alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (DigitList.java)

This example Java source code file (DigitList.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bigdecimal, cloneable, clonenotsupportedexception, digitlist, floor, half_down, half_even, long_min_rep, math, max_count, rounding, stringbuffer, unnecessary, values

The DigitList.java Java example source code

/*
 * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
 * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
 *
 *   The original version of this source code and documentation is copyrighted
 * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
 * materials are provided under terms of a License Agreement between Taligent
 * and Sun. This technology is protected by multiple US and International
 * patents. This notice and attribution to Taligent may not be removed.
 *   Taligent is a registered trademark of Taligent, Inc.
 *
 */

package java.text;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import sun.misc.FloatingDecimal;

/**
 * Digit List. Private to DecimalFormat.
 * Handles the transcoding
 * between numeric values and strings of characters.  Only handles
 * non-negative numbers.  The division of labor between DigitList and
 * DecimalFormat is that DigitList handles the radix 10 representation
 * issues; DecimalFormat handles the locale-specific issues such as
 * positive/negative, grouping, decimal point, currency, and so on.
 *
 * A DigitList is really a representation of a floating point value.
 * It may be an integer value; we assume that a double has sufficient
 * precision to represent all digits of a long.
 *
 * The DigitList representation consists of a string of characters,
 * which are the digits radix 10, from '0' to '9'.  It also has a radix
 * 10 exponent associated with it.  The value represented by a DigitList
 * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
 * derived by placing all the digits of the list to the right of the
 * decimal point, by 10^exponent.
 *
 * @see  Locale
 * @see  Format
 * @see  NumberFormat
 * @see  DecimalFormat
 * @see  ChoiceFormat
 * @see  MessageFormat
 * @author       Mark Davis, Alan Liu
 */
final class DigitList implements Cloneable {
    /**
     * The maximum number of significant digits in an IEEE 754 double, that
     * is, in a Java double.  This must not be increased, or garbage digits
     * will be generated, and should not be decreased, or accuracy will be lost.
     */
    public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()

    /**
     * These data members are intentionally public and can be set directly.
     *
     * The value represented is given by placing the decimal point before
     * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
     * the decimal point and the first nonzero digit are implied.  If decimalAt
     * is > count, then trailing zeros between the digits[count-1] and the
     * decimal point are implied.
     *
     * Equivalently, the represented value is given by f * 10^decimalAt.  Here
     * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
     * the right of the decimal.
     *
     * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
     * don't allow denormalized numbers because our exponent is effectively of
     * unlimited magnitude.  The count value contains the number of significant
     * digits present in digits[].
     *
     * Zero is represented by any DigitList with count == 0 or with each digits[i]
     * for all i <= count == '0'.
     */
    public int decimalAt = 0;
    public int count = 0;
    public char[] digits = new char[MAX_COUNT];

    private char[] data;
    private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
    private boolean isNegative = false;

    /**
     * Return true if the represented number is zero.
     */
    boolean isZero() {
        for (int i=0; i < count; ++i) {
            if (digits[i] != '0') {
                return false;
            }
        }
        return true;
    }

    /**
     * Set the rounding mode
     */
    void setRoundingMode(RoundingMode r) {
        roundingMode = r;
    }

    /**
     * Clears out the digits.
     * Use before appending them.
     * Typically, you set a series of digits with append, then at the point
     * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
     * then go on appending digits.
     */
    public void clear () {
        decimalAt = 0;
        count = 0;
    }

    /**
     * Appends a digit to the list, extending the list when necessary.
     */
    public void append(char digit) {
        if (count == digits.length) {
            char[] data = new char[count + 100];
            System.arraycopy(digits, 0, data, 0, count);
            digits = data;
        }
        digits[count++] = digit;
    }

    /**
     * Utility routine to get the value of the digit list
     * If (count == 0) this throws a NumberFormatException, which
     * mimics Long.parseLong().
     */
    public final double getDouble() {
        if (count == 0) {
            return 0.0;
        }

