void JavaThread::print_thread_state() const {
  print_thread_state_on(tty);
};
#endif // PRODUCT

// Called by Threads::print() for VM_PrintThreads operation
void JavaThread::print_on(outputStream *st) const {
  st->print("\"%s\" ", get_thread_name());
  oop thread_oop = threadObj();
  if (thread_oop != NULL) {
    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  }
  Thread::print_on(st);
  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  }
#ifndef PRODUCT
  print_thread_state_on(st);
  _safepoint_state->print_on(st);
#endif // PRODUCT
}

// Called by fatal error handler. The difference between this and
// JavaThread::print() is that we can't grab lock or allocate memory.
void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  oop thread_obj = threadObj();
  if (thread_obj != NULL) {
     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  }
  st->print(" [");
  st->print("%s", _get_thread_state_name(_thread_state));
  if (osthread()) {
    st->print(", id=%d", osthread()->thread_id());
  }
  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
            _stack_base - _stack_size, _stack_base);
  st->print("]");
  return;
}

// Verification

static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }

void JavaThread::verify() {
  // Verify oops in the thread.
  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);

  // Verify the stack frames.
  frames_do(frame_verify);
}

// CR 6300358 (sub-CR 2137150)
// Most callers of this method assume that it can't return NULL but a
// thread may not have a name whilst it is in the process of attaching to
// the VM - see CR 6412693, and there are places where a JavaThread can be
// seen prior to having it's threadObj set (eg JNI attaching threads and
// if vm exit occurs during initialization). These cases can all be accounted
// for such that this method never returns NULL.
const char* JavaThread::get_thread_name() const {
#ifdef ASSERT
  // early safepoints can hit while current thread does not yet have TLS
  if (!SafepointSynchronize::is_at_safepoint()) {
    Thread *cur = Thread::current();
    if (!(cur->is_Java_thread() && cur == this)) {
      // Current JavaThreads are allowed to get their own name without
      // the Threads_lock.
      assert_locked_or_safepoint(Threads_lock);
    }
  }
#endif // ASSERT
    return get_thread_name_string();
}

// Returns a non-NULL representation of this thread's name, or a suitable
// descriptive string if there is no set name
const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  const char* name_str;
  oop thread_obj = threadObj();
  if (thread_obj != NULL) {
    typeArrayOop name = java_lang_Thread::name(thread_obj);
    if (name != NULL) {
      if (buf == NULL) {
        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
      }
      else {
        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
      }
    }
    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
      name_str = "<no-name - thread is attaching>";
    }
    else {
      name_str = Thread::name();
    }
  }
  else {
    name_str = Thread::name();
  }
  assert(name_str != NULL, "unexpected NULL thread name");
  return name_str;
}


const char* JavaThread::get_threadgroup_name() const {
  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  oop thread_obj = threadObj();
  if (thread_obj != NULL) {
    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
    if (thread_group != NULL) {
      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
      // ThreadGroup.name can be null
      if (name != NULL) {
        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
        return str;
      }
    }
  }
  return NULL;
}

const char* JavaThread::get_parent_name() const {
  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  oop thread_obj = threadObj();
  if (thread_obj != NULL) {
    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
    if (thread_group != NULL) {
      oop parent = java_lang_ThreadGroup::parent(thread_group);
      if (parent != NULL) {
        typeArrayOop name = java_lang_ThreadGroup::name(parent);
        // ThreadGroup.name can be null
        if (name != NULL) {
          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
          return str;
        }
      }
    }
  }
  return NULL;
}

ThreadPriority JavaThread::java_priority() const {
  oop thr_oop = threadObj();
  if (thr_oop == NULL) return NormPriority; // Bootstrapping
  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  return priority;
}

void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {

  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  // Link Java Thread object <-> C++ Thread

  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  // and put it into a new Handle.  The Handle "thread_oop" can then
  // be used to pass the C++ thread object to other methods.

  // Set the Java level thread object (jthread) field of the
  // new thread (a JavaThread *) to C++ thread object using the
  // "thread_oop" handle.

  // Set the thread field (a JavaThread *) of the
  // oop representing the java_lang_Thread to the new thread (a JavaThread *).

  Handle thread_oop(Thread::current(),
                    JNIHandles::resolve_non_null(jni_thread));
  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
    "must be initialized");
  set_threadObj(thread_oop());
  java_lang_Thread::set_thread(thread_oop(), this);

  if (prio == NoPriority) {
    prio = java_lang_Thread::priority(thread_oop());
    assert(prio != NoPriority, "A valid priority should be present");
  }

  // Push the Java priority down to the native thread; needs Threads_lock
  Thread::set_priority(this, prio);

  // Add the new thread to the Threads list and set it in motion.
  // We must have threads lock in order to call Threads::add.
  // It is crucial that we do not block before the thread is
  // added to the Threads list for if a GC happens, then the java_thread oop
  // will not be visited by GC.
  Threads::add(this);
}

oop JavaThread::current_park_blocker() {
  // Support for JSR-166 locks
  oop thread_oop = threadObj();
  if (thread_oop != NULL &&
      JDK_Version::current().supports_thread_park_blocker()) {
    return java_lang_Thread::park_blocker(thread_oop);
  }
  return NULL;
}


void JavaThread::print_stack_on(outputStream* st) {
  if (!has_last_Java_frame()) return;
  ResourceMark rm;
  HandleMark   hm;

  RegisterMap reg_map(this);
  vframe* start_vf = last_java_vframe(®_map);
  int count = 0;
  for (vframe* f = start_vf; f; f = f->sender() ) {
    if (f->is_java_frame()) {
      javaVFrame* jvf = javaVFrame::cast(f);
      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());

      // Print out lock information
      if (JavaMonitorsInStackTrace) {
        jvf->print_lock_info_on(st, count);
      }
    } else {
      // Ignore non-Java frames
    }

    // Bail-out case for too deep stacks
    count++;
    if (MaxJavaStackTraceDepth == count) return;
  }
}


// JVMTI PopFrame support
void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  if (in_bytes(size_in_bytes) != 0) {
    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
    _popframe_preserved_args_size = in_bytes(size_in_bytes);
    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  }
}

void* JavaThread::popframe_preserved_args() {
  return _popframe_preserved_args;
}

ByteSize JavaThread::popframe_preserved_args_size() {
  return in_ByteSize(_popframe_preserved_args_size);
}

WordSize JavaThread::popframe_preserved_args_size_in_words() {
  int sz = in_bytes(popframe_preserved_args_size());
  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  return in_WordSize(sz / wordSize);
}

void JavaThread::popframe_free_preserved_args() {
  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  _popframe_preserved_args = NULL;
  _popframe_preserved_args_size = 0;
}

