alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Arc2D.java)

This example Java source code file (Arc2D.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arc2d, arciterator, chord, dimension2d, double, float, illegalargumentexception, open, pathiterator, pie, point2d, rectangle2d, rectangularshape, serializable

The Arc2D.java Java example source code

/*
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.geom;

import java.io.Serializable;

/**
 * <CODE>Arc2D is the abstract superclass for all objects that
 * store a 2D arc defined by a framing rectangle,
 * start angle, angular extent (length of the arc), and a closure type
 * (<CODE>OPEN, CHORD, or PIE).
 * <p>
 * <a name="inscribes">
 * The arc is a partial section of a full ellipse which
 * inscribes the framing rectangle of its parent {@link RectangularShape}.
 * </a>
 * <a name="angles">
 * The angles are specified relative to the non-square
 * framing rectangle such that 45 degrees always falls on the line from
 * the center of the ellipse to the upper right corner of the framing
 * rectangle.
 * As a result, if the framing rectangle is noticeably longer along one
 * axis than the other, the angles to the start and end of the arc segment
 * will be skewed farther along the longer axis of the frame.
 * </a>
 * <p>
 * The actual storage representation of the coordinates is left to
 * the subclass.
 *
 * @author      Jim Graham
 * @since 1.2
 */
public abstract class Arc2D extends RectangularShape {

    /**
     * The closure type for an open arc with no path segments
     * connecting the two ends of the arc segment.
     * @since 1.2
     */
    public final static int OPEN = 0;

    /**
     * The closure type for an arc closed by drawing a straight
     * line segment from the start of the arc segment to the end of the
     * arc segment.
     * @since 1.2
     */
    public final static int CHORD = 1;

    /**
     * The closure type for an arc closed by drawing straight line
     * segments from the start of the arc segment to the center
     * of the full ellipse and from that point to the end of the arc segment.
     * @since 1.2
     */
    public final static int PIE = 2;

    /**
     * This class defines an arc specified in {@code float} precision.
     * @since 1.2
     */
    public static class Float extends Arc2D implements Serializable {
        /**
         * The X coordinate of the upper-left corner of the framing
         * rectangle of the arc.
         * @since 1.2
         * @serial
         */
        public float x;

        /**
         * The Y coordinate of the upper-left corner of the framing
         * rectangle of the arc.
         * @since 1.2
         * @serial
         */
        public float y;

        /**
         * The overall width of the full ellipse of which this arc is
         * a partial section (not considering the
         * angular extents).
         * @since 1.2
         * @serial
         */
        public float width;

        /**
         * The overall height of the full ellipse of which this arc is
         * a partial section (not considering the
         * angular extents).
         * @since 1.2
         * @serial
         */
        public float height;

        /**
         * The starting angle of the arc in degrees.
         * @since 1.2
         * @serial
         */
        public float start;

        /**
         * The angular extent of the arc in degrees.
         * @since 1.2
         * @serial
         */
        public float extent;

        /**
         * Constructs a new OPEN arc, initialized to location (0, 0),
         * size (0, 0), angular extents (start = 0, extent = 0).
         * @since 1.2
         */
        public Float() {
            super(OPEN);
        }

        /**
         * Constructs a new arc, initialized to location (0, 0),
         * size (0, 0), angular extents (start = 0, extent = 0), and
         * the specified closure type.
         *
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Float(int type) {
            super(type);
        }

        /**
         * Constructs a new arc, initialized to the specified location,
         * size, angular extents, and closure type.
         *
         * @param x The X coordinate of the upper-left corner of
         *          the arc's framing rectangle.
         * @param y The Y coordinate of the upper-left corner of
         *          the arc's framing rectangle.
         * @param w The overall width of the full ellipse of which
         *          this arc is a partial section.
         * @param h The overall height of the full ellipse of which this
         *          arc is a partial section.
         * @param start The starting angle of the arc in degrees.
         * @param extent The angular extent of the arc in degrees.
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Float(float x, float y, float w, float h,
                     float start, float extent, int type) {
            super(type);
            this.x = x;
            this.y = y;
            this.width = w;
            this.height = h;
            this.start = start;
            this.extent = extent;
        }