        StringBuffer temp = getStringBuffer();
        temp.append('.');
        temp.append(digits, 0, count);
        temp.append('E');
        temp.append(decimalAt);
        return Double.parseDouble(temp.toString());
    }

    /**
     * Utility routine to get the value of the digit list.
     * If (count == 0) this returns 0, unlike Long.parseLong().
     */
    public final long getLong() {
        // for now, simple implementation; later, do proper IEEE native stuff

        if (count == 0) {
            return 0;
        }

        // We have to check for this, because this is the one NEGATIVE value
        // we represent.  If we tried to just pass the digits off to parseLong,
        // we'd get a parse failure.
        if (isLongMIN_VALUE()) {
            return Long.MIN_VALUE;
        }

        StringBuffer temp = getStringBuffer();
        temp.append(digits, 0, count);
        for (int i = count; i < decimalAt; ++i) {
            temp.append('0');
        }
        return Long.parseLong(temp.toString());
    }

    public final BigDecimal getBigDecimal() {
        if (count == 0) {
            if (decimalAt == 0) {
                return BigDecimal.ZERO;
            } else {
                return new BigDecimal("0E" + decimalAt);
            }
        }

       if (decimalAt == count) {
           return new BigDecimal(digits, 0, count);
       } else {
           return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
       }
    }

    /**
     * Return true if the number represented by this object can fit into
     * a long.
     * @param isPositive true if this number should be regarded as positive
     * @param ignoreNegativeZero true if -0 should be regarded as identical to
     * +0; otherwise they are considered distinct
     * @return true if this number fits into a Java long
     */
    boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
        // Figure out if the result will fit in a long.  We have to
        // first look for nonzero digits after the decimal point;
        // then check the size.  If the digit count is 18 or less, then
        // the value can definitely be represented as a long.  If it is 19
        // then it may be too large.

        // Trim trailing zeros.  This does not change the represented value.
        while (count > 0 && digits[count - 1] == '0') {
            --count;
        }

        if (count == 0) {
            // Positive zero fits into a long, but negative zero can only
            // be represented as a double. - bug 4162852
            return isPositive || ignoreNegativeZero;
        }

        if (decimalAt < count || decimalAt > MAX_COUNT) {
            return false;
        }

        if (decimalAt < MAX_COUNT) return true;

        // At this point we have decimalAt == count, and count == MAX_COUNT.
        // The number will overflow if it is larger than 9223372036854775807
        // or smaller than -9223372036854775808.
        for (int i=0; i<count; ++i) {
            char dig = digits[i], max = LONG_MIN_REP[i];
            if (dig > max) return false;
            if (dig < max) return true;
        }

        // At this point the first count digits match.  If decimalAt is less
        // than count, then the remaining digits are zero, and we return true.
        if (count < decimalAt) return true;

        // Now we have a representation of Long.MIN_VALUE, without the leading
        // negative sign.  If this represents a positive value, then it does
        // not fit; otherwise it fits.
        return !isPositive;
    }

    /**
     * Set the digit list to a representation of the given double value.
     * This method supports fixed-point notation.
     * @param isNegative Boolean value indicating whether the number is negative.
     * @param source Value to be converted; must not be Inf, -Inf, Nan,
     * or a value <= 0.
     * @param maximumFractionDigits The most fractional digits which should
     * be converted.
     */
    final void set(boolean isNegative, double source, int maximumFractionDigits) {
        set(isNegative, source, maximumFractionDigits, true);
    }

    /**
     * Set the digit list to a representation of the given double value.
     * This method supports both fixed-point and exponential notation.
     * @param isNegative Boolean value indicating whether the number is negative.
     * @param source Value to be converted; must not be Inf, -Inf, Nan,
     * or a value <= 0.
     * @param maximumDigits The most fractional or total digits which should
     * be converted.
     * @param fixedPoint If true, then maximumDigits is the maximum
     * fractional digits to be converted.  If false, total digits.
     */
    final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {

        FloatingDecimal.BinaryToASCIIConverter fdConverter  = FloatingDecimal.getBinaryToASCIIConverter(source);
        boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
        boolean allDecimalDigits = fdConverter.decimalDigitsExact();
        assert !fdConverter.isExceptional();
        String digitsString = fdConverter.toJavaFormatString();

        set(isNegative, digitsString,
            hasBeenRoundedUp, allDecimalDigits,
            maximumDigits, fixedPoint);
    }

    /**
     * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
     * DDDDDE+/-DDDDD.
     * @param roundedUp Boolean value indicating if the s digits were rounded-up.
     * @param allDecimalDigits Boolean value indicating if the digits in s are
     * an exact decimal representation of the double that was passed.
     */
    private void set(boolean isNegative, String s,
                     boolean roundedUp, boolean allDecimalDigits,
                     int maximumDigits, boolean fixedPoint) {
        this.isNegative = isNegative;
        int len = s.length();
        char[] source = getDataChars(len);
        s.getChars(0, len, source, 0);

        decimalAt = -1;
        count = 0;
        int exponent = 0;
        // Number of zeros between decimal point and first non-zero digit after
        // decimal point, for numbers < 1.
        int leadingZerosAfterDecimal = 0;
        boolean nonZeroDigitSeen = false;

        for (int i = 0; i < len; ) {
            char c = source[i++];
            if (c == '.') {
                decimalAt = count;
            } else if (c == 'e' || c == 'E') {
                exponent = parseInt(source, i, len);
                break;
            } else {
                if (!nonZeroDigitSeen) {
                    nonZeroDigitSeen = (c != '0');
                    if (!nonZeroDigitSeen && decimalAt != -1)
                        ++leadingZerosAfterDecimal;
                }
                if (nonZeroDigitSeen) {
                    digits[count++] = c;
                }
            }
        }
        if (decimalAt == -1) {
            decimalAt = count;
        }
        if (nonZeroDigitSeen) {
            decimalAt += exponent - leadingZerosAfterDecimal;
        }

        if (fixedPoint) {
            // The negative of the exponent represents the number of leading
            // zeros between the decimal and the first non-zero digit, for
            // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
            // is more than the maximum fraction digits, then we have an underflow
            // for the printed representation.
            if (-decimalAt > maximumDigits) {
                // Handle an underflow to zero when we round something like
                // 0.0009 to 2 fractional digits.
                count = 0;
                return;
            } else if (-decimalAt == maximumDigits) {
                // If we round 0.0009 to 3 fractional digits, then we have to
                // create a new one digit in the least significant location.
                if (shouldRoundUp(0, roundedUp, allDecimalDigits)) {
                    count = 1;
                    ++decimalAt;
                    digits[0] = '1';
                } else {
                    count = 0;
                }
                return;
            }
            // else fall through
        }

        // Eliminate trailing zeros.
        while (count > 1 && digits[count - 1] == '0') {
            --count;
        }

        // Eliminate digits beyond maximum digits to be displayed.
        // Round up if appropriate.
        round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
              roundedUp, allDecimalDigits);
    }

    /**
     * Round the representation to the given number of digits.
     * @param maximumDigits The maximum number of digits to be shown.
     * @param alreadyRounded Boolean indicating if rounding up already happened.
     * @param allDecimalDigits Boolean indicating if the digits provide an exact
     * representation of the value.
     *
     * Upon return, count will be less than or equal to maximumDigits.
     */
    private final void round(int maximumDigits,
                             boolean alreadyRounded,
                             boolean allDecimalDigits) {
        // Eliminate digits beyond maximum digits to be displayed.
        // Round up if appropriate.
        if (maximumDigits >= 0 && maximumDigits < count) {
            if (shouldRoundUp(maximumDigits, alreadyRounded, allDecimalDigits)) {
                // Rounding up involved incrementing digits from LSD to MSD.
                // In most cases this is simple, but in a worst case situation
                // (9999..99) we have to adjust the decimalAt value.
                for (;;) {
                    --maximumDigits;
                    if (maximumDigits < 0) {
                        // We have all 9's, so we increment to a single digit
                        // of one and adjust the exponent.
                        digits[0] = '1';
                        ++decimalAt;
                        maximumDigits = 0; // Adjust the count
                        break;
                    }

