alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (SliceOps.java)

This example Java source code file (SliceOps.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

illegalargumentexception, intfunction, long, node, override, p_in, p_out, sink, skip, sliceops, slicetask, spliterator, streamspliterators, suppresswarnings, threading, threads, util

The SliceOps.java Java example source code

/*
 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.stream;

import java.util.Spliterator;
import java.util.concurrent.CountedCompleter;
import java.util.function.IntFunction;

/**
 * Factory for instances of a short-circuiting stateful intermediate operations
 * that produce subsequences of their input stream.
 *
 * @since 1.8
 */
final class SliceOps {

    // No instances
    private SliceOps() { }

    /**
     * Calculates the sliced size given the current size, number of elements
     * skip, and the number of elements to limit.
     *
     * @param size the current size
     * @param skip the number of elements to skip, assumed to be >= 0
     * @param limit the number of elements to limit, assumed to be >= 0, with
     *        a value of {@code Long.MAX_VALUE} if there is no limit
     * @return the sliced size
     */
    private static long calcSize(long size, long skip, long limit) {
        return size >= 0 ? Math.max(-1, Math.min(size - skip, limit)) : -1;
    }

    /**
     * Calculates the slice fence, which is one past the index of the slice
     * range
     * @param skip the number of elements to skip, assumed to be >= 0
     * @param limit the number of elements to limit, assumed to be >= 0, with
     *        a value of {@code Long.MAX_VALUE} if there is no limit
     * @return the slice fence.
     */
    private static long calcSliceFence(long skip, long limit) {
        long sliceFence = limit >= 0 ? skip + limit : Long.MAX_VALUE;
        // Check for overflow
        return (sliceFence >= 0) ? sliceFence : Long.MAX_VALUE;
    }

    /**
     * Creates a slice spliterator given a stream shape governing the
     * spliterator type.  Requires that the underlying Spliterator
     * be SUBSIZED.
     */
    @SuppressWarnings("unchecked")
    private static <P_IN> Spliterator sliceSpliterator(StreamShape shape,
                                                             Spliterator<P_IN> s,
                                                             long skip, long limit) {
        assert s.hasCharacteristics(Spliterator.SUBSIZED);
        long sliceFence = calcSliceFence(skip, limit);
        switch (shape) {
            case REFERENCE:
                return new StreamSpliterators
                        .SliceSpliterator.OfRef<>(s, skip, sliceFence);
            case INT_VALUE:
                return (Spliterator<P_IN>) new StreamSpliterators
                        .SliceSpliterator.OfInt((Spliterator.OfInt) s, skip, sliceFence);
            case LONG_VALUE:
                return (Spliterator<P_IN>) new StreamSpliterators
                        .SliceSpliterator.OfLong((Spliterator.OfLong) s, skip, sliceFence);
            case DOUBLE_VALUE:
                return (Spliterator<P_IN>) new StreamSpliterators
                        .SliceSpliterator.OfDouble((Spliterator.OfDouble) s, skip, sliceFence);
            default:
                throw new IllegalStateException("Unknown shape " + shape);
        }
    }

    @SuppressWarnings("unchecked")
    private static <T> IntFunction castingArray() {
        return size -> (T[]) new Object[size];
    }

    /**
     * Appends a "slice" operation to the provided stream.  The slice operation
     * may be may be skip-only, limit-only, or skip-and-limit.
     *
     * @param <T> the type of both input and output elements
     * @param upstream a reference stream with element type T
     * @param skip the number of elements to skip.  Must be >= 0.
     * @param limit the maximum size of the resulting stream, or -1 if no limit
     *        is to be imposed
     */
    public static <T> Stream makeRef(AbstractPipeline upstream,
                                        long skip, long limit) {
        if (skip < 0)
            throw new IllegalArgumentException("Skip must be non-negative: " + skip);

        return new ReferencePipeline.StatefulOp<T, T>(upstream, StreamShape.REFERENCE,
                                                      flags(limit)) {
            Spliterator<T> unorderedSkipLimitSpliterator(Spliterator s,
                                                         long skip, long limit, long sizeIfKnown) {
                if (skip <= sizeIfKnown) {
                    // Use just the limit if the number of elements
                    // to skip is <= the known pipeline size
                    limit = limit >= 0 ? Math.min(limit, sizeIfKnown - skip) : sizeIfKnown - skip;
                    skip = 0;
                }
                return new StreamSpliterators.UnorderedSliceSpliterator.OfRef<>(s, skip, limit);
            }

