alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (PolynomialRoot.java)

This example Java source code file (PolynomialRoot.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cq3, cr2, string, stringbuilder

The PolynomialRoot.java Java example source code

//package com.polytechnik.utils;
/*
 * (C) Vladislav Malyshkin 2010
 * This file is under GPL version 3.
 *
 */

/** Polynomial root.
 *  @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $
 *  @author Vladislav Malyshkin mal@gromco.com
 */

/**
* @test
* @bug 8005956
* @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
*
* @run main/timeout=300 PolynomialRoot
*/

public class PolynomialRoot  {


public static int findPolynomialRoots(final int n,
              final double [] p,
              final double [] re_root,
              final double [] im_root)
{
    if(n==4)
    {
  return root4(p,re_root,im_root);
    }
    else if(n==3)
    {
  return root3(p,re_root,im_root);
    }
    else if(n==2)
    {
  return root2(p,re_root,im_root);
    }
    else if(n==1)
    {
  return root1(p,re_root,im_root);
    }
    else
    {
  throw new RuntimeException("n="+n+" is not supported yet");
    }
}



static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0);


private static final boolean PRINT_DEBUG=false;

public static int root4(final double [] p,final double [] re_root,final double [] im_root)
{
  if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p));
  final double vs=p[4];
  if(PRINT_DEBUG) System.err.println("p[4]="+p[4]);
  if(!(Math.abs(vs)>EPS))
  {
      re_root[0]=re_root[1]=re_root[2]=re_root[3]=
    im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN;
      return -1;
  }

/* zsolve_quartic.c - finds the complex roots of
 *  x^4 + a x^3 + b x^2 + c x + d = 0
 */
  final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs;
  if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d);


  final double r4 = 1.0 / 4.0;
  final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0;
  final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0;
  final int mt;

  /* Deal easily with the cases where the quartic is degenerate. The
   * ordering of solutions is done explicitly. */
  if (0 == b && 0 == c)
  {
      if (0 == d)
      {
    re_root[0]=-a;
    im_root[0]=im_root[1]=im_root[2]=im_root[3]=0;
    re_root[1]=re_root[2]=re_root[3]=0;
    return 4;
      }
      else if (0 == a)
      {
    if (d > 0)
    {
        final double sq4 = Math.sqrt(Math.sqrt(d));
        re_root[0]=sq4*SQRT2/2;
        im_root[0]=re_root[0];
        re_root[1]=-re_root[0];
        im_root[1]=re_root[0];
        re_root[2]=-re_root[0];
        im_root[2]=-re_root[0];
        re_root[3]=re_root[0];
        im_root[3]=-re_root[0];
        if(PRINT_DEBUG) System.err.println("Path a=0 d>0");
    }
    else
    {
        final double sq4 = Math.sqrt(Math.sqrt(-d));
        re_root[0]=sq4;
        im_root[0]=0;
        re_root[1]=0;
        im_root[1]=sq4;
        re_root[2]=0;
        im_root[2]=-sq4;
        re_root[3]=-sq4;
        im_root[3]=0;
        if(PRINT_DEBUG) System.err.println("Path a=0 d<0");
    }
    return 4;
      }
  }

  if (0.0 == c && 0.0 == d)
  {
      root2(new double []{p[2],p[3],p[4]},re_root,im_root);
      re_root[2]=im_root[2]=re_root[3]=im_root[3]=0;
      return 4;
  }

  if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d);
  final double [] u=new double[3];

  if(PRINT_DEBUG) System.err.println("Generic Path");
  /* For non-degenerate solutions, proceed by constructing and
   * solving the resolvent cubic */
  final double aa = a * a;
  final double pp = b - q1 * aa;
  final double qq = c - q2 * a * (b - q4 * aa);
  final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa));
  final double rc = q2 * pp , rc3 = rc / 3;
  final double sc = q4 * (q4 * pp * pp - rr);
  final double tc = -(q8 * qq * q8 * qq);
  if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc);
  final boolean flag_realroots;