                    ++digits[maximumDigits];
                    if (digits[maximumDigits] <= '9') break;
                    // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
                }
                ++maximumDigits; // Increment for use as count
            }
            count = maximumDigits;

            // Eliminate trailing zeros.
            while (count > 1 && digits[count-1] == '0') {
                --count;
            }
        }
    }


    /**
     * Return true if truncating the representation to the given number
     * of digits will result in an increment to the last digit.  This
     * method implements the rounding modes defined in the
     * java.math.RoundingMode class.
     * [bnf]
     * @param maximumDigits the number of digits to keep, from 0 to
     * <code>count-1.  If 0, then all digits are rounded away, and
     * this method returns true if a one should be generated (e.g., formatting
     * 0.09 with "#.#").
     * @exception ArithmeticException if rounding is needed with rounding
     *            mode being set to RoundingMode.UNNECESSARY
     * @return true if digit <code>maximumDigits-1 should be
     * incremented
     */
    private boolean shouldRoundUp(int maximumDigits,
                                  boolean alreadyRounded,
                                  boolean allDecimalDigits) {
        if (maximumDigits < count) {
            /*
             * To avoid erroneous double-rounding or truncation when converting
             * a binary double value to text, information about the exactness
             * of the conversion result in FloatingDecimal, as well as any
             * rounding done, is needed in this class.
             *
             * - For the  HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
             *   In the case of formating float or double, We must take into
             *   account what FloatingDecimal has done in the binary to decimal
             *   conversion.
             *
             *   Considering the tie cases, FloatingDecimal may round-up the
             *   value (returning decimal digits equal to tie when it is below),
             *   or "truncate" the value to the tie while value is above it,
             *   or provide the exact decimal digits when the binary value can be
             *   converted exactly to its decimal representation given formating
             *   rules of FloatingDecimal ( we have thus an exact decimal
             *   representation of the binary value).
             *
             *   - If the double binary value was converted exactly as a decimal
             *     value, then DigitList code must apply the expected rounding
             *     rule.
             *
             *   - If FloatingDecimal already rounded up the decimal value,
             *     DigitList should neither round up the value again in any of
             *     the three rounding modes above.
             *
             *   - If FloatingDecimal has truncated the decimal value to
             *     an ending '5' digit, DigitList should round up the value in
             *     all of the three rounding modes above.
             *
             *
             *   This has to be considered only if digit at maximumDigits index
             *   is exactly the last one in the set of digits, otherwise there are
             *   remaining digits after that position and we don't have to consider
             *   what FloatingDecimal did.
             *
             * - Other rounding modes are not impacted by these tie cases.
             *
             * - For other numbers that are always converted to exact digits
             *   (like BigInteger, Long, ...), the passed alreadyRounded boolean
             *   have to be  set to false, and allDecimalDigits has to be set to
             *   true in the upper DigitList call stack, providing the right state
             *   for those situations..
             */

            switch(roundingMode) {
            case UP:
                for (int i=maximumDigits; i<count; ++i) {
                    if (digits[i] != '0') {
                        return true;
                    }
                }
                break;
            case DOWN:
                break;
            case CEILING:
                for (int i=maximumDigits; i<count; ++i) {
                    if (digits[i] != '0') {
                        return !isNegative;
                    }
                }
                break;
            case FLOOR:
                for (int i=maximumDigits; i<count; ++i) {
                    if (digits[i] != '0') {
                        return isNegative;
                    }
                }
                break;
            case HALF_UP:
                if (digits[maximumDigits] >= '5') {
                    // We should not round up if the rounding digits position is
                    // exactly the last index and if digits were already rounded.
                    if ((maximumDigits == (count - 1)) &&
                        (alreadyRounded))
                        return false;