        /**
         * Constructs a new arc, initialized to the specified location,
         * size, angular extents, and closure type.
         *
         * @param ellipseBounds The framing rectangle that defines the
         * outer boundary of the full ellipse of which this arc is a
         * partial section.
         * @param start The starting angle of the arc in degrees.
         * @param extent The angular extent of the arc in degrees.
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Float(Rectangle2D ellipseBounds,
                     float start, float extent, int type) {
            super(type);
            this.x = (float) ellipseBounds.getX();
            this.y = (float) ellipseBounds.getY();
            this.width = (float) ellipseBounds.getWidth();
            this.height = (float) ellipseBounds.getHeight();
            this.start = start;
            this.extent = extent;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getX() {
            return (double) x;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getY() {
            return (double) y;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getWidth() {
            return (double) width;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getHeight() {
            return (double) height;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public double getAngleStart() {
            return (double) start;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public double getAngleExtent() {
            return (double) extent;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public boolean isEmpty() {
            return (width <= 0.0 || height <= 0.0);
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setArc(double x, double y, double w, double h,
                           double angSt, double angExt, int closure) {
            this.setArcType(closure);
            this.x = (float) x;
            this.y = (float) y;
            this.width = (float) w;
            this.height = (float) h;
            this.start = (float) angSt;
            this.extent = (float) angExt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setAngleStart(double angSt) {
            this.start = (float) angSt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setAngleExtent(double angExt) {
            this.extent = (float) angExt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        protected Rectangle2D makeBounds(double x, double y,
                                         double w, double h) {
            return new Rectangle2D.Float((float) x, (float) y,
                                         (float) w, (float) h);
        }

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = 9130893014586380278L;

        /**
         * Writes the default serializable fields to the
         * <code>ObjectOutputStream followed by a byte
         * indicating the arc type of this <code>Arc2D
         * instance.
         *
         * @serialData
         * <ol>
         * <li>The default serializable fields.
         * <li>
         * followed by a <code>byte indicating the arc type
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * </ol>
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException
        {
            s.defaultWriteObject();

            s.writeByte(getArcType());
        }

        /**
         * Reads the default serializable fields from the
         * <code>ObjectInputStream followed by a byte
         * indicating the arc type of this <code>Arc2D
         * instance.
         *
         * @serialData
         * <ol>
         * <li>The default serializable fields.
         * <li>
         * followed by a <code>byte indicating the arc type
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * </ol>
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.lang.ClassNotFoundException, java.io.IOException
        {
            s.defaultReadObject();

            try {
                setArcType(s.readByte());
            } catch (IllegalArgumentException iae) {
                throw new java.io.InvalidObjectException(iae.getMessage());
            }
        }
    }

    /**
     * This class defines an arc specified in {@code double} precision.
     * @since 1.2
     */
    public static class Double extends Arc2D implements Serializable {
        /**
         * The X coordinate of the upper-left corner of the framing
         * rectangle of the arc.
         * @since 1.2
         * @serial
         */
        public double x;

        /**
         * The Y coordinate of the upper-left corner of the framing
         * rectangle of the arc.
         * @since 1.2
         * @serial
         */
        public double y;

        /**
         * The overall width of the full ellipse of which this arc is
         * a partial section (not considering the angular extents).
         * @since 1.2
         * @serial
         */
        public double width;

        /**
         * The overall height of the full ellipse of which this arc is
         * a partial section (not considering the angular extents).
         * @since 1.2
         * @serial
         */
        public double height;

        /**
         * The starting angle of the arc in degrees.
         * @since 1.2
         * @serial
         */
        public double start;

        /**
         * The angular extent of the arc in degrees.
         * @since 1.2
         * @serial
         */
        public double extent;

        /**
         * Constructs a new OPEN arc, initialized to location (0, 0),
         * size (0, 0), angular extents (start = 0, extent = 0).
         * @since 1.2
         */
        public Double() {
            super(OPEN);
        }

        /**
         * Constructs a new arc, initialized to location (0, 0),
         * size (0, 0), angular extents (start = 0, extent = 0), and
         * the specified closure type.
         *
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Double(int type) {
            super(type);
        }

        /**
         * Constructs a new arc, initialized to the specified location,
         * size, angular extents, and closure type.
         *
         * @param x The X coordinate of the upper-left corner
         *          of the arc's framing rectangle.
         * @param y The Y coordinate of the upper-left corner
         *          of the arc's framing rectangle.
         * @param w The overall width of the full ellipse of which this
         *          arc is a partial section.
         * @param h The overall height of the full ellipse of which this
         *          arc is a partial section.
         * @param start The starting angle of the arc in degrees.
         * @param extent The angular extent of the arc in degrees.
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Double(double x, double y, double w, double h,
                      double start, double extent, int type) {
            super(type);
            this.x = x;
            this.y = y;
            this.width = w;
            this.height = h;
            this.start = start;
            this.extent = extent;
        }

        /**
         * Constructs a new arc, initialized to the specified location,
         * size, angular extents, and closure type.
         *
         * @param ellipseBounds The framing rectangle that defines the
         * outer boundary of the full ellipse of which this arc is a
         * partial section.
         * @param start The starting angle of the arc in degrees.
         * @param extent The angular extent of the arc in degrees.
         * @param type The closure type for the arc:
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * @since 1.2
         */
        public Double(Rectangle2D ellipseBounds,
                      double start, double extent, int type) {
            super(type);
            this.x = ellipseBounds.getX();
            this.y = ellipseBounds.getY();
            this.width = ellipseBounds.getWidth();
            this.height = ellipseBounds.getHeight();
            this.start = start;
            this.extent = extent;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getX() {
            return x;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getY() {
            return y;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getWidth() {
            return width;
        }

