alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RC2Crypt.java)

This example Java source code file (RC2Crypt.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

invalidkeyexception, pi_table, rc2, rc2crypt, security, string, symmetriccipher

The RC2Crypt.java Java example source code

/*
 * Copyright (c) 2003, 2007, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.crypto.provider;

import java.security.InvalidKeyException;

/**
 * Implementation of the RC2(tm) algorithm as described in RFC 2268.
 *
 * RC2 is a 16-bit based algorithm and not particularly fast on 32/64 bit
 * architectures. Also, note that although the JVM has a 16-bit integer
 * type (short), all expressions are evaluated either in 32 or 64 bit
 * (int or long). Expression such as "s1 = s2 + s3" are implemented by
 * first promoting s2 and s3 to int, performing an int addition, and
 * then demoting the result back to short to store in s1. To avoid this
 * fairly slow process, we use the int type throughout and manually insert
 * "& 0xffff" where necessary.
 *
 * @since   1.5
 * @author  Andreas Sterbenz
 */
final class RC2Crypt extends SymmetricCipher {

    // PITABLE from the RFC, used in key setup
    private final static int[] PI_TABLE = new int[] {
        0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
        0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
        0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
        0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
        0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
        0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
        0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
        0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
        0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
        0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
        0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
        0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
        0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
        0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
        0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
        0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
        0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
        0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
        0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
        0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
        0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
        0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
        0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
        0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
        0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
        0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
        0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
        0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
        0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
        0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
        0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
        0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad,
    };

    // expanded key, 64 times 16-bit words
    private final int[] expandedKey;

    // effective key bits
    private int effectiveKeyBits;

    RC2Crypt() {
        expandedKey = new int[64];
    }

    int getBlockSize() {
        return 8;
    }

    int getEffectiveKeyBits() {
        return effectiveKeyBits;
    }

    /**
     * Initializes the effective key bit size. This method is a hook to
     * allow RC2Cipher to initialize the effective key size.
     */
    void initEffectiveKeyBits(int effectiveKeyBits) {
        this.effectiveKeyBits = effectiveKeyBits;
    }

    static void checkKey(String algorithm, int keyLength)
            throws InvalidKeyException {
        if (algorithm.equals("RC2") == false) {
            throw new InvalidKeyException("Key algorithm must be RC2");
        }
        if ((keyLength < 5) || (keyLength > 128)) {
            throw new InvalidKeyException
                ("RC2 key length must be between 40 and 1024 bit");
        }
    }

    void init(boolean decrypting, String algorithm, byte[] key)
            throws InvalidKeyException {
        int keyLength = key.length;
        if (effectiveKeyBits == 0) {
            effectiveKeyBits = keyLength << 3;
        }

        checkKey(algorithm, keyLength);

        // key buffer, the L[] byte array from the spec
        byte[] expandedKeyBytes = new byte[128];

        // place key into key buffer
        System.arraycopy(key, 0, expandedKeyBytes, 0, keyLength);

        // first loop
        int t = expandedKeyBytes[keyLength - 1];
        for (int i = keyLength; i < 128; i++) {
            t = PI_TABLE[(t + expandedKeyBytes[i - keyLength]) & 0xff];
            expandedKeyBytes[i] = (byte)t;
        }

        int t8 = (effectiveKeyBits + 7) >> 3;
        int tm = 0xff >> (-effectiveKeyBits & 7);

        // second loop, reduce search space to effective key bits
        t = PI_TABLE[expandedKeyBytes[128 - t8] & tm];
        expandedKeyBytes[128 - t8] = (byte)t;
        for (int i = 127 - t8; i >= 0; i--) {
            t = PI_TABLE[t ^ (expandedKeyBytes[i + t8] & 0xff)];
            expandedKeyBytes[i] = (byte)t;
        }

        // byte to short conversion, little endian (copy into K[])
        for (int i = 0, j = 0; i < 64; i++, j += 2) {
            t =  (expandedKeyBytes[j    ] & 0xff)
              + ((expandedKeyBytes[j + 1] & 0xff) << 8);
            expandedKey[i] = t;
        }
    }