  /* This code solves the resolvent cubic in a convenient fashion
   * for this implementation of the quartic. If there are three real
   * roots, then they are placed directly into u[].  If two are
   * complex, then the real root is put into u[0] and the real
   * and imaginary part of the complex roots are placed into
   * u[1] and u[2], respectively. */
  {
      final double qcub = (rc * rc - 3 * sc);
      final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc);

      final double Q = qcub / 9;
      final double R = rcub / 54;

      final double Q3 = Q * Q * Q;
      final double R2 = R * R;

      final double CR2 = 729 * rcub * rcub;
      final double CQ3 = 2916 * qcub * qcub * qcub;

      if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q);

      if (0 == R && 0 == Q)
      {
    flag_realroots=true;
    u[0] = -rc3;
    u[1] = -rc3;
    u[2] = -rc3;
      }
      else if (CR2 == CQ3)
      {
    flag_realroots=true;
    final double sqrtQ = Math.sqrt (Q);
    if (R > 0)
    {
        u[0] = -2 * sqrtQ - rc3;
        u[1] = sqrtQ - rc3;
        u[2] = sqrtQ - rc3;
    }
    else
    {
        u[0] = -sqrtQ - rc3;
        u[1] = -sqrtQ - rc3;
        u[2] = 2 * sqrtQ - rc3;
    }
      }
      else if (R2 < Q3)
      {
    flag_realroots=true;
    final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3);
    final double theta = Math.acos (ratio);
    final double norm = -2 * Math.sqrt (Q);

    u[0] = norm * Math.cos (theta / 3) - rc3;
    u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3;
    u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3;
      }
      else
      {
    flag_realroots=false;
    final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0);
    final double B = Q / A;

    u[0] = A + B - rc3;
    u[1] = -0.5 * (A + B) - rc3;
    u[2] = -(SQRT3*0.5) * Math.abs (A - B);
      }
      if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0));
  }
  /* End of solution to resolvent cubic */

  /* Combine the square roots of the roots of the cubic
   * resolvent appropriately. Also, calculate 'mt' which
   * designates the nature of the roots:
   * mt=1 : 4 real roots
   * mt=2 : 0 real roots
   * mt=3 : 2 real roots
   */


  final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared;
  if (flag_realroots)
  {
      mod_w1w2=-1;
      mt = 2;
      int jmin=0;
      double vmin=Math.abs(u[jmin]);
      for(int j=1;j<3;j++)
      {
    final double vx=Math.abs(u[j]);
    if(vx<vmin)
    {
        vmin=vx;
        jmin=j;
    }
      }
      final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3];
      mod_w1w2_squared=Math.abs(u1*u2);
      if(u1>=0)
      {
    w1_re=Math.sqrt(u1);
    w1_im=0;
      }
      else
      {
    w1_re=0;
    w1_im=Math.sqrt(-u1);
      }
      if(u2>=0)
      {
    w2_re=Math.sqrt(u2);
    w2_im=0;
      }
      else
      {
    w2_re=0;
    w2_im=Math.sqrt(-u2);
      }
      if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin);
  }
  else
  {
      mt = 3;
      final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2);
      if(w_mod2_sq<=0)
      {
    w1_re=w1_im=0;
      }
      else
      {
    // calculate square root of a complex number (u[1],u[2])
    // the result is in the (w1_re,w1_im)
    final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w;
    if(absu1>=absu2)
    {
        final double t=absu2/absu1;
        w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t)));
        if(PRINT_DEBUG) System.err.println(" Path1 ");
    }
    else
    {
        final double t=absu1/absu2;
        w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t)));
        if(PRINT_DEBUG) System.err.println(" Path1a ");
    }
    if(u[1]>=0)
    {
        w1_re=w;
        w1_im=u[2]/(2*w);
        if(PRINT_DEBUG) System.err.println(" Path2 ");
    }
    else
    {
        final double vi = (u[2] >= 0) ? w : -w;
        w1_re=u[2]/(2*vi);
        w1_im=vi;
        if(PRINT_DEBUG) System.err.println(" Path2a ");
    }
      }
      final double absu0=Math.abs(u[0]);
      if(w_mod2>=absu0)
      {
    mod_w1w2=w_mod2;
    mod_w1w2_squared=w_mod2_sq;
    w2_re=w1_re;
    w2_im=-w1_im;
      }
      else
      {
    mod_w1w2=-1;
    mod_w1w2_squared=w_mod2*absu0;
    if(u[0]>=0)
    {
        w2_re=Math.sqrt(absu0);
        w2_im=0;
    }
    else
    {
        w2_re=0;
        w2_im=Math.sqrt(absu0);
    }
      }
      if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2);
  }