        /**
         * {@inheritDoc}
         * Note that the arc
         * <a href="Arc2D.html#inscribes">partially inscribes
         * the framing rectangle of this {@code RectangularShape}.
         *
         * @since 1.2
         */
        public double getHeight() {
            return height;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public double getAngleStart() {
            return start;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public double getAngleExtent() {
            return extent;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public boolean isEmpty() {
            return (width <= 0.0 || height <= 0.0);
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setArc(double x, double y, double w, double h,
                           double angSt, double angExt, int closure) {
            this.setArcType(closure);
            this.x = x;
            this.y = y;
            this.width = w;
            this.height = h;
            this.start = angSt;
            this.extent = angExt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setAngleStart(double angSt) {
            this.start = angSt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        public void setAngleExtent(double angExt) {
            this.extent = angExt;
        }

        /**
         * {@inheritDoc}
         * @since 1.2
         */
        protected Rectangle2D makeBounds(double x, double y,
                                         double w, double h) {
            return new Rectangle2D.Double(x, y, w, h);
        }

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = 728264085846882001L;

        /**
         * Writes the default serializable fields to the
         * <code>ObjectOutputStream followed by a byte
         * indicating the arc type of this <code>Arc2D
         * instance.
         *
         * @serialData
         * <ol>
         * <li>The default serializable fields.
         * <li>
         * followed by a <code>byte indicating the arc type
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * </ol>
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException
        {
            s.defaultWriteObject();

            s.writeByte(getArcType());
        }

        /**
         * Reads the default serializable fields from the
         * <code>ObjectInputStream followed by a byte
         * indicating the arc type of this <code>Arc2D
         * instance.
         *
         * @serialData
         * <ol>
         * <li>The default serializable fields.
         * <li>
         * followed by a <code>byte indicating the arc type
         * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
         * </ol>
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.lang.ClassNotFoundException, java.io.IOException
        {
            s.defaultReadObject();

            try {
                setArcType(s.readByte());
            } catch (IllegalArgumentException iae) {
                throw new java.io.InvalidObjectException(iae.getMessage());
            }
        }
    }

    private int type;

    /**
     * This is an abstract class that cannot be instantiated directly.
     * Type-specific implementation subclasses are available for
     * instantiation and provide a number of formats for storing
     * the information necessary to satisfy the various accessor
     * methods below.
     * <p>
     * This constructor creates an object with a default closure
     * type of {@link #OPEN}.  It is provided only to enable
     * serialization of subclasses.
     *
     * @see java.awt.geom.Arc2D.Float
     * @see java.awt.geom.Arc2D.Double
     */
    protected Arc2D() {
        this(OPEN);
    }

    /**
     * This is an abstract class that cannot be instantiated directly.
     * Type-specific implementation subclasses are available for
     * instantiation and provide a number of formats for storing
     * the information necessary to satisfy the various accessor
     * methods below.
     *
     * @param type The closure type of this arc:
     * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
     * @see java.awt.geom.Arc2D.Float
     * @see java.awt.geom.Arc2D.Double
     * @since 1.2
     */
    protected Arc2D(int type) {
        setArcType(type);
    }

    /**
     * Returns the starting angle of the arc.
     *
     * @return A double value that represents the starting angle
     * of the arc in degrees.
     * @see #setAngleStart
     * @since 1.2
     */
    public abstract double getAngleStart();

    /**
     * Returns the angular extent of the arc.
     *
     * @return A double value that represents the angular extent
     * of the arc in degrees.
     * @see #setAngleExtent
     * @since 1.2
     */
    public abstract double getAngleExtent();

    /**
     * Returns the arc closure type of the arc: {@link #OPEN},
     * {@link #CHORD}, or {@link #PIE}.
     * @return One of the integer constant closure types defined
     * in this class.
     * @see #setArcType
     * @since 1.2
     */
    public int getArcType() {
        return type;
    }

    /**
     * Returns the starting point of the arc.  This point is the
     * intersection of the ray from the center defined by the
     * starting angle and the elliptical boundary of the arc.
     *
     * @return A <CODE>Point2D object representing the
     * x,y coordinates of the starting point of the arc.
     * @since 1.2
     */
    public Point2D getStartPoint() {
        double angle = Math.toRadians(-getAngleStart());
        double x = getX() + (Math.cos(angle) * 0.5 + 0.5) * getWidth();
        double y = getY() + (Math.sin(angle) * 0.5 + 0.5) * getHeight();
        return new Point2D.Double(x, y);
    }