    /**
     * Encrypt a single block. Note that in a few places we omit a "& 0xffff"
     * and allow variables to become larger than 16 bit. This still works
     * because there is never a 32 bit overflow.
     */
    void encryptBlock(byte[] in, int inOfs, byte[] out, int outOfs) {
        int R0 =  (in[inOfs    ] & 0xff)
               + ((in[inOfs + 1] & 0xff) << 8);
        int R1 =  (in[inOfs + 2] & 0xff)
               + ((in[inOfs + 3] & 0xff) << 8);
        int R2 =  (in[inOfs + 4] & 0xff)
               + ((in[inOfs + 5] & 0xff) << 8);
        int R3 =  (in[inOfs + 6] & 0xff)
               + ((in[inOfs + 7] & 0xff) << 8);

        // 5 mixing rounds
        for (int i = 0; i < 20; i += 4) {
            R0 = (R0 + expandedKey[i    ] + (R3 & R2) + (~R3 & R1)) & 0xffff;
            R0 = (R0 << 1) | (R0 >>> 15);

            R1 = (R1 + expandedKey[i + 1] + (R0 & R3) + (~R0 & R2)) & 0xffff;
            R1 = (R1 << 2) | (R1 >>> 14);

            R2 = (R2 + expandedKey[i + 2] + (R1 & R0) + (~R1 & R3)) & 0xffff;
            R2 = (R2 << 3) | (R2 >>> 13);

            R3 = (R3 + expandedKey[i + 3] + (R2 & R1) + (~R2 & R0)) & 0xffff;
            R3 = (R3 << 5) | (R3 >>> 11);
        }

        // 1 mashing round
        R0 += expandedKey[R3 & 0x3f];
        R1 += expandedKey[R0 & 0x3f];
        R2 += expandedKey[R1 & 0x3f];
        R3 += expandedKey[R2 & 0x3f];

        // 6 mixing rounds
        for (int i = 20; i < 44; i += 4) {
            R0 = (R0 + expandedKey[i    ] + (R3 & R2) + (~R3 & R1)) & 0xffff;
            R0 = (R0 << 1) | (R0 >>> 15);

            R1 = (R1 + expandedKey[i + 1] + (R0 & R3) + (~R0 & R2)) & 0xffff;
            R1 = (R1 << 2) | (R1 >>> 14);

            R2 = (R2 + expandedKey[i + 2] + (R1 & R0) + (~R1 & R3)) & 0xffff;
            R2 = (R2 << 3) | (R2 >>> 13);

            R3 = (R3 + expandedKey[i + 3] + (R2 & R1) + (~R2 & R0)) & 0xffff;
            R3 = (R3 << 5) | (R3 >>> 11);
        }

        // 1 mashing round
        R0 += expandedKey[R3 & 0x3f];
        R1 += expandedKey[R0 & 0x3f];
        R2 += expandedKey[R1 & 0x3f];
        R3 += expandedKey[R2 & 0x3f];

        // 5 mixing rounds
        for (int i = 44; i < 64; i += 4) {
            R0 = (R0 + expandedKey[i    ] + (R3 & R2) + (~R3 & R1)) & 0xffff;
            R0 = (R0 << 1) | (R0 >>> 15);

            R1 = (R1 + expandedKey[i + 1] + (R0 & R3) + (~R0 & R2)) & 0xffff;
            R1 = (R1 << 2) | (R1 >>> 14);

            R2 = (R2 + expandedKey[i + 2] + (R1 & R0) + (~R1 & R3)) & 0xffff;
            R2 = (R2 << 3) | (R2 >>> 13);

            R3 = (R3 + expandedKey[i + 3] + (R2 & R1) + (~R2 & R0)) & 0xffff;
            R3 = (R3 << 5) | (R3 >>> 11);
        }

        out[outOfs    ] = (byte)R0;
        out[outOfs + 1] = (byte)(R0 >> 8);
        out[outOfs + 2] = (byte)R1;
        out[outOfs + 3] = (byte)(R1 >> 8);
        out[outOfs + 4] = (byte)R2;
        out[outOfs + 5] = (byte)(R2 >> 8);
        out[outOfs + 6] = (byte)R3;
        out[outOfs + 7] = (byte)(R3 >> 8);
    }

    void decryptBlock(byte[] in, int inOfs, byte[] out, int outOfs) {
        int R0 =  (in[inOfs    ] & 0xff)
               + ((in[inOfs + 1] & 0xff) << 8);
        int R1 =  (in[inOfs + 2] & 0xff)
               + ((in[inOfs + 3] & 0xff) << 8);
        int R2 =  (in[inOfs + 4] & 0xff)
               + ((in[inOfs + 5] & 0xff) << 8);
        int R3 =  (in[inOfs + 6] & 0xff)
               + ((in[inOfs + 7] & 0xff) << 8);