  /* Solve the quadratic in order to obtain the roots
   * to the quartic */
  if(mod_w1w2>0)
  {
      // a shorcut to reduce rounding error
      w3_re=qq/(-8)/mod_w1w2;
      w3_im=0;
  }
  else if(mod_w1w2_squared>0)
  {
      // regular path
      final double mqq8n=qq/(-8)/mod_w1w2_squared;
      w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im);
      w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im);
  }
  else
  {
      // typically occur when qq==0
      w3_re=w3_im=0;
  }

  final double h = r4 * a;
  if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h);

  re_root[0]=w1_re+w2_re+w3_re-h;
  im_root[0]=w1_im+w2_im+w3_im;
  re_root[1]=-(w1_re+w2_re)+w3_re-h;
  im_root[1]=-(w1_im+w2_im)+w3_im;
  re_root[2]=w2_re-w1_re-w3_re-h;
  im_root[2]=w2_im-w1_im-w3_im;
  re_root[3]=w1_re-w2_re-w3_re-h;
  im_root[3]=w1_im-w2_im-w3_im;

  return 4;
}



    static void setRandomP(final double [] p,final int n,java.util.Random r)
    {
  if(r.nextDouble()<0.1)
  {
      // integer coefficiens
      for(int j=0;j<p.length;j++)
      {
    if(j<=n)
    {
        p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10);
    }
    else
    {
        p[j]=0;
    }
      }
  }
  else
  {
      // real coefficiens
      for(int j=0;j<p.length;j++)
      {
    if(j<=n)
    {
        p[j]=-1+2*r.nextDouble();
    }
    else
    {
        p[j]=0;
    }
      }
  }
  if(Math.abs(p[n])<1e-2)
  {
      p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble());
  }
    }


    static void checkValues(final double [] p,
          final int n,
          final double rex,
          final double imx,
          final double eps,
          final String txt)
    {
  double res=0,ims=0,sabs=0;
  final double xabs=Math.abs(rex)+Math.abs(imx);
  for(int k=n;k>=0;k--)
  {
      final double res1=(res*rex-ims*imx)+p[k];
      final double ims1=(ims*rex+res*imx);
      res=res1;
      ims=ims1;
      sabs+=xabs*sabs+p[k];
  }
  sabs=Math.abs(sabs);
  if(false && sabs>1/eps?
     (!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))
     :
     (!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps)))
  {
      throw new RuntimeException(
    getPolinomTXT(p)+"\n"+
    "\t x.r="+rex+" x.i="+imx+"\n"+
    "res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+
    " sabs="+sabs+
    "\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+
    " sabs>1/eps="+(sabs>1/eps)+
    " f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+
    " f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+
    " "+txt);
  }
    }

    static String getPolinomTXT(final double [] p)
    {
  final StringBuilder buf=new StringBuilder();
  buf.append("order="+(p.length-1)+"\t");
  for(int k=0;k<p.length;k++)
  {
      buf.append("p["+k+"]="+p[k]+";");
  }
  return buf.toString();
    }

    static String getRootsTXT(int nr,final double [] re,final double [] im)
    {
  final StringBuilder buf=new StringBuilder();
  for(int k=0;k<nr;k++)
  {
      buf.append("x."+k+"("+re[k]+","+im[k]+")\n");
  }
  return buf.toString();
    }