    /**
     * Returns the ending point of the arc.  This point is the
     * intersection of the ray from the center defined by the
     * starting angle plus the angular extent of the arc and the
     * elliptical boundary of the arc.
     *
     * @return A <CODE>Point2D object representing the
     * x,y coordinates  of the ending point of the arc.
     * @since 1.2
     */
    public Point2D getEndPoint() {
        double angle = Math.toRadians(-getAngleStart() - getAngleExtent());
        double x = getX() + (Math.cos(angle) * 0.5 + 0.5) * getWidth();
        double y = getY() + (Math.sin(angle) * 0.5 + 0.5) * getHeight();
        return new Point2D.Double(x, y);
    }

    /**
     * Sets the location, size, angular extents, and closure type of
     * this arc to the specified double values.
     *
     * @param x The X coordinate of the upper-left corner of the arc.
     * @param y The Y coordinate of the upper-left corner of the arc.
     * @param w The overall width of the full ellipse of which
     *          this arc is a partial section.
     * @param h The overall height of the full ellipse of which
     *          this arc is a partial section.
     * @param angSt The starting angle of the arc in degrees.
     * @param angExt The angular extent of the arc in degrees.
     * @param closure The closure type for the arc:
     * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
     * @since 1.2
     */
    public abstract void setArc(double x, double y, double w, double h,
                                double angSt, double angExt, int closure);

    /**
     * Sets the location, size, angular extents, and closure type of
     * this arc to the specified values.
     *
     * @param loc The <CODE>Point2D representing the coordinates of
     * the upper-left corner of the arc.
     * @param size The <CODE>Dimension2D representing the width
     * and height of the full ellipse of which this arc is
     * a partial section.
     * @param angSt The starting angle of the arc in degrees.
     * @param angExt The angular extent of the arc in degrees.
     * @param closure The closure type for the arc:
     * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
     * @since 1.2
     */
    public void setArc(Point2D loc, Dimension2D size,
                       double angSt, double angExt, int closure) {
        setArc(loc.getX(), loc.getY(), size.getWidth(), size.getHeight(),
               angSt, angExt, closure);
    }

    /**
     * Sets the location, size, angular extents, and closure type of
     * this arc to the specified values.
     *
     * @param rect The framing rectangle that defines the
     * outer boundary of the full ellipse of which this arc is a
     * partial section.
     * @param angSt The starting angle of the arc in degrees.
     * @param angExt The angular extent of the arc in degrees.
     * @param closure The closure type for the arc:
     * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
     * @since 1.2
     */
    public void setArc(Rectangle2D rect, double angSt, double angExt,
                       int closure) {
        setArc(rect.getX(), rect.getY(), rect.getWidth(), rect.getHeight(),
               angSt, angExt, closure);
    }

    /**
     * Sets this arc to be the same as the specified arc.
     *
     * @param a The <CODE>Arc2D to use to set the arc's values.
     * @since 1.2
     */
    public void setArc(Arc2D a) {
        setArc(a.getX(), a.getY(), a.getWidth(), a.getHeight(),
               a.getAngleStart(), a.getAngleExtent(), a.type);
    }

    /**
     * Sets the position, bounds, angular extents, and closure type of
     * this arc to the specified values. The arc is defined by a center
     * point and a radius rather than a framing rectangle for the full ellipse.
     *
     * @param x The X coordinate of the center of the arc.
     * @param y The Y coordinate of the center of the arc.
     * @param radius The radius of the arc.
     * @param angSt The starting angle of the arc in degrees.
     * @param angExt The angular extent of the arc in degrees.
     * @param closure The closure type for the arc:
     * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}.
     * @since 1.2
     */
    public void setArcByCenter(double x, double y, double radius,
                               double angSt, double angExt, int closure) {
        setArc(x - radius, y - radius, radius * 2.0, radius * 2.0,
               angSt, angExt, closure);
    }

    /**
     * Sets the position, bounds, and angular extents of this arc to the
     * specified value. The starting angle of the arc is tangent to the
     * line specified by points (p1, p2), the ending angle is tangent to
     * the line specified by points (p2, p3), and the arc has the
     * specified radius.
     *
     * @param p1 The first point that defines the arc. The starting
     * angle of the arc is tangent to the line specified by points (p1, p2).
     * @param p2 The second point that defines the arc. The starting
     * angle of the arc is tangent to the line specified by points (p1, p2).
     * The ending angle of the arc is tangent to the line specified by
     * points (p2, p3).
     * @param p3 The third point that defines the arc. The ending angle
     * of the arc is tangent to the line specified by points (p2, p3).
     * @param radius The radius of the arc.
     * @since 1.2
     */
    public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3,
                                double radius) {
        double ang1 = Math.atan2(p1.getY() - p2.getY(),
                                 p1.getX() - p2.getX());
        double ang2 = Math.atan2(p3.getY() - p2.getY(),
                                 p3.getX() - p2.getX());
        double diff = ang2 - ang1;
        if (diff > Math.PI) {
            ang2 -= Math.PI * 2.0;
        } else if (diff < -Math.PI) {
            ang2 += Math.PI * 2.0;
        }
        double bisect = (ang1 + ang2) / 2.0;
        double theta = Math.abs(ang2 - bisect);
        double dist = radius / Math.sin(theta);
        double x = p2.getX() + dist * Math.cos(bisect);
        double y = p2.getY() + dist * Math.sin(bisect);
        // REMIND: This needs some work...
        if (ang1 < ang2) {
            ang1 -= Math.PI / 2.0;
            ang2 += Math.PI / 2.0;
        } else {
            ang1 += Math.PI / 2.0;
            ang2 -= Math.PI / 2.0;
        }
        ang1 = Math.toDegrees(-ang1);
        ang2 = Math.toDegrees(-ang2);
        diff = ang2 - ang1;
        if (diff < 0) {
            diff += 360;
        } else {
            diff -= 360;
        }
        setArcByCenter(x, y, radius, ang1, diff, type);
    }