#ifndef PRODUCT

void JavaThread::trace_frames() {
  tty->print_cr("[Describe stack]");
  int frame_no = 1;
  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
    tty->print("  %d. ", frame_no++);
    fst.current()->print_value_on(tty,this);
    tty->cr();
  }
}

class PrintAndVerifyOopClosure: public OopClosure {
 protected:
  template <class T> inline void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    if (obj == NULL) return;
    tty->print(INTPTR_FORMAT ": ", p);
    if (obj->is_oop_or_null()) {
      if (obj->is_objArray()) {
        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
      } else {
        obj->print();
      }
    } else {
      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
    }
    tty->cr();
  }
 public:
  virtual void do_oop(oop* p) { do_oop_work(p); }
  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
};


static void oops_print(frame* f, const RegisterMap *map) {
  PrintAndVerifyOopClosure print;
  f->print_value();
  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
}

// Print our all the locations that contain oops and whether they are
// valid or not.  This useful when trying to find the oldest frame
// where an oop has gone bad since the frame walk is from youngest to
// oldest.
void JavaThread::trace_oops() {
  tty->print_cr("[Trace oops]");
  frames_do(oops_print);
}


#ifdef ASSERT
// Print or validate the layout of stack frames
void JavaThread::print_frame_layout(int depth, bool validate_only) {
  ResourceMark rm;
  PRESERVE_EXCEPTION_MARK;
  FrameValues values;
  int frame_no = 0;
  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
    fst.current()->describe(values, ++frame_no);
    if (depth == frame_no) break;
  }
  if (validate_only) {
    values.validate();
  } else {
    tty->print_cr("[Describe stack layout]");
    values.print(this);
  }
}
#endif

void JavaThread::trace_stack_from(vframe* start_vf) {
  ResourceMark rm;
  int vframe_no = 1;
  for (vframe* f = start_vf; f; f = f->sender() ) {
    if (f->is_java_frame()) {
      javaVFrame::cast(f)->print_activation(vframe_no++);
    } else {
      f->print();
    }
    if (vframe_no > StackPrintLimit) {
      tty->print_cr("...<more frames>...");
      return;
    }
  }
}


void JavaThread::trace_stack() {
  if (!has_last_Java_frame()) return;
  ResourceMark rm;
  HandleMark   hm;
  RegisterMap reg_map(this);
  trace_stack_from(last_java_vframe(®_map));
}


#endif // PRODUCT


javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  assert(reg_map != NULL, "a map must be given");
  frame f = last_frame();
  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
    if (vf->is_java_frame()) return javaVFrame::cast(vf);
  }
  return NULL;
}


Klass* JavaThread::security_get_caller_class(int depth) {
  vframeStream vfst(this);
  vfst.security_get_caller_frame(depth);
  if (!vfst.at_end()) {
    return vfst.method()->method_holder();
  }
  return NULL;
}

static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  assert(thread->is_Compiler_thread(), "must be compiler thread");
  CompileBroker::compiler_thread_loop();
}

// Create a CompilerThread
CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
: JavaThread(&compiler_thread_entry) {
  _env   = NULL;
  _log   = NULL;
  _task  = NULL;
  _queue = queue;
  _counters = counters;
  _buffer_blob = NULL;
  _scanned_nmethod = NULL;
  _compiler = NULL;

#ifndef PRODUCT
  _ideal_graph_printer = NULL;
#endif
}

void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  JavaThread::oops_do(f, cld_f, cf);
  if (_scanned_nmethod != NULL && cf != NULL) {
    // Safepoints can occur when the sweeper is scanning an nmethod so
    // process it here to make sure it isn't unloaded in the middle of
    // a scan.
    cf->do_code_blob(_scanned_nmethod);
  }
}


// ======= Threads ========

// The Threads class links together all active threads, and provides
// operations over all threads.  It is protected by its own Mutex
// lock, which is also used in other contexts to protect thread
// operations from having the thread being operated on from exiting
// and going away unexpectedly (e.g., safepoint synchronization)

JavaThread* Threads::_thread_list = NULL;
int         Threads::_number_of_threads = 0;
int         Threads::_number_of_non_daemon_threads = 0;
int         Threads::_return_code = 0;
size_t      JavaThread::_stack_size_at_create = 0;
#ifdef ASSERT
bool        Threads::_vm_complete = false;
#endif

// All JavaThreads
#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())

// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
void Threads::threads_do(ThreadClosure* tc) {
  assert_locked_or_safepoint(Threads_lock);
  // ALL_JAVA_THREADS iterates through all JavaThreads
  ALL_JAVA_THREADS(p) {
    tc->do_thread(p);
  }
  // Someday we could have a table or list of all non-JavaThreads.
  // For now, just manually iterate through them.
  tc->do_thread(VMThread::vm_thread());
  Universe::heap()->gc_threads_do(tc);
  WatcherThread *wt = WatcherThread::watcher_thread();
  // Strictly speaking, the following NULL check isn't sufficient to make sure
  // the data for WatcherThread is still valid upon being examined. However,
  // considering that WatchThread terminates when the VM is on the way to
  // exit at safepoint, the chance of the above is extremely small. The right
  // way to prevent termination of WatcherThread would be to acquire
  // Terminator_lock, but we can't do that without violating the lock rank
  // checking in some cases.
  if (wt != NULL)
    tc->do_thread(wt);

  // If CompilerThreads ever become non-JavaThreads, add them here
}

jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {

  extern void JDK_Version_init();

  // Check version
  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;

  // Initialize the output stream module
  ostream_init();

  // Process java launcher properties.
  Arguments::process_sun_java_launcher_properties(args);

  // Initialize the os module before using TLS
  os::init();

  // Initialize system properties.
  Arguments::init_system_properties();

  // So that JDK version can be used as a discrimintor when parsing arguments
  JDK_Version_init();

  // Update/Initialize System properties after JDK version number is known
  Arguments::init_version_specific_system_properties();

  // Parse arguments
  jint parse_result = Arguments::parse(args);
  if (parse_result != JNI_OK) return parse_result;

  os::init_before_ergo();

  jint ergo_result = Arguments::apply_ergo();
  if (ergo_result != JNI_OK) return ergo_result;

  if (PauseAtStartup) {
    os::pause();
  }

#ifndef USDT2
  HS_DTRACE_PROBE(hotspot, vm__init__begin);
#else /* USDT2 */
  HOTSPOT_VM_INIT_BEGIN();
#endif /* USDT2 */

