|
Java example source code file (DigitList.java)
The DigitList.java Java example source code/* * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved * * The original version of this source code and documentation is copyrighted * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These * materials are provided under terms of a License Agreement between Taligent * and Sun. This technology is protected by multiple US and International * patents. This notice and attribution to Taligent may not be removed. * Taligent is a registered trademark of Taligent, Inc. * */ package java.text; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import sun.misc.FloatingDecimal; /** * Digit List. Private to DecimalFormat. * Handles the transcoding * between numeric values and strings of characters. Only handles * non-negative numbers. The division of labor between DigitList and * DecimalFormat is that DigitList handles the radix 10 representation * issues; DecimalFormat handles the locale-specific issues such as * positive/negative, grouping, decimal point, currency, and so on. * * A DigitList is really a representation of a floating point value. * It may be an integer value; we assume that a double has sufficient * precision to represent all digits of a long. * * The DigitList representation consists of a string of characters, * which are the digits radix 10, from '0' to '9'. It also has a radix * 10 exponent associated with it. The value represented by a DigitList * object can be computed by mulitplying the fraction f, where 0 <= f < 1, * derived by placing all the digits of the list to the right of the * decimal point, by 10^exponent. * * @see Locale * @see Format * @see NumberFormat * @see DecimalFormat * @see ChoiceFormat * @see MessageFormat * @author Mark Davis, Alan Liu */ final class DigitList implements Cloneable { /** * The maximum number of significant digits in an IEEE 754 double, that * is, in a Java double. This must not be increased, or garbage digits * will be generated, and should not be decreased, or accuracy will be lost. */ public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length() /** * These data members are intentionally public and can be set directly. * * The value represented is given by placing the decimal point before * digits[decimalAt]. If decimalAt is < 0, then leading zeros between * the decimal point and the first nonzero digit are implied. If decimalAt * is > count, then trailing zeros between the digits[count-1] and the * decimal point are implied. * * Equivalently, the represented value is given by f * 10^decimalAt. Here * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to * the right of the decimal. * * DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We * don't allow denormalized numbers because our exponent is effectively of * unlimited magnitude. The count value contains the number of significant * digits present in digits[]. * * Zero is represented by any DigitList with count == 0 or with each digits[i] * for all i <= count == '0'. */ public int decimalAt = 0; public int count = 0; public char[] digits = new char[MAX_COUNT]; private char[] data; private RoundingMode roundingMode = RoundingMode.HALF_EVEN; private boolean isNegative = false; /** * Return true if the represented number is zero. */ boolean isZero() { for (int i=0; i < count; ++i) { if (digits[i] != '0') { return false; } } return true; } /** * Set the rounding mode */ void setRoundingMode(RoundingMode r) { roundingMode = r; } /** * Clears out the digits. * Use before appending them. * Typically, you set a series of digits with append, then at the point * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count; * then go on appending digits. */ public void clear () { decimalAt = 0; count = 0; } /** * Appends a digit to the list, extending the list when necessary. */ public void append(char digit) { if (count == digits.length) { char[] data = new char[count + 100]; System.arraycopy(digits, 0, data, 0, count); digits = data; } digits[count++] = digit; } /** * Utility routine to get the value of the digit list * If (count == 0) this throws a NumberFormatException, which * mimics Long.parseLong(). */ public final double getDouble() { if (count == 0) { return 0.0; } StringBuffer temp = getStringBuffer(); temp.append('.'); temp.append(digits, 0, count); temp.append('E'); temp.append(decimalAt); return Double.parseDouble(temp.toString()); } /** * Utility routine to get the value of the digit list. * If (count == 0) this returns 0, unlike Long.parseLong(). */ public final long getLong() { // for now, simple implementation; later, do proper IEEE native stuff if (count == 