    /**
     * Sets the starting angle of this arc to the specified double
     * value.
     *
     * @param angSt The starting angle of the arc in degrees.
     * @see #getAngleStart
     * @since 1.2
     */
    public abstract void setAngleStart(double angSt);

    /**
     * Sets the angular extent of this arc to the specified double
     * value.
     *
     * @param angExt The angular extent of the arc in degrees.
     * @see #getAngleExtent
     * @since 1.2
     */
    public abstract void setAngleExtent(double angExt);

    /**
     * Sets the starting angle of this arc to the angle that the
     * specified point defines relative to the center of this arc.
     * The angular extent of the arc will remain the same.
     *
     * @param p The <CODE>Point2D that defines the starting angle.
     * @see #getAngleStart
     * @since 1.2
     */
    public void setAngleStart(Point2D p) {
        // Bias the dx and dy by the height and width of the oval.
        double dx = getHeight() * (p.getX() - getCenterX());
        double dy = getWidth() * (p.getY() - getCenterY());
        setAngleStart(-Math.toDegrees(Math.atan2(dy, dx)));
    }

    /**
     * Sets the starting angle and angular extent of this arc using two
     * sets of coordinates. The first set of coordinates is used to
     * determine the angle of the starting point relative to the arc's
     * center. The second set of coordinates is used to determine the
     * angle of the end point relative to the arc's center.
     * The arc will always be non-empty and extend counterclockwise
     * from the first point around to the second point.
     *
     * @param x1 The X coordinate of the arc's starting point.
     * @param y1 The Y coordinate of the arc's starting point.
     * @param x2 The X coordinate of the arc's ending point.
     * @param y2 The Y coordinate of the arc's ending point.
     * @since 1.2
     */
    public void setAngles(double x1, double y1, double x2, double y2) {
        double x = getCenterX();
        double y = getCenterY();
        double w = getWidth();
        double h = getHeight();
        // Note: reversing the Y equations negates the angle to adjust
        // for the upside down coordinate system.
        // Also we should bias atans by the height and width of the oval.
        double ang1 = Math.atan2(w * (y - y1), h * (x1 - x));
        double ang2 = Math.atan2(w * (y - y2), h * (x2 - x));
        ang2 -= ang1;
        if (ang2 <= 0.0) {
            ang2 += Math.PI * 2.0;
        }
        setAngleStart(Math.toDegrees(ang1));
        setAngleExtent(Math.toDegrees(ang2));
    }

    /**
     * Sets the starting angle and angular extent of this arc using
     * two points. The first point is used to determine the angle of
     * the starting point relative to the arc's center.
     * The second point is used to determine the angle of the end point
     * relative to the arc's center.
     * The arc will always be non-empty and extend counterclockwise
     * from the first point around to the second point.
     *
     * @param p1 The <CODE>Point2D that defines the arc's
     * starting point.
     * @param p2 The <CODE>Point2D that defines the arc's
     * ending point.
     * @since 1.2
     */
    public void setAngles(Point2D p1, Point2D p2) {
        setAngles(p1.getX(), p1.getY(), p2.getX(), p2.getY());
    }

    /**
     * Sets the closure type of this arc to the specified value:
     * <CODE>OPEN, CHORD, or PIE.
     *
     * @param type The integer constant that represents the closure
     * type of this arc: {@link #OPEN}, {@link #CHORD}, or
     * {@link #PIE}.
     *
     * @throws IllegalArgumentException if <code>type is not
     * 0, 1, or 2.+
     * @see #getArcType
     * @since 1.2
     */
    public void setArcType(int type) {
        if (type < OPEN || type > PIE) {
            throw new IllegalArgumentException("invalid type for Arc: "+type);
        }
        this.type = type;
    }

