|
Java example source code file (memReporter.cpp)
The memReporter.cpp Java example source code/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "runtime/os.hpp" #include "services/memReporter.hpp" #include "services/memPtrArray.hpp" #include "services/memTracker.hpp" const char* BaselineOutputer::memory_unit(size_t scale) { switch(scale) { case K: return "KB"; case M: return "MB"; case G: return "GB"; } ShouldNotReachHere(); return NULL; } void BaselineReporter::report_baseline(const MemBaseline& baseline, bool summary_only) { assert(MemTracker::is_on(), "Native memory tracking is off"); _outputer.start(scale()); _outputer.total_usage( amount_in_current_scale(baseline.total_malloc_amount() + baseline.total_reserved_amount()), amount_in_current_scale(baseline.total_malloc_amount() + baseline.total_committed_amount())); _outputer.num_of_classes(baseline.number_of_classes()); _outputer.num_of_threads(baseline.number_of_threads()); report_summaries(baseline); if (!summary_only && MemTracker::track_callsite()) { report_virtual_memory_map(baseline); report_callsites(baseline); } _outputer.done(); } void BaselineReporter::report_summaries(const MemBaseline& baseline) { _outputer.start_category_summary(); MEMFLAGS type; for (int index = 0; index < NUMBER_OF_MEMORY_TYPE; index ++) { type = MemBaseline::MemType2NameMap[index]._flag; _outputer.category_summary(type, amount_in_current_scale(baseline.reserved_amount(type)), amount_in_current_scale(baseline.committed_amount(type)), amount_in_current_scale(baseline.malloc_amount(type)), baseline.malloc_count(type), amount_in_current_scale(baseline.arena_amount(type)), baseline.arena_count(type)); } _outputer.done_category_summary(); } void BaselineReporter::report_virtual_memory_map(const MemBaseline& baseline) { _outputer.start_virtual_memory_map(); MemBaseline* pBL = const_cast<MemBaseline*>(&baseline); MemPointerArrayIteratorImpl itr = MemPointerArrayIteratorImpl(pBL->_vm_map); VMMemRegionEx* rgn = (VMMemRegionEx*)itr.current(); while (rgn != NULL) { if (rgn->is_reserved_region()) { _outputer.reserved_memory_region(FLAGS_TO_MEMORY_TYPE(rgn->flags()), rgn->base(), rgn->base() + rgn->size(), amount_in_current_scale(rgn->size()), rgn->pc()); } else { _outputer.committed_memory_region(rgn->base(), rgn->base() + rgn->size(), amount_in_current_scale(rgn->size()), rgn->pc()); } rgn = (VMMemRegionEx*)itr.next(); } _outputer.done_virtual_memory_map(); } void BaselineReporter::report_callsites(const MemBaseline& baseline) { _outputer.start_callsite(); MemBaseline* pBL = const_cast<MemBaseline*>(&baseline); pBL->_malloc_cs->sort((FN_SORT)MemBaseline::bl_malloc_sort_by_size); pBL->_vm_cs->sort((FN_SORT)MemBaseline::bl_vm_sort_by_size); // walk malloc callsites MemPointerArrayIteratorImpl malloc_itr(pBL->_malloc_cs); MallocCallsitePointer* malloc_callsite = (MallocCallsitePointer*)malloc_itr.current(); while (malloc_callsite != NULL) { _outputer.malloc_callsite(malloc_callsite->addr(), amount_in_current_scale(malloc_callsite->amount()), malloc_callsite->count()); malloc_callsite = (MallocCallsitePointer*)malloc_itr.next(); } // walk virtual memory callsite MemPointerArrayIteratorImpl vm_itr(pBL->_vm_cs); VMCallsitePointer* vm_callsite = (VMCallsitePointer*)vm_itr.current(); while (vm_callsite != NULL) { _outputer.virtual_memory_callsite(vm_callsite->addr(), amount_in_current_scale(vm_callsite->reserved_amount()), amount_in_current_scale(vm_callsite->committed_amount())); vm_callsite = (VMCallsitePointer*)vm_itr.next(); } pBL->_malloc_cs->sort((FN_SORT)MemBaseline::bl_malloc_sort_by_pc); pBL->_vm_cs->sort((FN_SORT)MemBaseline::bl_vm_sort_by_pc); _outputer.done_callsite(); } void BaselineReporter::diff_baselines(const MemBaseline& cur, const MemBaseline& prev, bool summary_only) { assert(MemTracker::is_on(), "Native memory tracking is off"); _outputer.start(scale()); size_t total_reserved = cur.total_malloc_amount() + cur.total_reserved_amount(); size_t total_committed = cur.total_malloc_amount() + cur.total_committed_amount(); _outputer.diff_total_usage( amount_in_current_scale(total_reserved), amount_in_current_scale(total_committed), diff_in_current_scale(total_reserved, (prev.total_malloc_amount() + prev.total_reserved_amount())), diff_in_current_scale(total_committed, (prev.total_committed_amount() + prev.total_malloc_amount()))); _outputer.diff_num_of_classes(cur.number_of_classes(), diff(cur.number_of_classes(), prev.number_of_classes())); _outputer.diff_num_of_threads(cur.number_of_threads(), diff(cur.number_of_threads(), prev.number_of_threads())); diff_summaries(cur, prev); if (!summary_only && MemTracker::track_callsite()) { diff_callsites(cur, prev); } _outputer.done(); } void BaselineReporter::diff_summaries(const MemBaseline& cur, const MemBaseline& prev) { _outputer.start_category_summary(); MEMFLAGS type; for (int index = 0; index < NUMBER_OF_MEMORY_TYPE; index ++) { type = MemBaseline::MemType2NameMap[index]._flag; _outputer.diff_category_summary(type, amount_in_current_scale(cur.reserved_amount(type)), amount_in_current_scale(cur.committed_amount(type)), amount_in_current_scale(cur.malloc_amount(type)), cur.malloc_count(type), amount_in_current_scale(cur.arena_amount(type)), cur.arena_count(type), diff_in_current_scale(cur.reserved_amount(type), prev.reserved_amount(type)), diff_in_current_scale(cur.committed_amount(type), prev.committed_amount(type)), diff_in_current_scale(cur.malloc_amount(type), prev.malloc_amount(type)), diff(cur.malloc_count(type), prev.malloc_count(type)), diff_in_current_scale(cur.arena_amount(type), prev.arena_amount(type)), diff(cur.arena_count(type), prev.arena_count(type))); } _outputer.done_category_summary(); } void BaselineReporter::diff_callsites(const MemBaseline& cur, const MemBaseline& prev) { _outputer.start_callsite(); MemBaseline* pBL_cur = const_cast<MemBaseline*>(&cur); MemBaseline* pBL_prev = const_cast<MemBaseline*>(&prev); // walk malloc callsites MemPointerArrayIteratorImpl cur_malloc_itr(pBL_cur->_malloc_cs); MemPointerArrayIteratorImpl prev_malloc_itr(pBL_prev->_malloc_cs); MallocCallsitePointer* cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.current(); MallocCallsitePointer* prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.current(); while (cur_malloc_callsite != NULL || prev_malloc_callsite != NULL) { if (prev_malloc_callsite == NULL) { assert(cur_malloc_callsite != NULL, "sanity check"); // this is a new callsite _outputer.diff_malloc_callsite(cur_malloc_callsite->addr(), amount_in_current_scale(cur_malloc_callsite->amount()), cur_malloc_callsite->count(), diff_in_current_scale(cur_malloc_callsite->amount(), 0), diff(cur_malloc_callsite->count(), 0)); cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next(); } else if (cur_malloc_callsite == NULL) { assert(prev_malloc_callsite != NULL, "Sanity check"); // this callsite is already gone _outputer.diff_malloc_callsite(prev_malloc_callsite->addr(), 0, 0, diff_in_current_scale(0, prev_malloc_callsite->amount()), diff(0, prev_malloc_callsite->count())); prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next(); } else { assert(cur_malloc_callsite != NULL, "Sanity check"); assert(prev_malloc_callsite != NULL, "Sanity check"); if (cur_malloc_callsite->addr() < prev_malloc_callsite->addr()) { // this is a new callsite _outputer.diff_malloc_callsite(cur_malloc_callsite->addr(), amount_in_current_scale(cur_malloc_callsite->amount()), cur_malloc_callsite->count(), diff_in_current_scale(cur_malloc_callsite->amount(), 0), diff(cur_malloc_callsite->count(), 0)); cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next(); } else if (cur_malloc_callsite->addr() > prev_malloc_callsite->addr()) { // this callsite is already gone _outputer.diff_malloc_callsite(prev_malloc_callsite->addr(), 0, 0, diff_in_current_scale(0, prev_malloc_callsite->amount()), diff(0, prev_malloc_callsite->count())); prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next(); } else { // the same callsite _outputer.diff_malloc_callsite(cur_malloc_callsite->addr(), amount_in_current_scale(cur_malloc_callsite->amount()), cur_malloc_callsite->count(), diff_in_current_scale(cur_malloc_callsite->amount(), prev_malloc_callsite->amount()), diff(cur_malloc_callsite->count(), prev_malloc_callsite->count())); cur_malloc_callsite = (MallocCallsitePointer*)cur_malloc_itr.next(); prev_malloc_callsite = (MallocCallsitePointer*)prev_malloc_itr.next(); } } } // walk virtual memory callsite MemPointerArrayIteratorImpl cur_vm_itr(pBL_cur->_vm_cs); MemPointerArrayIteratorImpl prev_vm_itr(pBL_prev->_vm_cs); VMCallsitePointer* cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.current(); VMCallsitePointer* prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.current(); while (cur_vm_callsite != NULL || prev_vm_callsite != NULL) { if (prev_vm_callsite == NULL || cur_vm_callsite->addr() < prev_vm_callsite->addr()) { // this is a new callsite _outputer.diff_virtual_memory_callsite(cur_vm_callsite->addr(), amount_in_current_scale(cur_vm_callsite->reserved_amount()), amount_in_current_scale(cur_vm_callsite->committed_amount()), diff_in_current_scale(cur_vm_callsite->reserved_amount(), 0), diff_in_current_scale(cur_vm_callsite->committed_amount(), 0)); cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.next(); } else if (cur_vm_callsite == NULL || cur_vm_callsite->addr() > prev_vm_callsite->addr()) { // this callsite is already gone _outputer.diff_virtual_memory_callsite(prev_vm_callsite->addr(), amount_in_current_scale(0), amount_in_current_scale(0), diff_in_current_scale(0, prev_vm_callsite->reserved_amount()), diff_in_current_scale(0, prev_vm_callsite->committed_amount())); prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.next(); } else { // the same callsite _outputer.diff_virtual_memory_callsite(cur_vm_callsite->addr(), amount_in_current_scale(cur_vm_callsite->reserved_amount()), amount_in_current_scale(cur_vm_callsite->committed_amount()), diff_in_current_scale(cur_vm_callsite->reserved_amount(), prev_vm_callsite->reserved_amount()), diff_in_current_scale(cur_vm_callsite->committed_amount(), prev_vm_callsite->committed_amount())); cur_vm_callsite = (VMCallsitePointer*)cur_vm_itr.next(); prev_vm_callsite = (VMCallsitePointer*)prev_vm_itr.next(); } } _outputer.done_callsite(); } size_t BaselineReporter::amount_in_current_scale(size_t amt) const { return (size_t)(((float)amt/(float)_scale) + 0.5); } int BaselineReporter::diff_in_current_scale(size_t value1, size_t value2) const { return (int)(((float)value1 - (float)value2)/((float)_scale) + 0.5); } int BaselineReporter::diff(size_t value1, size_t value2) const { return ((int)value1 - (int)value2); } void BaselineTTYOutputer::start(size_t scale, bool report_diff) { _scale = scale; _output->print_cr(" "); _output->print_cr("Native Memory Tracking:"); _output->print_cr(" "); } void BaselineTTYOutputer::done() { } void BaselineTTYOutputer::total_usage(size_t total_reserved, size_t total_committed) { const char* unit = memory_unit(_scale); _output->print_cr("Total: reserved=%d%s, committed=%d%s", total_reserved, unit, total_committed, unit); } void BaselineTTYOutputer::start_category_summary() { _output->print_cr(" "); } /** * report a summary of memory type */ void BaselineTTYOutputer::category_summary(MEMFLAGS type, size_t reserved_amt, size_t committed_amt, size_t malloc_amt, size_t malloc_count, size_t arena_amt, size_t arena_count) { // we report mtThreadStack under mtThread category if (type == mtThreadStack) { assert(malloc_amt == 0 && malloc_count == 0 && arena_amt == 0, "Just check"); _thread_stack_reserved = reserved_amt; _thread_stack_committed = committed_amt; } else { const char* unit = memory_unit(_scale); size_t total_reserved = (reserved_amt + malloc_amt + arena_amt); size_t total_committed = (committed_amt + malloc_amt + arena_amt); if (type == mtThread) { total_reserved += _thread_stack_reserved; total_committed += _thread_stack_committed; } if (total_reserved > 0) { _output->print_cr("-%26s (reserved=%d%s, committed=%d%s)", MemBaseline::type2name(type), total_reserved, unit, total_committed, unit); if (type == mtClass) { _output->print_cr("%27s (classes #%d)", " ", _num_of_classes); } else if (type == mtThread) { _output->print_cr("%27s (thread #%d)", " ", _num_of_threads); _output->print_cr("%27s (stack: reserved=%d%s, committed=%d%s)", " ", _thread_stack_reserved, unit, _thread_stack_committed, unit); } if (malloc_amt > 0) { if (type != mtChunk) { _output->print_cr("%27s (malloc=%d%s, #%d)", " ", malloc_amt, unit, malloc_count); } else { _output->print_cr("%27s (malloc=%d%s)", " ", malloc_amt, unit); } } if (reserved_amt > 0) { _output->print_cr("%27s (mmap: reserved=%d%s, committed=%d%s)", " ", reserved_amt, unit, committed_amt, unit); } if (arena_amt > 0) { _output->print_cr("%27s (arena=%d%s, #%d)", " ", arena_amt, unit, arena_count); } _output->print_cr(" "); } } } void BaselineTTYOutputer::done_category_summary() { _output->print_cr(" "); } void BaselineTTYOutputer::start_virtual_memory_map() { _output->print_cr("Virtual memory map:"); } void BaselineTTYOutputer::reserved_memory_region(MEMFLAGS type, address base, address end, size_t size, address pc) { const char* unit = memory_unit(_scale); char buf[128]; int offset; _output->print_cr(" "); _output->print_cr("[" PTR_FORMAT " - " PTR_FORMAT "] reserved %d%s for %s", base, end, size, unit, MemBaseline::type2name(type)); if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr("\t\tfrom [%s+0x%x]", buf, offset); } } void BaselineTTYOutputer::committed_memory_region(address base, address end, size_t size, address pc) { const char* unit = memory_unit(_scale); char buf[128]; int offset; _output->print("\t[" PTR_FORMAT " - " PTR_FORMAT "] committed %d%s", base, end, size, unit); if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr(" from [%s+0x%x]", buf, offset); } } void BaselineTTYOutputer::done_virtual_memory_map() { _output->print_cr(" "); } void BaselineTTYOutputer::start_callsite() { _output->print_cr("Details:"); _output->print_cr(" "); } void BaselineTTYOutputer::done_callsite() { _output->print_cr(" "); } void BaselineTTYOutputer::malloc_callsite(address pc, size_t malloc_amt, size_t malloc_count) { if (malloc_amt > 0) { const char* unit = memory_unit(_scale); char buf[128]; int offset; if (pc == 0) { _output->print("[BOOTSTRAP]%18s", " "); } else if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset); _output->print("%28s", " "); } else { _output->print("[" PTR_FORMAT "]%18s", pc, " "); } _output->print_cr("(malloc=%d%s #%d)", malloc_amt, unit, malloc_count); _output->print_cr(" "); } } void BaselineTTYOutputer::virtual_memory_callsite(address pc, size_t reserved_amt, size_t committed_amt) { if (reserved_amt > 0) { const char* unit = memory_unit(_scale); char buf[128]; int offset; if (pc == 0) { _output->print("[BOOTSTRAP]%18s", " "); } else if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset); _output->print("%28s", " "); } else { _output->print("[" PTR_FORMAT "]%18s", pc, " "); } _output->print_cr("(mmap: reserved=%d%s, committed=%d%s)", reserved_amt, unit, committed_amt, unit); _output->print_cr(" "); } } void BaselineTTYOutputer::diff_total_usage(size_t total_reserved, size_t total_committed, int reserved_diff, int committed_diff) { const char* unit = memory_unit(_scale); _output->print_cr("Total: reserved=%d%s %+d%s, committed=%d%s %+d%s", total_reserved, unit, reserved_diff, unit, total_committed, unit, committed_diff, unit); } void BaselineTTYOutputer::diff_category_summary(MEMFLAGS type, size_t cur_reserved_amt, size_t cur_committed_amt, size_t cur_malloc_amt, size_t cur_malloc_count, size_t cur_arena_amt, size_t cur_arena_count, int reserved_diff, int committed_diff, int malloc_diff, int malloc_count_diff, int arena_diff, int arena_count_diff) { if (type == mtThreadStack) { assert(cur_malloc_amt == 0 && cur_malloc_count == 0 && cur_arena_amt == 0, "Just check"); _thread_stack_reserved = cur_reserved_amt; _thread_stack_committed = cur_committed_amt; _thread_stack_reserved_diff = reserved_diff; _thread_stack_committed_diff = committed_diff; } else { const char* unit = memory_unit(_scale); size_t total_reserved = (cur_reserved_amt + cur_malloc_amt + cur_arena_amt); // nothing to report in this category if (total_reserved == 0) { return; } int diff_reserved = (reserved_diff + malloc_diff + arena_diff); // category summary _output->print("-%26s (reserved=%d%s", MemBaseline::type2name(type), total_reserved, unit); if (diff_reserved != 0) { _output->print(" %+d%s", diff_reserved, unit); } size_t total_committed = cur_committed_amt + cur_malloc_amt + cur_arena_amt; _output->print(", committed=%d%s", total_committed, unit); int total_committed_diff = committed_diff + malloc_diff + arena_diff; if (total_committed_diff != 0) { _output->print(" %+d%s", total_committed_diff, unit); } _output->print_cr(")"); // special cases if (type == mtClass) { _output->print("%27s (classes #%d", " ", _num_of_classes); if (_num_of_classes_diff != 0) { _output->print(" %+d", _num_of_classes_diff); } _output->print_cr(")"); } else if (type == mtThread) { // thread count _output->print("%27s (thread #%d", " ", _num_of_threads); if (_num_of_threads_diff != 0) { _output->print_cr(" %+d)", _num_of_threads_diff); } else { _output->print_cr(")"); } _output->print("%27s (stack: reserved=%d%s", " ", _thread_stack_reserved, unit); if (_thread_stack_reserved_diff != 0) { _output->print(" %+d%s", _thread_stack_reserved_diff, unit); } _output->print(", committed=%d%s", _thread_stack_committed, unit); if (_thread_stack_committed_diff != 0) { _output->print(" %+d%s",_thread_stack_committed_diff, unit); } _output->print_cr(")"); } // malloc'd memory if (cur_malloc_amt > 0) { _output->print("%27s (malloc=%d%s", " ", cur_malloc_amt, unit); if (malloc_diff != 0) { _output->print(" %+d%s", malloc_diff, unit); } if (type != mtChunk) { _output->print(", #%d", cur_malloc_count); if (malloc_count_diff) { _output->print(" %+d", malloc_count_diff); } } _output->print_cr(")"); } // mmap'd memory if (cur_reserved_amt > 0) { _output->print("%27s (mmap: reserved=%d%s", " ", cur_reserved_amt, unit); if (reserved_diff != 0) { _output->print(" %+d%s", reserved_diff, unit); } _output->print(", committed=%d%s", cur_committed_amt, unit); if (committed_diff != 0) { _output->print(" %+d%s", committed_diff, unit); } _output->print_cr(")"); } // arena memory if (cur_arena_amt > 0) { _output->print("%27s (arena=%d%s", " ", cur_arena_amt, unit); if (arena_diff != 0) { _output->print(" %+d%s", arena_diff, unit); } _output->print(", #%d", cur_arena_count); if (arena_count_diff != 0) { _output->print(" %+d", arena_count_diff); } _output->print_cr(")"); } _output->print_cr(" "); } } void BaselineTTYOutputer::diff_malloc_callsite(address pc, size_t cur_malloc_amt, size_t cur_malloc_count, int malloc_diff, int malloc_count_diff) { if (malloc_diff != 0) { const char* unit = memory_unit(_scale); char buf[128]; int offset; if (pc == 0) { _output->print_cr("[BOOTSTRAP]%18s", " "); } else { if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset); _output->print("%28s", " "); } else { _output->print("[" PTR_FORMAT "]%18s", pc, " "); } } _output->print("(malloc=%d%s", cur_malloc_amt, unit); if (malloc_diff != 0) { _output->print(" %+d%s", malloc_diff, unit); } _output->print(", #%d", cur_malloc_count); if (malloc_count_diff != 0) { _output->print(" %+d", malloc_count_diff); } _output->print_cr(")"); _output->print_cr(" "); } } void BaselineTTYOutputer::diff_virtual_memory_callsite(address pc, size_t cur_reserved_amt, size_t cur_committed_amt, int reserved_diff, int committed_diff) { if (reserved_diff != 0 || committed_diff != 0) { const char* unit = memory_unit(_scale); char buf[64]; int offset; if (pc == 0) { _output->print_cr("[BOOSTRAP]%18s", " "); } else { if (os::dll_address_to_function_name(pc, buf, sizeof(buf), &offset)) { _output->print_cr("[" PTR_FORMAT "] %s+0x%x", pc, buf, offset); _output->print("%28s", " "); } else { _output->print("[" PTR_FORMAT "]%18s", pc, " "); } } _output->print("(mmap: reserved=%d%s", cur_reserved_amt, unit); if (reserved_diff != 0) { _output->print(" %+d%s", reserved_diff, unit); } _output->print(", committed=%d%s", cur_committed_amt, unit); if (committed_diff != 0) { _output->print(" %+d%s", committed_diff, unit); } _output->print_cr(")"); _output->print_cr(" "); } } Other Java examples (source code examples)Here is a short list of links related to this Java memReporter.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.