|
Java example source code file (DoubleAdder.java)
The DoubleAdder.java Java example source code/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent.atomic; import java.io.Serializable; /** * One or more variables that together maintain an initially zero * {@code double} sum. When updates (method {@link #add}) are * contended across threads, the set of variables may grow dynamically * to reduce contention. Method {@link #sum} (or, equivalently {@link * #doubleValue}) returns the current total combined across the * variables maintaining the sum. The order of accumulation within or * across threads is not guaranteed. Thus, this class may not be * applicable if numerical stability is required, especially when * combining values of substantially different orders of magnitude. * * <p>This class is usually preferable to alternatives when multiple * threads update a common value that is used for purposes such as * summary statistics that are frequently updated but less frequently * read. * * <p>This class extends {@link Number}, but does not define * methods such as {@code equals}, {@code hashCode} and {@code * compareTo} because instances are expected to be mutated, and so are * not useful as collection keys. * * @since 1.8 * @author Doug Lea */ public class DoubleAdder extends Striped64 implements Serializable { private static final long serialVersionUID = 7249069246863182397L; /* * Note that we must use "long" for underlying representations, * because there is no compareAndSet for double, due to the fact * that the bitwise equals used in any CAS implementation is not * the same as double-precision equals. However, we use CAS only * to detect and alleviate contention, for which bitwise equals * works best anyway. In principle, the long/double conversions * used here should be essentially free on most platforms since * they just re-interpret bits. */ /** * Creates a new adder with initial sum of zero. */ public DoubleAdder() { } /** * Adds the given value. * * @param x the value to add */ public void add(double x) { Cell[] as; long b, v; int m; Cell a; if ((as = cells) != null || !casBase(b = base, Double.doubleToRawLongBits (Double.longBitsToDouble(b) + x))) { boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null || !(uncontended = a.cas(v = a.value, Double.doubleToRawLongBits (Double.longBitsToDouble(v) + x)))) doubleAccumulate(x, null, uncontended); } } /** * Returns the current sum. The returned value is <em>NOT an * atomic snapshot; invocation in the absence of concurrent * updates returns an accurate result, but concurrent updates that * occur while the sum is being calculated might not be * incorporated. Also, because floating-point arithmetic is not * strictly associative, the returned result need not be identical * to the value that would be obtained in a sequential series of * updates to a single variable. * * @return the sum */ public double sum() { Cell[] as = cells; Cell a; double sum = Double.longBitsToDouble(base); if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += Double.longBitsToDouble(a.value); } } return sum; } /** * Resets variables maintaining the sum to zero. This method may * be a useful alternative to creating a new adder, but is only * effective if there are no concurrent updates. Because this * method is intrinsically racy, it should only be used when it is * known that no threads are concurrently updating. */ public void reset() { Cell[] as = cells; Cell a; base = 0L; // relies on fact that double 0 must have same rep as long if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) a.value = 0L; } } } /** * Equivalent in effect to {@link #sum} followed by {@link * #reset}. This method may apply for example during quiescent * points between multithreaded computations. If there are * updates concurrent with this method, the returned value is * <em>not guaranteed to be the final value occurring before * the reset. * * @return the sum */ public double sumThenReset() { Cell[] as = cells; Cell a; double sum = Double.longBitsToDouble(base); base = 0L; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) { long v = a.value; a.value = 0L; sum += Double.longBitsToDouble(v); } } } return sum; } /** * Returns the String representation of the {@link #sum}. * @return the String representation of the {@link #sum} */ public String toString() { return Double.toString(sum()); } /** * Equivalent to {@link #sum}. * * @return the sum */ public double doubleValue() { return sum(); } /** * Returns the {@link #sum} as a {@code long} after a * narrowing primitive conversion. */ public long longValue() { return (long)sum(); } /** * Returns the {@link #sum} as an {@code int} after a * narrowing primitive conversion. */ public int intValue() { return (int)sum(); } /** * Returns the {@link #sum} as a {@code float} * after a narrowing primitive conversion. */ public float floatValue() { return (float)sum(); } /** * Serialization proxy, used to avoid reference to the non-public * Striped64 superclass in serialized forms. * @serial include */ private static class SerializationProxy implements Serializable { private static final long serialVersionUID = 7249069246863182397L; /** * The current value returned by sum(). * @serial */ private final double value; SerializationProxy(DoubleAdder a) { value = a.sum(); } /** * Returns a {@code DoubleAdder} object with initial state * held by this proxy. * * @return a {@code DoubleAdder} object with initial state * held by this proxy. */ private Object readResolve() { DoubleAdder a = new DoubleAdder(); a.base = Double.doubleToRawLongBits(value); return a; } } /** * Returns a * <a href="../../../../serialized-form.html#java.util.concurrent.atomic.DoubleAdder.SerializationProxy"> * SerializationProxy</a> * representing the state of this instance. * * @return a {@link SerializationProxy} * representing the state of this instance */ private Object writeReplace() { return new SerializationProxy(this); } /** * @param s the stream * @throws java.io.InvalidObjectException always */ private void readObject(java.io.ObjectInputStream s) throws java.io.InvalidObjectException { throw new java.io.InvalidObjectException("Proxy required"); } } Other Java examples (source code examples)Here is a short list of links related to this Java DoubleAdder.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.