                    // Value was exactly at or was above tie. We must round up.
                    return true;
                }
                break;
            case HALF_DOWN:
                if (digits[maximumDigits] > '5') {
                    return true;
                } else if (digits[maximumDigits] == '5' ) {
                    if (maximumDigits == (count - 1)) {
                        // The rounding position is exactly the last index.
                        if (allDecimalDigits || alreadyRounded)
                            /* FloatingDecimal rounded up (value was below tie),
                             * or provided the exact list of digits (value was
                             * an exact tie). We should not round up, following
                             * the HALF_DOWN rounding rule.
                             */
                            return false;
                        else
                            // Value was above the tie, we must round up.
                            return true;
                    }

                    // We must round up if it gives a non null digit after '5'.
                    for (int i=maximumDigits+1; i<count; ++i) {
                        if (digits[i] != '0') {
                            return true;
                        }
                    }
                }
                break;
            case HALF_EVEN:
                // Implement IEEE half-even rounding
                if (digits[maximumDigits] > '5') {
                    return true;
                } else if (digits[maximumDigits] == '5' ) {
                    if (maximumDigits == (count - 1)) {
                        // the rounding position is exactly the last index :
                        if (alreadyRounded)
                            // If FloatingDecimal rounded up (value was below tie),
                            // then we should not round up again.
                            return false;

                        if (!allDecimalDigits)
                            // Otherwise if the digits don't represent exact value,
                            // value was above tie and FloatingDecimal truncated
                            // digits to tie. We must round up.
                            return true;
                        else {
                            // This is an exact tie value, and FloatingDecimal
                            // provided all of the exact digits. We thus apply
                            // HALF_EVEN rounding rule.
                            return ((maximumDigits > 0) &&
                                    (digits[maximumDigits-1] % 2 != 0));
                        }
                    } else {
                        // Rounds up if it gives a non null digit after '5'
                        for (int i=maximumDigits+1; i<count; ++i) {
                            if (digits[i] != '0')
                                return true;
                        }
                    }
                }
                break;
            case UNNECESSARY:
                for (int i=maximumDigits; i<count; ++i) {
                    if (digits[i] != '0') {
                        throw new ArithmeticException(
                            "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
                    }
                }
                break;
            default:
                assert false;
            }
        }
        return false;
    }

    /**
     * Utility routine to set the value of the digit list from a long
     */
    final void set(boolean isNegative, long source) {
        set(isNegative, source, 0);
    }

    /**
     * Set the digit list to a representation of the given long value.
     * @param isNegative Boolean value indicating whether the number is negative.
     * @param source Value to be converted; must be >= 0 or ==
     * Long.MIN_VALUE.
     * @param maximumDigits The most digits which should be converted.
     * If maximumDigits is lower than the number of significant digits
     * in source, the representation will be rounded.  Ignored if <= 0.
     */
    final void set(boolean isNegative, long source, int maximumDigits) {
        this.isNegative = isNegative;

        // This method does not expect a negative number. However,
        // "source" can be a Long.MIN_VALUE (-9223372036854775808),
        // if the number being formatted is a Long.MIN_VALUE.  In that
        // case, it will be formatted as -Long.MIN_VALUE, a number
        // which is outside the legal range of a long, but which can
        // be represented by DigitList.
        if (source <= 0) {
            if (source == Long.MIN_VALUE) {
                decimalAt = count = MAX_COUNT;
                System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
            } else {
                decimalAt = count = 0; // Values <= 0 format as zero
            }
        } else {
            // Rewritten to improve performance.  I used to call
            // Long.toString(), which was about 4x slower than this code.
            int left = MAX_COUNT;
            int right;
            while (source > 0) {
                digits[--left] = (char)('0' + (source % 10));
                source /= 10;
            }
            decimalAt = MAX_COUNT - left;
            // Don't copy trailing zeros.  We are guaranteed that there is at
            // least one non-zero digit, so we don't have to check lower bounds.
            for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
                ;
            count = right - left + 1;
            System.arraycopy(digits, left, digits, 0, count);
        }
        if (maximumDigits > 0) round(maximumDigits, false, true);
    }