    /**
     * {@inheritDoc}
     * Note that the arc
     * <a href="Arc2D.html#inscribes">partially inscribes
     * the framing rectangle of this {@code RectangularShape}.
     *
     * @since 1.2
     */
    public void setFrame(double x, double y, double w, double h) {
        setArc(x, y, w, h, getAngleStart(), getAngleExtent(), type);
    }

    /**
     * Returns the high-precision framing rectangle of the arc.  The framing
     * rectangle contains only the part of this <code>Arc2D that is
     * in between the starting and ending angles and contains the pie
     * wedge, if this <code>Arc2D has a PIE closure type.
     * <p>
     * This method differs from the
     * {@link RectangularShape#getBounds() getBounds} in that the
     * <code>getBounds method only returns the bounds of the
     * enclosing ellipse of this <code>Arc2D without considering
     * the starting and ending angles of this <code>Arc2D.
     *
     * @return the <CODE>Rectangle2D that represents the arc's
     * framing rectangle.
     * @since 1.2
     */
    public Rectangle2D getBounds2D() {
        if (isEmpty()) {
            return makeBounds(getX(), getY(), getWidth(), getHeight());
        }
        double x1, y1, x2, y2;
        if (getArcType() == PIE) {
            x1 = y1 = x2 = y2 = 0.0;
        } else {
            x1 = y1 = 1.0;
            x2 = y2 = -1.0;
        }
        double angle = 0.0;
        for (int i = 0; i < 6; i++) {
            if (i < 4) {
                // 0-3 are the four quadrants
                angle += 90.0;
                if (!containsAngle(angle)) {
                    continue;
                }
            } else if (i == 4) {
                // 4 is start angle
                angle = getAngleStart();
            } else {
                // 5 is end angle
                angle += getAngleExtent();
            }
            double rads = Math.toRadians(-angle);
            double xe = Math.cos(rads);
            double ye = Math.sin(rads);
            x1 = Math.min(x1, xe);
            y1 = Math.min(y1, ye);
            x2 = Math.max(x2, xe);
            y2 = Math.max(y2, ye);
        }
        double w = getWidth();
        double h = getHeight();
        x2 = (x2 - x1) * 0.5 * w;
        y2 = (y2 - y1) * 0.5 * h;
        x1 = getX() + (x1 * 0.5 + 0.5) * w;
        y1 = getY() + (y1 * 0.5 + 0.5) * h;
        return makeBounds(x1, y1, x2, y2);
    }

    /**
     * Constructs a <code>Rectangle2D of the appropriate precision
     * to hold the parameters calculated to be the framing rectangle
     * of this arc.
     *
     * @param x The X coordinate of the upper-left corner of the
     * framing rectangle.
     * @param y The Y coordinate of the upper-left corner of the
     * framing rectangle.
     * @param w The width of the framing rectangle.
     * @param h The height of the framing rectangle.
     * @return a <code>Rectangle2D that is the framing rectangle
     *     of this arc.
     * @since 1.2
     */
    protected abstract Rectangle2D makeBounds(double x, double y,
                                              double w, double h);

    /*
     * Normalizes the specified angle into the range -180 to 180.
     */
    static double normalizeDegrees(double angle) {
        if (angle > 180.0) {
            if (angle <= (180.0 + 360.0)) {
                angle = angle - 360.0;
            } else {
                angle = Math.IEEEremainder(angle, 360.0);
                // IEEEremainder can return -180 here for some input values...
                if (angle == -180.0) {
                    angle = 180.0;
                }
            }
        } else if (angle <= -180.0) {
            if (angle > (-180.0 - 360.0)) {
                angle = angle + 360.0;
            } else {
                angle = Math.IEEEremainder(angle, 360.0);
                // IEEEremainder can return -180 here for some input values...
                if (angle == -180.0) {
                    angle = 180.0;
                }
            }
        }
        return angle;
    }

    /**
     * Determines whether or not the specified angle is within the
     * angular extents of the arc.
     *
     * @param angle The angle to test.
     *
     * @return <CODE>true if the arc contains the angle,
     * <CODE>false if the arc doesn't contain the angle.
     * @since 1.2
     */
    public boolean containsAngle(double angle) {
        double angExt = getAngleExtent();
        boolean backwards = (angExt < 0.0);
        if (backwards) {
            angExt = -angExt;
        }
        if (angExt >= 360.0) {
            return true;
        }
        angle = normalizeDegrees(angle) - normalizeDegrees(getAngleStart());
        if (backwards) {
            angle = -angle;
        }
        if (angle < 0.0) {
            angle += 360.0;
        }