        // 5 r-mixing rounds
        for(int i = 64; i > 44; i -= 4) {
            R3 = ((R3 << 11) | (R3 >>> 5)) & 0xffff;
            R3 = (R3 - expandedKey[i - 1] - (R2 & R1) - (~R2 & R0)) & 0xffff;

            R2 = ((R2 << 13) | (R2 >>> 3)) & 0xffff;
            R2 = (R2 - expandedKey[i - 2] - (R1 & R0) - (~R1 & R3)) & 0xffff;

            R1 = ((R1 << 14) | (R1 >>> 2)) & 0xffff;
            R1 = (R1 - expandedKey[i - 3] - (R0 & R3) - (~R0 & R2)) & 0xffff;

            R0 = ((R0 << 15) | (R0 >>> 1)) & 0xffff;
            R0 = (R0 - expandedKey[i - 4] - (R3 & R2) - (~R3 & R1)) & 0xffff;
        }

        // 1 r-mashing round
        R3 = (R3 - expandedKey[R2 & 0x3f]) & 0xffff;
        R2 = (R2 - expandedKey[R1 & 0x3f]) & 0xffff;
        R1 = (R1 - expandedKey[R0 & 0x3f]) & 0xffff;
        R0 = (R0 - expandedKey[R3 & 0x3f]) & 0xffff;

        // 6 r-mixing rounds
        for(int i = 44; i > 20; i -= 4) {
            R3 = ((R3 << 11) | (R3 >>> 5)) & 0xffff;
            R3 = (R3 - expandedKey[i - 1] - (R2 & R1) - (~R2 & R0)) & 0xffff;

            R2 = ((R2 << 13) | (R2 >>> 3)) & 0xffff;
            R2 = (R2 - expandedKey[i - 2] - (R1 & R0) - (~R1 & R3)) & 0xffff;

            R1 = ((R1 << 14) | (R1 >>> 2)) & 0xffff;
            R1 = (R1 - expandedKey[i - 3] - (R0 & R3) - (~R0 & R2)) & 0xffff;

            R0 = ((R0 << 15) | (R0 >>> 1)) & 0xffff;
            R0 = (R0 - expandedKey[i - 4] - (R3 & R2) - (~R3 & R1)) & 0xffff;
        }

        // 1 r-mashing round
        R3 = (R3 - expandedKey[R2 & 0x3f]) & 0xffff;
        R2 = (R2 - expandedKey[R1 & 0x3f]) & 0xffff;
        R1 = (R1 - expandedKey[R0 & 0x3f]) & 0xffff;
        R0 = (R0 - expandedKey[R3 & 0x3f]) & 0xffff;

        // 5 r-mixing rounds
        for(int i = 20; i > 0; i -= 4) {
            R3 = ((R3 << 11) | (R3 >>> 5)) & 0xffff;
            R3 = (R3 - expandedKey[i - 1] - (R2 & R1) - (~R2 & R0)) & 0xffff;

            R2 = ((R2 << 13) | (R2 >>> 3)) & 0xffff;
            R2 = (R2 - expandedKey[i - 2] - (R1 & R0) - (~R1 & R3)) & 0xffff;

            R1 = ((R1 << 14) | (R1 >>> 2)) & 0xffff;
            R1 = (R1 - expandedKey[i - 3] - (R0 & R3) - (~R0 & R2)) & 0xffff;

            R0 = ((R0 << 15) | (R0 >>> 1)) & 0xffff;
            R0 = (R0 - expandedKey[i - 4] - (R3 & R2) - (~R3 & R1)) & 0xffff;
        }

        out[outOfs    ] = (byte)R0;
        out[outOfs + 1] = (byte)(R0 >> 8);
        out[outOfs + 2] = (byte)R1;
        out[outOfs + 3] = (byte)(R1 >> 8);
        out[outOfs + 4] = (byte)R2;
        out[outOfs + 5] = (byte)(R2 >> 8);
        out[outOfs + 6] = (byte)R3;
        out[outOfs + 7] = (byte)(R3 >> 8);
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RC2Crypt.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.