  // Record VM creation timing statistics
  TraceVmCreationTime create_vm_timer;
  create_vm_timer.start();

  // Timing (must come after argument parsing)
  TraceTime timer("Create VM", TraceStartupTime);

  // Initialize the os module after parsing the args
  jint os_init_2_result = os::init_2();
  if (os_init_2_result != JNI_OK) return os_init_2_result;

  jint adjust_after_os_result = Arguments::adjust_after_os();
  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;

  // intialize TLS
  ThreadLocalStorage::init();

  // Bootstrap native memory tracking, so it can start recording memory
  // activities before worker thread is started. This is the first phase
  // of bootstrapping, VM is currently running in single-thread mode.
  MemTracker::bootstrap_single_thread();

  // Initialize output stream logging
  ostream_init_log();

  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  // Must be before create_vm_init_agents()
  if (Arguments::init_libraries_at_startup()) {
    convert_vm_init_libraries_to_agents();
  }

  // Launch -agentlib/-agentpath and converted -Xrun agents
  if (Arguments::init_agents_at_startup()) {
    create_vm_init_agents();
  }

  // Initialize Threads state
  _thread_list = NULL;
  _number_of_threads = 0;
  _number_of_non_daemon_threads = 0;

  // Initialize global data structures and create system classes in heap
  vm_init_globals();

  // Attach the main thread to this os thread
  JavaThread* main_thread = new JavaThread();
  main_thread->set_thread_state(_thread_in_vm);
  // must do this before set_active_handles and initialize_thread_local_storage
  // Note: on solaris initialize_thread_local_storage() will (indirectly)
  // change the stack size recorded here to one based on the java thread
  // stacksize. This adjusted size is what is used to figure the placement
  // of the guard pages.
  main_thread->record_stack_base_and_size();
  main_thread->initialize_thread_local_storage();

  main_thread->set_active_handles(JNIHandleBlock::allocate_block());

  if (!main_thread->set_as_starting_thread()) {
    vm_shutdown_during_initialization(
      "Failed necessary internal allocation. Out of swap space");
    delete main_thread;
    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
    return JNI_ENOMEM;
  }

  // Enable guard page *after* os::create_main_thread(), otherwise it would
  // crash Linux VM, see notes in os_linux.cpp.
  main_thread->create_stack_guard_pages();

  // Initialize Java-Level synchronization subsystem
  ObjectMonitor::Initialize() ;

  // Second phase of bootstrapping, VM is about entering multi-thread mode
  MemTracker::bootstrap_multi_thread();

  // Initialize global modules
  jint status = init_globals();
  if (status != JNI_OK) {
    delete main_thread;
    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
    return status;
  }

  // Should be done after the heap is fully created
  main_thread->cache_global_variables();

  HandleMark hm;

  { MutexLocker mu(Threads_lock);
    Threads::add(main_thread);
  }

  // Any JVMTI raw monitors entered in onload will transition into
  // real raw monitor. VM is setup enough here for raw monitor enter.
  JvmtiExport::transition_pending_onload_raw_monitors();

  // Fully start NMT
  MemTracker::start();

  // Create the VMThread
  { TraceTime timer("Start VMThread", TraceStartupTime);
    VMThread::create();
    Thread* vmthread = VMThread::vm_thread();

    if (!os::create_thread(vmthread, os::vm_thread))
      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");

    // Wait for the VM thread to become ready, and VMThread::run to initialize
    // Monitors can have spurious returns, must always check another state flag
    {
      MutexLocker ml(Notify_lock);
      os::start_thread(vmthread);
      while (vmthread->active_handles() == NULL) {
        Notify_lock->wait();
      }
    }
  }

  assert (Universe::is_fully_initialized(), "not initialized");
  if (VerifyDuringStartup) {
    // Make sure we're starting with a clean slate.
    VM_Verify verify_op;
    VMThread::execute(&verify_op);
  }

  EXCEPTION_MARK;

  // At this point, the Universe is initialized, but we have not executed
  // any byte code.  Now is a good time (the only time) to dump out the
  // internal state of the JVM for sharing.
  if (DumpSharedSpaces) {
    MetaspaceShared::preload_and_dump(CHECK_0);
    ShouldNotReachHere();
  }

  // Always call even when there are not JVMTI environments yet, since environments
  // may be attached late and JVMTI must track phases of VM execution
  JvmtiExport::enter_start_phase();

  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  JvmtiExport::post_vm_start();

  {
    TraceTime timer("Initialize java.lang classes", TraceStartupTime);

    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
      create_vm_init_libraries();
    }

    initialize_class(vmSymbols::java_lang_String(), CHECK_0);

    // Initialize java_lang.System (needed before creating the thread)
    initialize_class(vmSymbols::java_lang_System(), CHECK_0);
    initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
    Handle thread_group = create_initial_thread_group(CHECK_0);
    Universe::set_main_thread_group(thread_group());
    initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
    oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
    main_thread->set_threadObj(thread_object);
    // Set thread status to running since main thread has
    // been started and running.
    java_lang_Thread::set_thread_status(thread_object,
                                        java_lang_Thread::RUNNABLE);

    // The VM creates & returns objects of this class. Make sure it's initialized.
    initialize_class(vmSymbols::java_lang_Class(), CHECK_0);

    // The VM preresolves methods to these classes. Make sure that they get initialized
    initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
    initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
    call_initializeSystemClass(CHECK_0);

    // get the Java runtime name after java.lang.System is initialized
    JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
    JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));

    // an instance of OutOfMemory exception has been allocated earlier
    initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
    initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
    initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
    initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
    initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
    initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
    initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
    initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  }

  // See        : bugid 4211085.
  // Background : the static initializer of java.lang.Compiler tries to read
  //              property"java.compiler" and read & write property "java.vm.info".
  //              When a security manager is installed through the command line
  //              option "-Djava.security.manager", the above properties are not
  //              readable and the static initializer for java.lang.Compiler fails
  //              resulting in a NoClassDefFoundError.  This can happen in any
  //              user code which calls methods in java.lang.Compiler.
  // Hack :       the hack is to pre-load and initialize this class, so that only
  //              system domains are on the stack when the properties are read.
  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  //              Once that is done, we should remove this hack.
  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);

  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  // This should also be taken out as soon as 4211383 gets fixed.
  reset_vm_info_property(CHECK_0);

  quicken_jni_functions();

  // Must be run after init_ft which initializes ft_enabled
  if (TRACE_INITIALIZE() != JNI_OK) {
    vm_exit_during_initialization("Failed to initialize tracing backend");
  }

  // Set flag that basic initialization has completed. Used by exceptions and various
  // debug stuff, that does not work until all basic classes have been initialized.
  set_init_completed();