        return (angle >= 0.0) && (angle < angExt);
    }

    /**
     * Determines whether or not the specified point is inside the boundary
     * of the arc.
     *
     * @param x The X coordinate of the point to test.
     * @param y The Y coordinate of the point to test.
     *
     * @return <CODE>true if the point lies within the bound of
     * the arc, <CODE>false if the point lies outside of the
     * arc's bounds.
     * @since 1.2
     */
    public boolean contains(double x, double y) {
        // Normalize the coordinates compared to the ellipse
        // having a center at 0,0 and a radius of 0.5.
        double ellw = getWidth();
        if (ellw <= 0.0) {
            return false;
        }
        double normx = (x - getX()) / ellw - 0.5;
        double ellh = getHeight();
        if (ellh <= 0.0) {
            return false;
        }
        double normy = (y - getY()) / ellh - 0.5;
        double distSq = (normx * normx + normy * normy);
        if (distSq >= 0.25) {
            return false;
        }
        double angExt = Math.abs(getAngleExtent());
        if (angExt >= 360.0) {
            return true;
        }
        boolean inarc = containsAngle(-Math.toDegrees(Math.atan2(normy,
                                                                 normx)));
        if (type == PIE) {
            return inarc;
        }
        // CHORD and OPEN behave the same way
        if (inarc) {
            if (angExt >= 180.0) {
                return true;
            }
            // point must be outside the "pie triangle"
        } else {
            if (angExt <= 180.0) {
                return false;
            }
            // point must be inside the "pie triangle"
        }
        // The point is inside the pie triangle iff it is on the same
        // side of the line connecting the ends of the arc as the center.
        double angle = Math.toRadians(-getAngleStart());
        double x1 = Math.cos(angle);
        double y1 = Math.sin(angle);
        angle += Math.toRadians(-getAngleExtent());
        double x2 = Math.cos(angle);
        double y2 = Math.sin(angle);
        boolean inside = (Line2D.relativeCCW(x1, y1, x2, y2, 2*normx, 2*normy) *
                          Line2D.relativeCCW(x1, y1, x2, y2, 0, 0) >= 0);
        return inarc ? !inside : inside;
    }

    /**
     * Determines whether or not the interior of the arc intersects
     * the interior of the specified rectangle.
     *
     * @param x The X coordinate of the rectangle's upper-left corner.
     * @param y The Y coordinate of the rectangle's upper-left corner.
     * @param w The width of the rectangle.
     * @param h The height of the rectangle.
     *
     * @return <CODE>true if the arc intersects the rectangle,
     * <CODE>false if the arc doesn't intersect the rectangle.
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h) {

        double aw = getWidth();
        double ah = getHeight();

        if ( w <= 0 || h <= 0 || aw <= 0 || ah <= 0 ) {
            return false;
        }
        double ext = getAngleExtent();
        if (ext == 0) {
            return false;
        }

        double ax  = getX();
        double ay  = getY();
        double axw = ax + aw;
        double ayh = ay + ah;
        double xw  = x + w;
        double yh  = y + h;

        // check bbox
        if (x >= axw || y >= ayh || xw <= ax || yh <= ay) {
            return false;
        }

        // extract necessary data
        double axc = getCenterX();
        double ayc = getCenterY();
        Point2D sp = getStartPoint();
        Point2D ep = getEndPoint();
        double sx = sp.getX();
        double sy = sp.getY();
        double ex = ep.getX();
        double ey = ep.getY();

        /*
         * Try to catch rectangles that intersect arc in areas
         * outside of rectagle with left top corner coordinates
         * (min(center x, start point x, end point x),
         *  min(center y, start point y, end point y))
         * and rigth bottom corner coordinates
         * (max(center x, start point x, end point x),
         *  max(center y, start point y, end point y)).
         * So we'll check axis segments outside of rectangle above.
         */
        if (ayc >= y && ayc <= yh) { // 0 and 180
            if ((sx < xw && ex < xw && axc < xw &&
                 axw > x && containsAngle(0)) ||
                (sx > x && ex > x && axc > x &&
                 ax < xw && containsAngle(180))) {
                return true;
            }
        }
        if (axc >= x && axc <= xw) { // 90 and 270
            if ((sy > y && ey > y && ayc > y &&
                 ay < yh && containsAngle(90)) ||
                (sy < yh && ey < yh && ayc < yh &&
                 ayh > y && containsAngle(270))) {
                return true;
            }
        }

        /*
         * For PIE we should check intersection with pie slices;
         * also we should do the same for arcs with extent is greater
         * than 180, because we should cover case of rectangle, which
         * situated between center of arc and chord, but does not
         * intersect the chord.
         */
        Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
        if (type == PIE || Math.abs(ext) > 180) {
            // for PIE: try to find intersections with pie slices
            if (rect.intersectsLine(axc, ayc, sx, sy) ||
                rect.intersectsLine(axc, ayc, ex, ey)) {
                return true;
            }
        } else {
            // for CHORD and OPEN: try to find intersections with chord
            if (rect.intersectsLine(sx, sy, ex, ey)) {
                return true;
            }
        }