0) { return 0; } // We have to check for this, because this is the one NEGATIVE value // we represent. If we tried to just pass the digits off to parseLong, // we'd get a parse failure. if (isLongMIN_VALUE()) { return Long.MIN_VALUE; } StringBuffer temp = getStringBuffer(); temp.append(digits, 0, count); for (int i = count; i < decimalAt; ++i) { temp.append('0'); } return Long.parseLong(temp.toString()); } public final BigDecimal getBigDecimal() { if (count == 0) { if (decimalAt == 0) { return BigDecimal.ZERO; } else { return new BigDecimal("0E" + decimalAt); } } if (decimalAt == count) { return new BigDecimal(digits, 0, count); } else { return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count); } } /** * Return true if the number represented by this object can fit into * a long. * @param isPositive true if this number should be regarded as positive * @param ignoreNegativeZero true if -0 should be regarded as identical to * +0; otherwise they are considered distinct * @return true if this number fits into a Java long */ boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) { // Figure out if the result will fit in a long. We have to // first look for nonzero digits after the decimal point; // then check the size. If the digit count is 18 or less, then // the value can definitely be represented as a long. If it is 19 // then it may be too large. // Trim trailing zeros. This does not change the represented value. while (count > 0 && digits[count - 1] == '0') { --count; } if (count == 0) { // Positive zero fits into a long, but negative zero can only // be represented as a double. - bug 4162852 return isPositive || ignoreNegativeZero; } if (decimalAt < count || decimalAt > MAX_COUNT) { return false; } if (decimalAt < MAX_COUNT) return true; // At this point we have decimalAt == count, and count == MAX_COUNT. // The number will overflow if it is larger than 9223372036854775807 // or smaller than -9223372036854775808. for (int i=0; i<count; ++i) { char dig = digits[i], max = LONG_MIN_REP[i]; if (dig > max) return false; if (dig < max) return true; } // At this point the first count digits match. If decimalAt is less // than count, then the remaining digits are zero, and we return true. if (count < decimalAt) return true; // Now we have a representation of Long.MIN_VALUE, without the leading // negative sign. If this represents a positive value, then it does // not fit; otherwise it fits. return !isPositive; } /** * Set the digit list to a representation of the given double value. * This method supports fixed-point notation. * @param isNegative Boolean value indicating whether the number is negative. * @param source Value to be converted; must not be Inf, -Inf, Nan, * or a value <= 0. * @param maximumFractionDigits The most fractional digits which should * be converted. */ final void set(boolean isNegative, double source, int maximumFractionDigits) { set(isNegative, source, maximumFractionDigits, true); } /** * Set the digit list to a representation of the given double value. * This method supports both fixed-point and exponential notation. * @param isNegative Boolean value indicating whether the number is negative. * @param source Value to be converted; must not be Inf, -Inf, Nan, * or a value <= 0. * @param maximumDigits The most fractional or total digits which should * be converted. * @param fixedPoint If true, then maximumDigits is the maximum * fractional digits to be converted. If false, total digits. */ final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) { FloatingDecimal.BinaryToASCIIConverter fdConverter = FloatingDecimal.getBinaryToASCIIConverter(source); boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp(); boolean allDecimalDigits = fdConverter.decimalDigitsExact(); assert !fdConverter.isExceptional(); String digitsString = fdConverter.toJavaFormatString(); set(isNegative, digitsString, hasBeenRoundedUp, allDecimalDigits, maximumDigits, fixedPoint); } /** * Generate a representation of the form DDDDD, DDDDD.DDDDD, or * DDDDDE+/-DDDDD. * @param roundedUp Boolean value indicating if the s digits were rounded-up. * @param allDecimalDigits Boolean value indicating if the digits in s are * an exact decimal representation of the double that was passed. */ private void set(boolean isNegative, String s, boolean roundedUp, boolean allDecimalDigits, int maximumDigits, boolean fixedPoint) { this.isNegative = isNegative; int len = s.length(); char[] source = getDataChars(len); s.getChars(0, len, source, 0); decimalAt = -1; count = 0; int exponent = 0; // Number of zeros between decimal point and first non-zero digit after // decimal point, for numbers < 1. int leadingZerosAfterDecimal = 0; boolean nonZeroDigitSeen = false; for (int i = 0; i < len; ) { char c = source[i++]; if (c == '.') { decimalAt = count; } else if (c == 'e' || c == 'E') { exponent = parseInt(source, i, len); break; } else { if (!nonZeroDigitSeen) { nonZeroDigitSeen = (c != '0'); if (!nonZeroDigitSeen && decimalAt != -1) ++leadingZerosAfterDecimal; } if (nonZeroDigitSeen) { digits[count++] = c; } } } if (decimalAt == -1) { decimalAt = count; } if (nonZeroDigitSeen) { decimalAt += exponent - leadingZerosAfterDecimal; } if (fixedPoint) { // The negative of the exponent represents the number of leading // zeros between the decimal and the first non-zero digit, for // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this // is more than the maximum fraction digits, then we have an underflow // for the printed representation. if (-decimalAt > maximumDigits) { // Handle an underflow to zero when we round something like // 0.0009 to 2 fractional digits. count = 0; return; } else if (-decimalAt == maximumDigits) { // If we round 0.0009 to 3 fractional digits, then we have to // create a new one digit in the least significant location. if (shouldRoundUp(0, roundedUp, allDecimalDigits)) { count = 1; ++decimalAt; digits[0] = '1'; } else { count = 0; } return; } // else fall through } // Eliminate trailing zeros. while (count > 1 && digits[count - 1] == '0') { --count; } // Eliminate digits beyond maximum digits to be displayed. // Round up if appropriate. round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits, roundedUp, allDecimalDigits); } /** * Round the representation to the given number of digits. * @param maximumDigits The maximum number of digits to be shown. * @param alreadyRounded Boolean indicating if rounding up already happened. * @param allDecimalDigits Boolean indicating if the digits provide an exact * representation of the value. * * Upon return, count will be less than or equal to maximumDigits. */ private final void round(int maximumDigits, boolean alreadyRounded, boolean allDecimalDigits) { // Eliminate digits beyond maximum digits to be displayed. // Round up if appropriate. if (maximumDigits >= 0 && maximumDigits < count) { if (shouldRoundUp(maximumDigits, alreadyRounded, allDecimalDigits)) { // Rounding up involved incrementing digits from LSD to MSD. // In most cases this is simple, but in a worst case situation // (9999..99) we have to adjust the decimalAt value. for (;;) { --maximumDigits; if (maximumDigits < 0) { // We have all 9's, so we increment to a single digit // of one and adjust the exponent. digits[0] = '1'; ++decimalAt; maximumDigits = 0; // Adjust the count break; } ++digits[maximumDigits]; if (digits[maximumDigits] <= '9') break; // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this } ++maximumDigits; // Increment for use as count } count = maximumDigits; // Eliminate trailing zeros. while (count > 1 && digits[count-1] == '0') { --count; } } } /** * Return true if truncating the representation to the given number * of digits will result in an increment to the last digit. This * method implements the rounding modes defined in the * java.math.RoundingMode class. * [bnf] * @param maximumDigits the number of digits to keep, from 0 to * <code>count-1. If 0, then all digits are rounded away, and * this method returns true if a one should be generated (e.g., formatting * 0.09 with "#.#"). * @exception ArithmeticException if rounding is needed with rounding * mode being set to RoundingMode.UNNECESSARY * @return true if digit <code>maximumDigits-1 should be * incremented */ private boolean shouldRoundUp(int maximumDigits, boolean alreadyRounded, boolean allDecimalDigits) { if (maximumDigits < count) { /* * To avoid erroneous double-rounding or truncation when converting * a binary double value to text, information about the exactness * of the conversion result in FloatingDecimal, as well as any * rounding done, is needed in this class. * * - For the HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below: * In the case of formating float or double, We must take into * account what FloatingDecimal has done in the binary to decimal * conversion. * * Considering the tie cases, FloatingDecimal may round-up the * value (returning decimal digits equal to tie when it is below), * or "truncate" the value to the tie while value is above it, * or provide the exact decimal digits when the binary value can be * converted exactly to its decimal representation given formating * rules of FloatingDecimal ( we have thus an exact decimal * representation of the binary value). * * - If the double binary value was converted exactly