    static void testRoots(final int n,
        final int n_tests,
        final java.util.Random rn,
        final double eps)
    {
  final double [] p=new double [n+1];
  final double [] rex=new double [n],imx=new double [n];
  for(int i=0;i<n_tests;i++)
  {
    for(int dg=n;dg-->-1;)
    {
      for(int dr=3;dr-->0;)
      {
        setRandomP(p,n,rn);
        for(int j=0;j<=dg;j++)
        {
      p[j]=0;
        }
        if(dr==0)
        {
      p[0]=-1+2.0*rn.nextDouble();
        }
        else if(dr==1)
        {
      p[0]=p[1]=0;
        }

        findPolynomialRoots(n,p,rex,imx);

        for(int j=0;j<n;j++)
        {
      //System.err.println("j="+j);
      checkValues(p,n,rex[j],imx[j],eps," t="+i);
        }
      }
    }
  }
  System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n);
    }




    static final double EPS=0;

    public static int root1(final double [] p,final double [] re_root,final double [] im_root)
    {
  if(!(Math.abs(p[1])>EPS))
  {
      re_root[0]=im_root[0]=Double.NaN;
      return -1;
  }
  re_root[0]=-p[0]/p[1];
  im_root[0]=0;
  return 1;
    }

    public static int root2(final double [] p,final double [] re_root,final double [] im_root)
    {
  if(!(Math.abs(p[2])>EPS))
  {
      re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN;
      return -1;
  }
  final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c;
  if(d>=0)
  {
      final double sq=Math.sqrt(d);
      if(b2<0)
      {
    re_root[1]=-b2+sq;
    re_root[0]=c/re_root[1];
      }
      else if(b2>0)
      {
    re_root[0]=-b2-sq;
    re_root[1]=c/re_root[0];
      }
      else
      {
    re_root[0]=-b2-sq;
    re_root[1]=-b2+sq;
      }
      im_root[0]=im_root[1]=0;
  }
  else
  {
      final double sq=Math.sqrt(-d);
      re_root[0]=re_root[1]=-b2;
      im_root[0]=sq;
      im_root[1]=-sq;
  }
  return 2;
    }

    public static int root3(final double [] p,final double [] re_root,final double [] im_root)
    {
  final double vs=p[3];
  if(!(Math.abs(vs)>EPS))
  {
      re_root[0]=re_root[1]=re_root[2]=
    im_root[0]=im_root[1]=im_root[2]=Double.NaN;
      return -1;
  }
  final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs;
  /* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0
   */
  final double q = (a * a - 3 * b);
  final double r = (a*(2 * a * a - 9 * b) + 27 * c);

  final double Q = q / 9;
  final double R = r / 54;

  final double Q3 = Q * Q * Q;
  final double R2 = R * R;

  final double CR2 = 729 * r * r;
  final double CQ3 = 2916 * q * q * q;
  final double a3=a/3;

  if (R == 0 && Q == 0)
  {
      re_root[0]=re_root[1]=re_root[2]=-a3;
      im_root[0]=im_root[1]=im_root[2]=0;
      return 3;
  }
  else if (CR2 == CQ3)
  {
      /* this test is actually R2 == Q3, written in a form suitable
         for exact computation with integers */

      /* Due to finite precision some double roots may be missed, and
         will be considered to be a pair of complex roots z = x +/-
         epsilon i close to the real axis. */

      final double sqrtQ = Math.sqrt (Q);

      if (R > 0)
      {
    re_root[0] = -2 * sqrtQ - a3;
    re_root[1]=re_root[2]=sqrtQ - a3;
    im_root[0]=im_root[1]=im_root[2]=0;
      }
      else
      {
    re_root[0]=re_root[1] = -sqrtQ - a3;
    re_root[2]=2 * sqrtQ - a3;
    im_root[0]=im_root[1]=im_root[2]=0;
      }
      return 3;
  }
  else if (R2 < Q3)
  {
      final double sgnR = (R >= 0 ? 1 : -1);
      final double ratio = sgnR * Math.sqrt (R2 / Q3);
      final double theta = Math.acos (ratio);
      final double norm = -2 * Math.sqrt (Q);
      final double r0 = norm * Math.cos (theta/3) - a3;
      final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3;
      final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3;

      re_root[0]=r0;
      re_root[1]=r1;
      re_root[2]=r2;
      im_root[0]=im_root[1]=im_root[2]=0;
      return 3;
  }
  else
  {
      final double sgnR = (R >= 0 ? 1 : -1);
      final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0);
      final double B = Q / A;

      re_root[0]=A + B - a3;
      im_root[0]=0;
      re_root[1]=-0.5 * (A + B) - a3;
      im_root[1]=-(SQRT3*0.5) * Math.abs(A - B);
      re_root[2]=re_root[1];
      im_root[2]=-im_root[1];
      return 3;
  }