        // finally check the rectangle corners inside the arc
        if (contains(x, y) || contains(x + w, y) ||
            contains(x, y + h) || contains(x + w, y + h)) {
            return true;
        }

        return false;
    }

    /**
     * Determines whether or not the interior of the arc entirely contains
     * the specified rectangle.
     *
     * @param x The X coordinate of the rectangle's upper-left corner.
     * @param y The Y coordinate of the rectangle's upper-left corner.
     * @param w The width of the rectangle.
     * @param h The height of the rectangle.
     *
     * @return <CODE>true if the arc contains the rectangle,
     * <CODE>false if the arc doesn't contain the rectangle.
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
        return contains(x, y, w, h, null);
    }

    /**
     * Determines whether or not the interior of the arc entirely contains
     * the specified rectangle.
     *
     * @param r The <CODE>Rectangle2D to test.
     *
     * @return <CODE>true if the arc contains the rectangle,
     * <CODE>false if the arc doesn't contain the rectangle.
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
        return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight(), r);
    }

    private boolean contains(double x, double y, double w, double h,
                             Rectangle2D origrect) {
        if (!(contains(x, y) &&
              contains(x + w, y) &&
              contains(x, y + h) &&
              contains(x + w, y + h))) {
            return false;
        }
        // If the shape is convex then we have done all the testing
        // we need.  Only PIE arcs can be concave and then only if
        // the angular extents are greater than 180 degrees.
        if (type != PIE || Math.abs(getAngleExtent()) <= 180.0) {
            return true;
        }
        // For a PIE shape we have an additional test for the case where
        // the angular extents are greater than 180 degrees and all four
        // rectangular corners are inside the shape but one of the
        // rectangle edges spans across the "missing wedge" of the arc.
        // We can test for this case by checking if the rectangle intersects
        // either of the pie angle segments.
        if (origrect == null) {
            origrect = new Rectangle2D.Double(x, y, w, h);
        }
        double halfW = getWidth() / 2.0;
        double halfH = getHeight() / 2.0;
        double xc = getX() + halfW;
        double yc = getY() + halfH;
        double angle = Math.toRadians(-getAngleStart());
        double xe = xc + halfW * Math.cos(angle);
        double ye = yc + halfH * Math.sin(angle);
        if (origrect.intersectsLine(xc, yc, xe, ye)) {
            return false;
        }
        angle += Math.toRadians(-getAngleExtent());
        xe = xc + halfW * Math.cos(angle);
        ye = yc + halfH * Math.sin(angle);
        return !origrect.intersectsLine(xc, yc, xe, ye);
    }

    /**
     * Returns an iteration object that defines the boundary of the
     * arc.
     * This iterator is multithread safe.
     * <code>Arc2D guarantees that
     * modifications to the geometry of the arc
     * do not affect any iterations of that geometry that
     * are already in process.
     *
     * @param at an optional <CODE>AffineTransform to be applied
     * to the coordinates as they are returned in the iteration, or null
     * if the untransformed coordinates are desired.
     *
     * @return A <CODE>PathIterator that defines the arc's boundary.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
        return new ArcIterator(this, at);
    }

    /**
     * Returns the hashcode for this <code>Arc2D.
     * @return the hashcode for this <code>Arc2D.
     * @since 1.6
     */
    public int hashCode() {
        long bits = java.lang.Double.doubleToLongBits(getX());
        bits += java.lang.Double.doubleToLongBits(getY()) * 37;
        bits += java.lang.Double.doubleToLongBits(getWidth()) * 43;
        bits += java.lang.Double.doubleToLongBits(getHeight()) * 47;
        bits += java.lang.Double.doubleToLongBits(getAngleStart()) * 53;
        bits += java.lang.Double.doubleToLongBits(getAngleExtent()) * 59;
        bits += getArcType() * 61;
        return (((int) bits) ^ ((int) (bits >> 32)));
    }

    /**
     * Determines whether or not the specified <code>Object is
     * equal to this <code>Arc2D.  The specified
     * <code>Object is equal to this Arc2D
     * if it is an instance of <code>Arc2D and if its
     * location, size, arc extents and type are the same as this
     * <code>Arc2D.
     * @param obj  an <code>Object to be compared with this
     *             <code>Arc2D.
     * @return  <code>true if obj is an instance
     *          of <code>Arc2D and has the same values;
     *          <code>false otherwise.
     * @since 1.6
     */
    public boolean equals(Object obj) {
        if (obj == this) {
            return true;
        }
        if (obj instanceof Arc2D) {
            Arc2D a2d = (Arc2D) obj;
            return ((getX() == a2d.getX()) &&
                    (getY() == a2d.getY()) &&
                    (getWidth() == a2d.getWidth()) &&
                    (getHeight() == a2d.getHeight()) &&
                    (getAngleStart() == a2d.getAngleStart()) &&
                    (getAngleExtent() == a2d.getAngleExtent()) &&
                    (getArcType() == a2d.getArcType()));
        }
        return false;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Arc2D.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.