as a decimal * value, then DigitList code must apply the expected rounding * rule. * * - If FloatingDecimal already rounded up the decimal value, * DigitList should neither round up the value again in any of * the three rounding modes above. * * - If FloatingDecimal has truncated the decimal value to * an ending '5' digit, DigitList should round up the value in * all of the three rounding modes above. * * * This has to be considered only if digit at maximumDigits index * is exactly the last one in the set of digits, otherwise there are * remaining digits after that position and we don't have to consider * what FloatingDecimal did. * * - Other rounding modes are not impacted by these tie cases. * * - For other numbers that are always converted to exact digits * (like BigInteger, Long, ...), the passed alreadyRounded boolean * have to be set to false, and allDecimalDigits has to be set to * true in the upper DigitList call stack, providing the right state * for those situations.. */ switch(roundingMode) { case UP: for (int i=maximumDigits; i<count; ++i) { if (digits[i] != '0') { return true; } } break; case DOWN: break; case CEILING: for (int i=maximumDigits; i<count; ++i) { if (digits[i] != '0') { return !isNegative; } } break; case FLOOR: for (int i=maximumDigits; i<count; ++i) { if (digits[i] != '0') { return isNegative; } } break; case HALF_UP: if (digits[maximumDigits] >= '5') { // We should not round up if the rounding digits position is // exactly the last index and if digits were already rounded. if ((maximumDigits == (count - 1)) && (alreadyRounded)) return false; // Value was exactly at or was above tie. We must round up. return true; } break; case HALF_DOWN: if (digits[maximumDigits] > '5') { return true; } else if (digits[maximumDigits] == '5' ) { if (maximumDigits == (count - 1)) { // The rounding position is exactly the last index. if (allDecimalDigits || alreadyRounded) /* FloatingDecimal rounded up (value was below tie), * or provided the exact list of digits (value was * an exact tie). We should not round up, following * the HALF_DOWN rounding rule. */ return false; else // Value was above the tie, we must round up. return true; } // We must round up if it gives a non null digit after '5'. for (int i=maximumDigits+1; i<count; ++i) { if (digits[i] != '0') { return true; } } } break; case HALF_EVEN: // Implement IEEE half-even rounding if (digits[maximumDigits] > '5') { return true; } else if (digits[maximumDigits] == '5' ) { if (maximumDigits == (count - 1)) { // the rounding position is exactly the last index : if (alreadyRounded) // If FloatingDecimal rounded up (value was below tie), // then we should not round up again. return false; if (!allDecimalDigits) // Otherwise if the digits don't represent exact value, // value was above tie and FloatingDecimal truncated // digits to tie. We must round up. return true; else { // This is an exact tie value, and FloatingDecimal // provided all of the exact digits. We thus apply // HALF_EVEN rounding rule. return ((maximumDigits > 0) && (digits[maximumDigits-1] % 2 != 0)); } } else { // Rounds up if it gives a non null digit after '5' for (int i=maximumDigits+1; i<count; ++i) { if (digits[i] != '0') return true; } } } break; case UNNECESSARY: for (int i=maximumDigits; i<count; ++i) { if (digits[i] != '0') { throw new ArithmeticException( "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY"); } } break; default: assert false; } } return false; } /** * Utility routine to set the value of the digit list from a long */ final void set(boolean isNegative, long source) { set(isNegative, source, 0); } /** * Set the digit list to a representation of the given long value. * @param isNegative Boolean value indicating whether the number is negative. * @param source Value to be converted; must be >= 0 or == * Long.MIN_VALUE. * @param maximumDigits The most digits which should be converted. * If maximumDigits is lower than the number of significant digits * in source, the representation will be rounded. Ignored if <= 0. */ final void set(boolean isNegative, long source, int maximumDigits) { this.isNegative = isNegative; // This method does not expect a negative number. However, // "source" can be a Long.MIN_VALUE (-9223372036854775808), // if the number being formatted is a Long.MIN_VALUE. In that // case, it will be formatted as -Long.MIN_VALUE, a number // which is outside the legal range of a long, but which can // be represented by DigitList. if (source <= 0) { if (source == Long.MIN_VALUE) { decimalAt = count = MAX_COUNT; System.arraycopy(LONG_MIN_REP, 0, digits, 0, count); } else { decimalAt = count = 0; // Values <= 0 format as zero } } else { // Rewritten to improve performance. I used to call // Long.toString(), which was about 4x slower than this code. int left = MAX_COUNT; int right; while (source > 0) { digits[--left] = (char)('0' + (source % 10)); source /= 10; } decimalAt = MAX_COUNT - left; // Don't copy trailing zeros. We are guaranteed that there is at // least one non-zero digit, so we don't have to check lower bounds. for (right = MAX_COUNT - 1; digits[right] == '0'; --right) ; count = right - left + 1; System.arraycopy(digits, left, digits, 0, count); } if (maximumDigits > 0) round(maximumDigits, false, true); } /** * Set the digit list to a representation of the given BigDecimal value. * This method supports both fixed-point and exponential notation. * @param isNegative Boolean value indicating whether the number is negative. * @param source Value to be converted; must not be a value <= 0. * @param maximumDigits The most fractional or total digits which should * be converted. * @param fixedPoint If true, then maximumDigits is the maximum * fractional digits to be converted. If false, total digits. */ final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) { String s = source.toString(); extendDigits(s.length()); set(isNegative, s, false, true, maximumDigits, fixedPoint); } /** * Set the digit list to a representation of the given BigInteger value. * @param isNegative Boolean value indicating whether the number is negative. * @param source Value to be converted; must be >= 0. * @param maximumDigits The most digits which should be converted. * If maximumDigits is lower than the number of significant digits * in source, the representation will be rounded. Ignored if <= 0. */ final void set(boolean isNegative, BigInteger source, int maximumDigits) { this.isNegative = isNegative; String s = source.toString(); int len = s.length(); extendDigits(len); s.getChars(0, len, digits, 0); decimalAt = len; int right; for (right = len - 1; right >= 0 && digits[right] == '0'; --right) ; count = right + 1; if (maximumDigits > 0) { round(maximumDigits, false, true); } } /** * equality test between two digit lists. */ public boolean equals(Object obj) { if (this == obj) // quick check return true; if (!(obj instanceof DigitList)) // (1) same object? return false; DigitList other = (DigitList) obj; if (count != other.count || decimalAt != other.decimalAt) return false; for (int i = 0; i < count; i++) if (digits[i] != other.digits[i]) return false; return true; } /** * Generates the hash code for the digit list. */ public int hashCode() { int hashcode = decimalAt; for (int i = 0; i < count; i++) { hashcode = hashcode * 37 + digits[i]; } return hashcode; } /** * Creates a copy of this object. * @return a clone of this instance. */ public Object clone() { try { DigitList other = (DigitList) super.clone(); char[] newDigits = new char[digits.length]; System.arraycopy(digits, 0, newDigits, 0, digits.length); other.digits = newDigits; other.tempBuffer = null; return other; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns true if this DigitList represents Long.MIN_VALUE; * false, otherwise. This is required so that getLong() works. */ private boolean isLongMIN_VALUE() { if (decimalAt != count || count != MAX_COUNT) { return false; } for (int i = 0; i < count; ++i) { if (digits[i] != LONG_MIN_REP[i]) return false; } return true; } private static final int parseInt(char[] str, int offset, int strLen) { char c; boolean positive = true; if ((c = str[offset]) == '-') { positive = false; offset++; } else if (c == '+') { offset++; } int value = 0; while (offset < strLen) { c = str[offset++]; if (c >= '0' && c <= '9') { value = value * 10 + (c - '0'); } else { break; } } return positive ? value : -value; } // The digit part of -9223372036854775808L private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray(); public String toString() { if (isZero()) { return "0"; } StringBuffer buf = getStringBuffer(); buf.append("0."); buf.append(digits, 0, count); buf.append("x10^"); buf.append(decimalAt); return buf.toString(); } private StringBuffer tempBuffer; private StringBuffer getStringBuffer() { if (tempBuffer == null) { tempBuffer = new StringBuffer(MAX_COUNT); } else { tempBuffer.setLength(0); } return tempBuffer; } private void extendDigits(int len) { if (len > digits.length) { digits = new char[len]; } } private final char[] getDataChars(int length) { if (data == null || data.length < length) { data = new char[length]; } return data; } } Other Java examples (source code examples)Here is a short list of links related to this Java DigitList.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.