    /**
     * Set the digit list to a representation of the given BigDecimal value.
     * This method supports both fixed-point and exponential notation.
     * @param isNegative Boolean value indicating whether the number is negative.
     * @param source Value to be converted; must not be a value <= 0.
     * @param maximumDigits The most fractional or total digits which should
     * be converted.
     * @param fixedPoint If true, then maximumDigits is the maximum
     * fractional digits to be converted.  If false, total digits.
     */
    final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
        String s = source.toString();
        extendDigits(s.length());

        set(isNegative, s,
            false, true,
            maximumDigits, fixedPoint);
    }

    /**
     * Set the digit list to a representation of the given BigInteger value.
     * @param isNegative Boolean value indicating whether the number is negative.
     * @param source Value to be converted; must be >= 0.
     * @param maximumDigits The most digits which should be converted.
     * If maximumDigits is lower than the number of significant digits
     * in source, the representation will be rounded.  Ignored if <= 0.
     */
    final void set(boolean isNegative, BigInteger source, int maximumDigits) {
        this.isNegative = isNegative;
        String s = source.toString();
        int len = s.length();
        extendDigits(len);
        s.getChars(0, len, digits, 0);

        decimalAt = len;
        int right;
        for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
            ;
        count = right + 1;

        if (maximumDigits > 0) {
            round(maximumDigits, false, true);
        }
    }

    /**
     * equality test between two digit lists.
     */
    public boolean equals(Object obj) {
        if (this == obj)                      // quick check
            return true;
        if (!(obj instanceof DigitList))         // (1) same object?
            return false;
        DigitList other = (DigitList) obj;
        if (count != other.count ||
        decimalAt != other.decimalAt)
            return false;
        for (int i = 0; i < count; i++)
            if (digits[i] != other.digits[i])
                return false;
        return true;
    }

    /**
     * Generates the hash code for the digit list.
     */
    public int hashCode() {
        int hashcode = decimalAt;

        for (int i = 0; i < count; i++) {
            hashcode = hashcode * 37 + digits[i];
        }

        return hashcode;
    }

    /**
     * Creates a copy of this object.
     * @return a clone of this instance.
     */
    public Object clone() {
        try {
            DigitList other = (DigitList) super.clone();
            char[] newDigits = new char[digits.length];
            System.arraycopy(digits, 0, newDigits, 0, digits.length);
            other.digits = newDigits;
            other.tempBuffer = null;
            return other;
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    /**
     * Returns true if this DigitList represents Long.MIN_VALUE;
     * false, otherwise.  This is required so that getLong() works.
     */
    private boolean isLongMIN_VALUE() {
        if (decimalAt != count || count != MAX_COUNT) {
            return false;
        }

        for (int i = 0; i < count; ++i) {
            if (digits[i] != LONG_MIN_REP[i]) return false;
        }

        return true;
    }

    private static final int parseInt(char[] str, int offset, int strLen) {
        char c;
        boolean positive = true;
        if ((c = str[offset]) == '-') {
            positive = false;
            offset++;
        } else if (c == '+') {
            offset++;
        }

        int value = 0;
        while (offset < strLen) {
            c = str[offset++];
            if (c >= '0' && c <= '9') {
                value = value * 10 + (c - '0');
            } else {
                break;
            }
        }
        return positive ? value : -value;
    }

    // The digit part of -9223372036854775808L
    private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();

    public String toString() {
        if (isZero()) {
            return "0";
        }
        StringBuffer buf = getStringBuffer();
        buf.append("0.");
        buf.append(digits, 0, count);
        buf.append("x10^");
        buf.append(decimalAt);
        return buf.toString();
    }

    private StringBuffer tempBuffer;

    private StringBuffer getStringBuffer() {
        if (tempBuffer == null) {
            tempBuffer = new StringBuffer(MAX_COUNT);
        } else {
            tempBuffer.setLength(0);
        }
        return tempBuffer;
    }

    private void extendDigits(int len) {
        if (len > digits.length) {
            digits = new char[len];
        }
    }

    private final char[] getDataChars(int length) {
        if (data == null || data.length < length) {
            data = new char[length];
        }
        return data;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java DigitList.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.