#ifndef USDT2
  HS_DTRACE_PROBE(hotspot, vm__init__end);
#else /* USDT2 */
  HOTSPOT_VM_INIT_END();
#endif /* USDT2 */

  // record VM initialization completion time
#if INCLUDE_MANAGEMENT
  Management::record_vm_init_completed();
#endif // INCLUDE_MANAGEMENT

  // Compute system loader. Note that this has to occur after set_init_completed, since
  // valid exceptions may be thrown in the process.
  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  // set_init_completed has just been called, causing exceptions not to be shortcut
  // anymore. We call vm_exit_during_initialization directly instead.
  SystemDictionary::compute_java_system_loader(THREAD);
  if (HAS_PENDING_EXCEPTION) {
    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  }

#if INCLUDE_ALL_GCS
  // Support for ConcurrentMarkSweep. This should be cleaned up
  // and better encapsulated. The ugly nested if test would go away
  // once things are properly refactored. XXX YSR
  if (UseConcMarkSweepGC || UseG1GC) {
    if (UseConcMarkSweepGC) {
      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
    } else {
      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
    }
    if (HAS_PENDING_EXCEPTION) {
      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
    }
  }
#endif // INCLUDE_ALL_GCS

  // Always call even when there are not JVMTI environments yet, since environments
  // may be attached late and JVMTI must track phases of VM execution
  JvmtiExport::enter_live_phase();

  // Signal Dispatcher needs to be started before VMInit event is posted
  os::signal_init();

  // Start Attach Listener if +StartAttachListener or it can't be started lazily
  if (!DisableAttachMechanism) {
    AttachListener::vm_start();
    if (StartAttachListener || AttachListener::init_at_startup()) {
      AttachListener::init();
    }
  }

  // Launch -Xrun agents
  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  // back-end can launch with -Xdebug -Xrunjdwp.
  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
    create_vm_init_libraries();
  }

  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  JvmtiExport::post_vm_initialized();

  if (TRACE_START() != JNI_OK) {
    vm_exit_during_initialization("Failed to start tracing backend.");
  }

  if (CleanChunkPoolAsync) {
    Chunk::start_chunk_pool_cleaner_task();
  }

  // initialize compiler(s)
#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  CompileBroker::compilation_init();
#endif

  if (EnableInvokeDynamic) {
    // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
    // It is done after compilers are initialized, because otherwise compilations of
    // signature polymorphic MH intrinsics can be missed
    // (see SystemDictionary::find_method_handle_intrinsic).
    initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
    initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
    initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
  }

#if INCLUDE_MANAGEMENT
  Management::initialize(THREAD);
#endif // INCLUDE_MANAGEMENT

  if (HAS_PENDING_EXCEPTION) {
    // management agent fails to start possibly due to
    // configuration problem and is responsible for printing
    // stack trace if appropriate. Simply exit VM.
    vm_exit(1);
  }

  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  if (MemProfiling)                   MemProfiler::engage();
  StatSampler::engage();
  if (CheckJNICalls)                  JniPeriodicChecker::engage();

  BiasedLocking::init();

  if (JDK_Version::current().post_vm_init_hook_enabled()) {
    call_postVMInitHook(THREAD);
    // The Java side of PostVMInitHook.run must deal with all
    // exceptions and provide means of diagnosis.
    if (HAS_PENDING_EXCEPTION) {
      CLEAR_PENDING_EXCEPTION;
    }
  }

  {
      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
      // Make sure the watcher thread can be started by WatcherThread::start()
      // or by dynamic enrollment.
      WatcherThread::make_startable();
      // Start up the WatcherThread if there are any periodic tasks
      // NOTE:  All PeriodicTasks should be registered by now. If they
      //   aren't, late joiners might appear to start slowly (we might
      //   take a while to process their first tick).
      if (PeriodicTask::num_tasks() > 0) {
          WatcherThread::start();
      }
  }

  // Give os specific code one last chance to start
  os::init_3();

  create_vm_timer.end();
#ifdef ASSERT
  _vm_complete = true;
#endif
  return JNI_OK;
}

// type for the Agent_OnLoad and JVM_OnLoad entry points
extern "C" {
  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
}
// Find a command line agent library and return its entry point for
//         -agentlib:  -agentpath:   -Xrun
// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  OnLoadEntry_t on_load_entry = NULL;
  void *library = NULL;

  if (!agent->valid()) {
    char buffer[JVM_MAXPATHLEN];
    char ebuf[1024];
    const char *name = agent->name();
    const char *msg = "Could not find agent library ";

    // First check to see if agent is statically linked into executable
    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
      library = agent->os_lib();
    } else if (agent->is_absolute_path()) {
      library = os::dll_load(name, ebuf, sizeof ebuf);
      if (library == NULL) {
        const char *sub_msg = " in absolute path, with error: ";
        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
        // If we can't find the agent, exit.
        vm_exit_during_initialization(buf, NULL);
        FREE_C_HEAP_ARRAY(char, buf, mtThread);
      }
    } else {
      // Try to load the agent from the standard dll directory
      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
                             name)) {
        library = os::dll_load(buffer, ebuf, sizeof ebuf);
      }
      if (library == NULL) { // Try the local directory
        char ns[1] = {0};
        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
          library = os::dll_load(buffer, ebuf, sizeof ebuf);
        }
        if (library == NULL) {
          const char *sub_msg = " on the library path, with error: ";
          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
          // If we can't find the agent, exit.
          vm_exit_during_initialization(buf, NULL);
          FREE_C_HEAP_ARRAY(char, buf, mtThread);
        }
      }
    }
    agent->set_os_lib(library);
    agent->set_valid();
  }

  // Find the OnLoad function.
  on_load_entry =
    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
                                                          false,
                                                          on_load_symbols,
                                                          num_symbol_entries));
  return on_load_entry;
}

// Find the JVM_OnLoad entry point
static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
}

// Find the Agent_OnLoad entry point
static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
}

// For backwards compatibility with -Xrun
// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
// treated like -agentpath:
// Must be called before agent libraries are created
void Threads::convert_vm_init_libraries_to_agents() {
  AgentLibrary* agent;
  AgentLibrary* next;

  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
    next = agent->next();  // cache the next agent now as this agent may get moved off this list
    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);

    // If there is an JVM_OnLoad function it will get called later,
    // otherwise see if there is an Agent_OnLoad
    if (on_load_entry == NULL) {
      on_load_entry = lookup_agent_on_load(agent);
      if (on_load_entry != NULL) {
        // switch it to the agent list -- so that Agent_OnLoad will be called,
        // JVM_OnLoad won't be attempted and Agent_OnUnload will
        Arguments::convert_library_to_agent(agent);
      } else {
        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
      }
    }
  }
}