    }


    static void root3a(final double [] p,final double [] re_root,final double [] im_root)
    {
  if(Math.abs(p[3])>EPS)
  {
      final double v=p[3],
    a=p[2]/v,b=p[1]/v,c=p[0]/v,
    a3=a/3,a3a=a3*a,
    pd3=(b-a3a)/3,
    qd2=a3*(a3a/3-0.5*b)+0.5*c,
    Q=pd3*pd3*pd3+qd2*qd2;
      if(Q<0)
      {
    // three real roots
    final double SQ=Math.sqrt(-Q);
    final double th=Math.atan2(SQ,-qd2);
    im_root[0]=im_root[1]=im_root[2]=0;
    final double f=2*Math.sqrt(-pd3);
    re_root[0]=f*Math.cos(th/3)-a3;
    re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3;
    re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3;
    //System.err.println("3r");
      }
      else
      {
    // one real & two complex roots
    final double SQ=Math.sqrt(Q);
    final double r1=-qd2+SQ,r2=-qd2-SQ;
    final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3),
        v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3),
        sv=v1+v2;
    // real root
    re_root[0]=sv-a3;
    im_root[0]=0;
    // complex roots
    re_root[1]=re_root[2]=-0.5*sv-a3;
    im_root[1]=(v1-v2)*(SQRT3*0.5);
    im_root[2]=-im_root[1];
    //System.err.println("1r2c");
      }
  }
  else
  {
      re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN;
  }
    }


    static void printSpecialValues()
    {
  for(int st=0;st<6;st++)
  {
      //final double [] p=new double []{8,1,3,3.6,1};
      final double [] re_root=new double [4],im_root=new double [4];
      final double [] p;
      final int n;
      if(st<=3)
      {
    if(st<=0)
    {
        p=new double []{2,-4,6,-4,1};
        //p=new double []{-6,6,-6,8,-2};
    }
    else if(st==1)
    {
        p=new double []{0,-4,8,3,-9};
    }
    else if(st==2)
    {
        p=new double []{-1,0,2,0,-1};
    }
    else
    {
        p=new double []{-5,2,8,-2,-3};
    }
    root4(p,re_root,im_root);
    n=4;
      }
      else
      {
    p=new double []{0,2,0,1};
    if(st==4)
    {
        p[1]=-p[1];
    }
    root3(p,re_root,im_root);
    n=3;
      }
      System.err.println("======== n="+n);
      for(int i=0;i<=n;i++)
      {
    if(i<n)
    {
        System.err.println(String.valueOf(i)+"\t"+
               p[i]+"\t"+
               re_root[i]+"\t"+
               im_root[i]);
    }
    else
    {
        System.err.println(String.valueOf(i)+"\t"+p[i]+"\t");
    }
      }
  }
    }



    public static void main(final String [] args)
    {
      if (System.getProperty("os.arch").equals("x86") ||
         System.getProperty("os.arch").equals("amd64") ||
         System.getProperty("os.arch").equals("x86_64")){
        final long t0=System.currentTimeMillis();
        final double eps=1e-6;
        //checkRoots();
        final java.util.Random r=new java.util.Random(-1381923);
        printSpecialValues();

        final int n_tests=100000;
        //testRoots(2,n_tests,r,eps);
        //testRoots(3,n_tests,r,eps);
        testRoots(4,n_tests,r,eps);
        final long t1=System.currentTimeMillis();
        System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $");
        System.out.println("PASSED");
     } else {
       System.out.println("PASS test for non-x86");
     }
   }



}

Other Java examples (source code examples)

Here is a short list of links related to this Java PolynomialRoot.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.