// Create agents for -agentlib:  -agentpath:  and converted -Xrun
// Invokes Agent_OnLoad
// Called very early -- before JavaThreads exist
void Threads::create_vm_init_agents() {
  extern struct JavaVM_ main_vm;
  AgentLibrary* agent;

  JvmtiExport::enter_onload_phase();

  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);

    if (on_load_entry != NULL) {
      // Invoke the Agent_OnLoad function
      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
      if (err != JNI_OK) {
        vm_exit_during_initialization("agent library failed to init", agent->name());
      }
    } else {
      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
    }
  }
  JvmtiExport::enter_primordial_phase();
}

extern "C" {
  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
}

void Threads::shutdown_vm_agents() {
  // Send any Agent_OnUnload notifications
  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
  extern struct JavaVM_ main_vm;
  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {

    // Find the Agent_OnUnload function.
    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
      os::find_agent_function(agent,
      false,
      on_unload_symbols,
      num_symbol_entries));

    // Invoke the Agent_OnUnload function
    if (unload_entry != NULL) {
      JavaThread* thread = JavaThread::current();
      ThreadToNativeFromVM ttn(thread);
      HandleMark hm(thread);
      (*unload_entry)(&main_vm);
    }
  }
}

// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
// Invokes JVM_OnLoad
void Threads::create_vm_init_libraries() {
  extern struct JavaVM_ main_vm;
  AgentLibrary* agent;

  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);

    if (on_load_entry != NULL) {
      // Invoke the JVM_OnLoad function
      JavaThread* thread = JavaThread::current();
      ThreadToNativeFromVM ttn(thread);
      HandleMark hm(thread);
      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
      if (err != JNI_OK) {
        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
      }
    } else {
      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
    }
  }
}

// Last thread running calls java.lang.Shutdown.shutdown()
void JavaThread::invoke_shutdown_hooks() {
  HandleMark hm(this);

  // We could get here with a pending exception, if so clear it now.
  if (this->has_pending_exception()) {
    this->clear_pending_exception();
  }

  EXCEPTION_MARK;
  Klass* k =
    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
                                      THREAD);
  if (k != NULL) {
    // SystemDictionary::resolve_or_null will return null if there was
    // an exception.  If we cannot load the Shutdown class, just don't
    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
    // and finalizers (if runFinalizersOnExit is set) won't be run.
    // Note that if a shutdown hook was registered or runFinalizersOnExit
    // was called, the Shutdown class would have already been loaded
    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
    instanceKlassHandle shutdown_klass (THREAD, k);
    JavaValue result(T_VOID);
    JavaCalls::call_static(&result,
                           shutdown_klass,
                           vmSymbols::shutdown_method_name(),
                           vmSymbols::void_method_signature(),
                           THREAD);
  }
  CLEAR_PENDING_EXCEPTION;
}

// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
// the program falls off the end of main(). Another VM exit path is through
// vm_exit() when the program calls System.exit() to return a value or when
// there is a serious error in VM. The two shutdown paths are not exactly
// the same, but they share Shutdown.shutdown() at Java level and before_exit()
// and VM_Exit op at VM level.
//
// Shutdown sequence:
//   + Shutdown native memory tracking if it is on
//   + Wait until we are the last non-daemon thread to execute
//     <-- every thing is still working at this moment -->
//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
//        shutdown hooks, run finalizers if finalization-on-exit
//   + Call before_exit(), prepare for VM exit
//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
//        currently the only user of this mechanism is File.deleteOnExit())
//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
//        post thread end and vm death events to JVMTI,
//        stop signal thread
//   + Call JavaThread::exit(), it will:
//      > release JNI handle blocks, remove stack guard pages
//      > remove this thread from Threads list
//     <-- no more Java code from this thread after this point -->
//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
//     the compiler threads at safepoint
//     <-- do not use anything that could get blocked by Safepoint -->
//   + Disable tracing at JNI/JVM barriers
//   + Set _vm_exited flag for threads that are still running native code
//   + Delete this thread
//   + Call exit_globals()
//      > deletes tty
//      > deletes PerfMemory resources
//   + Return to caller

bool Threads::destroy_vm() {
  JavaThread* thread = JavaThread::current();

#ifdef ASSERT
  _vm_complete = false;
#endif
  // Wait until we are the last non-daemon thread to execute
  { MutexLocker nu(Threads_lock);
    while (Threads::number_of_non_daemon_threads() > 1 )
      // This wait should make safepoint checks, wait without a timeout,
      // and wait as a suspend-equivalent condition.
      //
      // Note: If the FlatProfiler is running and this thread is waiting
      // for another non-daemon thread to finish, then the FlatProfiler
      // is waiting for the external suspend request on this thread to
      // complete. wait_for_ext_suspend_completion() will eventually
      // timeout, but that takes time. Making this wait a suspend-
      // equivalent condition solves that timeout problem.
      //
      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
                         Mutex::_as_suspend_equivalent_flag);
  }

  // Hang forever on exit if we are reporting an error.
  if (ShowMessageBoxOnError && is_error_reported()) {
    os::infinite_sleep();
  }
  os::wait_for_keypress_at_exit();

  if (JDK_Version::is_jdk12x_version()) {
    // We are the last thread running, so check if finalizers should be run.
    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
    HandleMark rm(thread);
    Universe::run_finalizers_on_exit();
  } else {
    // run Java level shutdown hooks
    thread->invoke_shutdown_hooks();
  }

  before_exit(thread);

  thread->exit(true);

  // Stop VM thread.
  {
    // 4945125 The vm thread comes to a safepoint during exit.
    // GC vm_operations can get caught at the safepoint, and the
    // heap is unparseable if they are caught. Grab the Heap_lock
    // to prevent this. The GC vm_operations will not be able to
    // queue until after the vm thread is dead.
    // After this point, we'll never emerge out of the safepoint before
    // the VM exits, so concurrent GC threads do not need to be explicitly
    // stopped; they remain inactive until the process exits.
    // Note: some concurrent G1 threads may be running during a safepoint,
    // but these will not be accessing the heap, just some G1-specific side
    // data structures that are not accessed by any other threads but them
    // after this point in a terminal safepoint.

    MutexLocker ml(Heap_lock);

    VMThread::wait_for_vm_thread_exit();
    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
    VMThread::destroy();
  }

  // clean up ideal graph printers
#if defined(COMPILER2) && !defined(PRODUCT)
  IdealGraphPrinter::clean_up();
#endif

  // Now, all Java threads are gone except daemon threads. Daemon threads
  // running Java code or in VM are stopped by the Safepoint. However,
  // daemon threads executing native code are still running.  But they
  // will be stopped at native=>Java/VM barriers. Note that we can't
  // simply kill or suspend them, as it is inherently deadlock-prone.

#ifndef PRODUCT
  // disable function tracing at JNI/JVM barriers
  TraceJNICalls = false;
  TraceJVMCalls = false;
  TraceRuntimeCalls = false;
#endif

  VM_Exit::set_vm_exited();

  notify_vm_shutdown();

  delete thread;

  // exit_globals() will delete tty
  exit_globals();

  return true;
}


jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  if (version == JNI_VERSION_1_1) return JNI_TRUE;
  return is_supported_jni_version(version);
}


jboolean Threads::is_supported_jni_version(jint version) {
  if (version == JNI_VERSION_1_2) return JNI_TRUE;
  if (version == JNI_VERSION_1_4) return JNI_TRUE;
  if (version == JNI_VERSION_1_6) return JNI_TRUE;
  if (version == JNI_VERSION_1_8) return JNI_TRUE;
  return JNI_FALSE;
}


void Threads::add(JavaThread* p, bool force_daemon) {
  // The threads lock must be owned at this point
  assert_locked_or_safepoint(Threads_lock);

  // See the comment for this method in thread.hpp for its purpose and
  // why it is called here.
  p->initialize_queues();
  p->set_next(_thread_list);
  _thread_list = p;
  _number_of_threads++;
  oop threadObj = p->threadObj();
  bool daemon = true;
  // Bootstrapping problem: threadObj can be null for initial
  // JavaThread (or for threads attached via JNI)
  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
    _number_of_non_daemon_threads++;
    daemon = false;
  }

  p->set_safepoint_visible(true);

  ThreadService::add_thread(p, daemon);

  // Possible GC point.
  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
}

void Threads::remove(JavaThread* p) {
  // Extra scope needed for Thread_lock, so we can check
  // that we do not remove thread without safepoint code notice
  { MutexLocker ml(Threads_lock);

    assert(includes(p), "p must be present");

    JavaThread* current = _thread_list;
    JavaThread* prev    = NULL;

    while (current != p) {
      prev    = current;
      current = current->next();
    }

    if (prev) {
      prev->set_next(current->next());
    } else {
      _thread_list = p->next();
    }
    _number_of_threads--;
    oop threadObj = p->threadObj();
    bool daemon = true;
    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
      _number_of_non_daemon_threads--;
      daemon = false;

      // Only one thread left, do a notify on the Threads_lock so a thread waiting
      // on destroy_vm will wake up.
      if (number_of_non_daemon_threads() == 1)
        Threads_lock->notify_all();
    }
    ThreadService::remove_thread(p, daemon);

    // Make sure that safepoint code disregard this thread. This is needed since
    // the thread might mess around with locks after this point. This can cause it
    // to do callbacks into the safepoint code. However, the safepoint code is not aware
    // of this thread since it is removed from the queue.
    p->set_terminated_value();

    // Now, this thread is not visible to safepoint
    p->set_safepoint_visible(false);
    // once the thread becomes safepoint invisible, we can not use its per-thread
    // recorder. And Threads::do_threads() no longer walks this thread, so we have
    // to release its per-thread recorder here.
    MemTracker::thread_exiting(p);
  } // unlock Threads_lock

  // Since Events::log uses a lock, we grab it outside the Threads_lock
  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
}

// Threads_lock must be held when this is called (or must be called during a safepoint)
bool Threads::includes(JavaThread* p) {
  assert(Threads_lock->is_locked(), "sanity check");
  ALL_JAVA_THREADS(q) {
    if (q == p ) {
      return true;
    }
  }
  return false;
}

// Operations on the Threads list for GC.  These are not explicitly locked,
// but the garbage collector must provide a safe context for them to run.
// In particular, these things should never be called when the Threads_lock
// is held by some other thread. (Note: the Safepoint abstraction also
// uses the Threads_lock to gurantee this property. It also makes sure that
// all threads gets blocked when exiting or starting).

void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  ALL_JAVA_THREADS(p) {
    p->oops_do(f, cld_f, cf);
  }
  VMThread::vm_thread()->oops_do(f, cld_f, cf);
}

void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  // Introduce a mechanism allowing parallel threads to claim threads as
  // root groups.  Overhead should be small enough to use all the time,
  // even in sequential code.
  SharedHeap* sh = SharedHeap::heap();
  // Cannot yet substitute active_workers for n_par_threads
  // because of G1CollectedHeap::verify() use of
  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  // turn off parallelism in process_strong_roots while active_workers
  // is being used for parallelism elsewhere.
  bool is_par = sh->n_par_threads() > 0;
  assert(!is_par ||
         (SharedHeap::heap()->n_par_threads() ==
          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  int cp = SharedHeap::heap()->strong_roots_parity();
  ALL_JAVA_THREADS(p) {
    if (p->claim_oops_do(is_par, cp)) {
      p->oops_do(f, cld_f, cf);
    }
  }
  VMThread* vmt = VMThread::vm_thread();
  if (vmt->claim_oops_do(is_par, cp)) {
    vmt->oops_do(f, cld_f, cf);
  }
}

#if INCLUDE_ALL_GCS
// Used by ParallelScavenge
void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  ALL_JAVA_THREADS(p) {
    q->enqueue(new ThreadRootsTask(p));
  }
  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
}

// Used by Parallel Old
void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  ALL_JAVA_THREADS(p) {
    q->enqueue(new ThreadRootsMarkingTask(p));
  }
  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
}
#endif // INCLUDE_ALL_GCS

void Threads::nmethods_do(CodeBlobClosure* cf) {
  ALL_JAVA_THREADS(p) {
    p->nmethods_do(cf);
  }
  VMThread::vm_thread()->nmethods_do(cf);
}

void Threads::metadata_do(void f(Metadata*)) {
  ALL_JAVA_THREADS(p) {
    p->metadata_do(f);
  }
}

void Threads::gc_epilogue() {
  ALL_JAVA_THREADS(p) {
    p->gc_epilogue();
  }
}

void Threads::gc_prologue() {
  ALL_JAVA_THREADS(p) {
    p->gc_prologue();
  }
}

void Threads::deoptimized_wrt_marked_nmethods() {
  ALL_JAVA_THREADS(p) {
    p->deoptimized_wrt_marked_nmethods();
  }
}


// Get count Java threads that are waiting to enter the specified monitor.
GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  address monitor, bool doLock) {
  assert(doLock || SafepointSynchronize::is_at_safepoint(),
    "must grab Threads_lock or be at safepoint");
  GrowableArray<JavaThread*>* result = new GrowableArray(count);

  int i = 0;
  {
    MutexLockerEx ml(doLock ? Threads_lock : NULL);
    ALL_JAVA_THREADS(p) {
      if (p->is_Compiler_thread()) continue;

      address pending = (address)p->current_pending_monitor();
      if (pending == monitor) {             // found a match
        if (i < count) result->append(p);   // save the first count matches
        i++;
      }
    }
  }
  return result;
}


JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  assert(doLock ||
         Threads_lock->owned_by_self() ||
         SafepointSynchronize::is_at_safepoint(),
         "must grab Threads_lock or be at safepoint");

  // NULL owner means not locked so we can skip the search
  if (owner == NULL) return NULL;

  {
    MutexLockerEx ml(doLock ? Threads_lock : NULL);
    ALL_JAVA_THREADS(p) {
      // first, see if owner is the address of a Java thread
      if (owner == (address)p) return p;
    }
  }
  // Cannot assert on lack of success here since this function may be
  // used by code that is trying to report useful problem information
  // like deadlock detection.
  if (UseHeavyMonitors) return NULL;

  //
  // If we didn't find a matching Java thread and we didn't force use of
  // heavyweight monitors, then the owner is the stack address of the
  // Lock Word in the owning Java thread's stack.
  //
  JavaThread* the_owner = NULL;
  {
    MutexLockerEx ml(doLock ? Threads_lock : NULL);
    ALL_JAVA_THREADS(q) {
      if (q->is_lock_owned(owner)) {
        the_owner = q;
        break;
      }
    }
  }
  // cannot assert on lack of success here; see above comment
  return the_owner;
}

// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  char buf[32];
  st->print_cr(os::local_time_string(buf, sizeof(buf)));

  st->print_cr("Full thread dump %s (%s %s):",
                Abstract_VM_Version::vm_name(),
                Abstract_VM_Version::vm_release(),
                Abstract_VM_Version::vm_info_string()
               );
  st->cr();

#if INCLUDE_ALL_GCS
  // Dump concurrent locks
  ConcurrentLocksDump concurrent_locks;
  if (print_concurrent_locks) {
    concurrent_locks.dump_at_safepoint();
  }
#endif // INCLUDE_ALL_GCS

  ALL_JAVA_THREADS(p) {
    ResourceMark rm;
    p->print_on(st);
    if (print_stacks) {
      if (internal_format) {
        p->trace_stack();
      } else {
        p->print_stack_on(st);
      }
    }
    st->cr();
#if INCLUDE_ALL_GCS
    if (print_concurrent_locks) {
      concurrent_locks.print_locks_on(p, st);
    }
#endif // INCLUDE_ALL_GCS
  }

  VMThread::vm_thread()->print_on(st);
  st->cr();
  Universe::heap()->print_gc_threads_on(st);
  WatcherThread* wt = WatcherThread::watcher_thread();
  if (wt != NULL) {
    wt->print_on(st);
    st->cr();
  }
  CompileBroker::print_compiler_threads_on(st);
  st->flush();
}

// Threads::print_on_error() is called by fatal error handler. It's possible
// that VM is not at safepoint and/or current thread is inside signal handler.
// Don't print stack trace, as the stack may not be walkable. Don't allocate
// memory (even in resource area), it might deadlock the error handler.
void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  bool found_current = false;
  st->print_cr("Java Threads: ( => current thread )");
  ALL_JAVA_THREADS(thread) {
    bool is_current = (current == thread);
    found_current = found_current || is_current;

    st->print("%s", is_current ? "=>" : "  ");

    st->print(PTR_FORMAT, thread);
    st->print(" ");
    thread->print_on_error(st, buf, buflen);
    st->cr();
  }
  st->cr();

  st->print_cr("Other Threads:");
  if (VMThread::vm_thread()) {
    bool is_current = (current == VMThread::vm_thread());
    found_current = found_current || is_current;
    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");

    st->print(PTR_FORMAT, VMThread::vm_thread());
    st->print(" ");
    VMThread::vm_thread()->print_on_error(st, buf, buflen);
    st->cr();
  }
  WatcherThread* wt = WatcherThread::watcher_thread();
  if (wt != NULL) {
    bool is_current = (current == wt);
    found_current = found_current || is_current;
    st->print("%s", is_current ? "=>" : "  ");

    st->print(PTR_FORMAT, wt);
    st->print(" ");
    wt->print_on_error(st, buf, buflen);
    st->cr();
  }
  if (!found_current) {
    st->cr();
    st->print("=>" PTR_FORMAT " (exited) ", current);
    current->print_on_error(st, buf, buflen);
    st->cr();
  }
}

// Internal SpinLock and Mutex
// Based on ParkEvent

// Ad-hoc mutual exclusion primitives: SpinLock and Mux
//
// We employ SpinLocks _only for low-contention, fixed-length
// short-duration critical sections where we're concerned
// about native mutex_t or HotSpot Mutex:: latency.
// The mux construct provides a spin-then-block mutual exclusion
// mechanism.
//
// Testing has shown that contention on the ListLock guarding gFreeList
// is common.  If we implement ListLock as a simple SpinLock it's common
// for the JVM to devolve to yielding with little progress.  This is true
// despite the fact that the critical sections protected by ListLock are
// extremely short.
//
// TODO-FIXME: ListLock should be of type SpinLock.
// We should make this a 1st-class type, integrated into the lock
// hierarchy as leaf-locks.  Critically, the SpinLock structure
// should have sufficient padding to avoid false-sharing and excessive
// cache-coherency traffic.


typedef volatile int SpinLockT ;

void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  if (Atomic::cmpxchg (1, adr, 0) == 0) {
     return ;   // normal fast-path return
  }

  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  TEVENT (SpinAcquire - ctx) ;
  int ctr = 0 ;
  int Yields = 0 ;
  for (;;) {
     while (*adr != 0) {
        ++ctr ;
        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
           if (Yields > 5) {
             // Consider using a simple NakedSleep() instead.
             // Then SpinAcquire could be called by non-JVM threads
             Thread::current()->_ParkEvent->park(1) ;
           } else {
             os::NakedYield() ;
             ++Yields ;
           }
        } else {
           SpinPause() ;
        }
     }
     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  }
}

void Thread::SpinRelease (volatile int * adr) {
  assert (*adr != 0, "invariant") ;
  OrderAccess::fence() ;      // guarantee at least release consistency.
  // Roach-motel semantics.
  // It's safe if subsequent LDs and STs float "up" into the critical section,
  // but prior LDs and STs within the critical section can't be allowed
  // to reorder or float past the ST that releases the lock.
  *adr = 0 ;
}

// muxAcquire and muxRelease:
//
// *  muxAcquire and muxRelease support a single-word lock-word construct.
//    The LSB of the word is set IFF the lock is held.
//    The remainder of the word points to the head of a singly-linked list
//    of threads blocked on the lock.
//
// *  The current implementation of muxAcquire-muxRelease uses its own
//    dedicated Thread._MuxEvent instance.  If we're interested in
//    minimizing the peak number of extant ParkEvent instances then
//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
//    as certain invariants were satisfied.  Specifically, care would need
//    to be taken with regards to consuming unpark() "permits".
//    A safe rule of thumb is that a thread would never call muxAcquire()
//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
//    consume an unpark() permit intended for monitorenter, for instance.
//    One way around this would be to widen the restricted-range semaphore
//    implemented in park().  Another alternative would be to provide
//    multiple instances of the PlatformEvent() for each thread.  One
//    instance would be dedicated to muxAcquire-muxRelease, for instance.
//
// *  Usage:
//    -- Only as leaf locks
//    -- for short-term locking only as muxAcquire does not perform
//       thread state transitions.
//
// Alternatives:
// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
//    but with parking or spin-then-park instead of pure spinning.
// *  Use Taura-Oyama-Yonenzawa locks.
// *  It's possible to construct a 1-0 lock if we encode the lockword as
//    (List,LockByte).  Acquire will CAS the full lockword while Release
//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
//    acquiring threads use timers (ParkTimed) to detect and recover from
//    the stranding window.  Thread/Node structures must be aligned on 256-byte
//    boundaries by using placement-new.
// *  Augment MCS with advisory back-link fields maintained with CAS().
//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
//    The validity of the backlinks must be ratified before we trust the value.
//    If the backlinks are invalid the exiting thread must back-track through the
//    the forward links, which are always trustworthy.
// *  Add a successor indication.  The LockWord is currently encoded as
//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
//    to provide the usual futile-wakeup optimization.
//    See RTStt for details.
// *  Consider schedctl.sc_nopreempt to cover the critical section.
//


typedef volatile intptr_t MutexT ;      // Mux Lock-word
enum MuxBits { LOCKBIT = 1 } ;

void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  if (w == 0) return ;
  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
     return ;
  }

  TEVENT (muxAcquire - Contention) ;
  ParkEvent * const Self = Thread::current()->_MuxEvent ;
  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  for (;;) {
     int its = (os::is_MP() ? 100 : 0) + 1 ;

     // Optional spin phase: spin-then-park strategy
     while (--its >= 0) {
       w = *Lock ;
       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
          return ;
       }
     }

     Self->reset() ;
     Self->OnList = intptr_t(Lock) ;
     // The following fence() isn't _strictly necessary as the subsequent
     // CAS() both serializes execution and ratifies the fetched *Lock value.
     OrderAccess::fence();
     for (;;) {
        w = *Lock ;
        if ((w & LOCKBIT) == 0) {
            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
                Self->OnList = 0 ;   // hygiene - allows stronger asserts
                return ;
            }
            continue ;      // Interference -- *Lock changed -- Just retry
        }
        assert (w & LOCKBIT, "invariant") ;
        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
     }

     while (Self->OnList != 0) {
        Self->park() ;
     }
  }
}

void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  if (w == 0) return ;
  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
    return ;
  }

  TEVENT (muxAcquire - Contention) ;
  ParkEvent * ReleaseAfter = NULL ;
  if (ev == NULL) {
    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  }
  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  for (;;) {
    guarantee (ev->OnList == 0, "invariant") ;
    int its = (os::is_MP() ? 100 : 0) + 1 ;

    // Optional spin phase: spin-then-park strategy
    while (--its >= 0) {
      w = *Lock ;
      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
        if (ReleaseAfter != NULL) {
          ParkEvent::Release (ReleaseAfter) ;
        }
        return ;
      }
    }

    ev->reset() ;
    ev->OnList = intptr_t(Lock) ;
    // The following fence() isn't _strictly necessary as the subsequent
    // CAS() both serializes execution and ratifies the fetched *Lock value.
    OrderAccess::fence();
    for (;;) {
      w = *Lock ;
      if ((w & LOCKBIT) == 0) {
        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
          ev->OnList = 0 ;
          // We call ::Release while holding the outer lock, thus
          // artificially lengthening the critical section.
          // Consider deferring the ::Release() until the subsequent unlock(),
          // after we've dropped the outer lock.
          if (ReleaseAfter != NULL) {
            ParkEvent::Release (ReleaseAfter) ;
          }
          return ;
        }
        continue ;      // Interference -- *Lock changed -- Just retry
      }
      assert (w & LOCKBIT, "invariant") ;
      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
    }

    while (ev->OnList != 0) {
      ev->park() ;
    }
  }
}

// Release() must extract a successor from the list and then wake that thread.
// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
// Release() would :
// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
// (B) Extract a successor from the private list "in-hand"
// (C) attempt to CAS() the residual back into *Lock over null.
//     If there were any newly arrived threads and the CAS() would fail.
//     In that case Release() would detach the RATs, re-merge the list in-hand
//     with the RATs and repeat as needed.  Alternately, Release() might
//     detach and extract a successor, but then pass the residual list to the wakee.
//     The wakee would be responsible for reattaching and remerging before it
//     competed for the lock.
//
// Both "pop" and DMR are immune from ABA corruption -- there can be
// multiple concurrent pushers, but only one popper or detacher.
// This implementation pops from the head of the list.  This is unfair,
// but tends to provide excellent throughput as hot threads remain hot.
// (We wake recently run threads first).

void Thread::muxRelease (volatile intptr_t * Lock)  {
  for (;;) {
    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
    assert (w & LOCKBIT, "invariant") ;
    if (w == LOCKBIT) return ;
    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
    assert (List != NULL, "invariant") ;
    assert (List->OnList == intptr_t(Lock), "invariant") ;
    ParkEvent * nxt = List->ListNext ;

    // The following CAS() releases the lock and pops the head element.
    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
      continue ;
    }
    List->OnList = 0 ;
    OrderAccess::fence() ;
    List->unpark () ;
    return ;
  }
}


void Threads::verify() {
  ALL_JAVA_THREADS(p) {
    p->verify();
  }
  VMThread* thread = VMThread::vm_thread();
  if (thread != NULL) thread->verify();
}

Other Java examples (source code examples)

Here is a short list of links related to this Java thread.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.