            @Override
            <P_IN> Spliterator opEvaluateParallelLazy(PipelineHelper helper, Spliterator spliterator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    return new StreamSpliterators.SliceSpliterator.OfRef<>(
                            helper.wrapSpliterator(spliterator),
                            skip,
                            calcSliceFence(skip, limit));
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return unorderedSkipLimitSpliterator(
                            helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                }
                else {
                    // @@@ OOMEs will occur for LongStream.longs().filter(i -> true).limit(n)
                    //     regardless of the value of n
                    //     Need to adjust the target size of splitting for the
                    //     SliceTask from say (size / k) to say min(size / k, 1 << 14)
                    //     This will limit the size of the buffers created at the leaf nodes
                    //     cancellation will be more aggressive cancelling later tasks
                    //     if the target slice size has been reached from a given task,
                    //     cancellation should also clear local results if any
                    return new SliceTask<>(this, helper, spliterator, castingArray(), skip, limit).
                            invoke().spliterator();
                }
            }

            @Override
            <P_IN> Node opEvaluateParallel(PipelineHelper helper,
                                              Spliterator<P_IN> spliterator,
                                              IntFunction<T[]> generator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    // Because the pipeline is SIZED the slice spliterator
                    // can be created from the source, this requires matching
                    // to shape of the source, and is potentially more efficient
                    // than creating the slice spliterator from the pipeline
                    // wrapping spliterator
                    Spliterator<P_IN> s = sliceSpliterator(helper.getSourceShape(), spliterator, skip, limit);
                    return Nodes.collect(helper, s, true, generator);
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    Spliterator<T> s =  unorderedSkipLimitSpliterator(
                            helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                    // Collect using this pipeline, which is empty and therefore
                    // can be used with the pipeline wrapping spliterator
                    // Note that we cannot create a slice spliterator from
                    // the source spliterator if the pipeline is not SIZED
                    return Nodes.collect(this, s, true, generator);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, generator, skip, limit).
                            invoke();
                }
            }

            @Override
            Sink<T> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedReference<T, T>(sink) {
                    long n = skip;
                    long m = limit >= 0 ? limit : Long.MAX_VALUE;

                    @Override
                    public void begin(long size) {
                        downstream.begin(calcSize(size, skip, m));
                    }

                    @Override
                    public void accept(T t) {
                        if (n == 0) {
                            if (m > 0) {
                                m--;
                                downstream.accept(t);
                            }
                        }
                        else {
                            n--;
                        }
                    }

                    @Override
                    public boolean cancellationRequested() {
                        return m == 0 || downstream.cancellationRequested();
                    }
                };
            }
        };
    }

    /**
     * Appends a "slice" operation to the provided IntStream.  The slice
     * operation may be may be skip-only, limit-only, or skip-and-limit.
     *
     * @param upstream An IntStream
     * @param skip The number of elements to skip.  Must be >= 0.
     * @param limit The maximum size of the resulting stream, or -1 if no limit
     *        is to be imposed
     */
    public static IntStream makeInt(AbstractPipeline<?, Integer, ?> upstream,
                                    long skip, long limit) {
        if (skip < 0)
            throw new IllegalArgumentException("Skip must be non-negative: " + skip);

        return new IntPipeline.StatefulOp<Integer>(upstream, StreamShape.INT_VALUE,
                                                   flags(limit)) {
            Spliterator.OfInt unorderedSkipLimitSpliterator(
                    Spliterator.OfInt s, long skip, long limit, long sizeIfKnown) {
                if (skip <= sizeIfKnown) {
                    // Use just the limit if the number of elements
                    // to skip is <= the known pipeline size
                    limit = limit >= 0 ? Math.min(limit, sizeIfKnown - skip) : sizeIfKnown - skip;
                    skip = 0;
                }
                return new StreamSpliterators.UnorderedSliceSpliterator.OfInt(s, skip, limit);
            }

            @Override
            <P_IN> Spliterator opEvaluateParallelLazy(PipelineHelper helper,
                                                               Spliterator<P_IN> spliterator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    return new StreamSpliterators.SliceSpliterator.OfInt(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip,
                            calcSliceFence(skip, limit));
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return unorderedSkipLimitSpliterator(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, Integer[]::new, skip, limit).
                            invoke().spliterator();
                }
            }

            @Override
            <P_IN> Node opEvaluateParallel(PipelineHelper helper,
                                                    Spliterator<P_IN> spliterator,
                                                    IntFunction<Integer[]> generator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    // Because the pipeline is SIZED the slice spliterator
                    // can be created from the source, this requires matching
                    // to shape of the source, and is potentially more efficient
                    // than creating the slice spliterator from the pipeline
                    // wrapping spliterator
                    Spliterator<P_IN> s = sliceSpliterator(helper.getSourceShape(), spliterator, skip, limit);
                    return Nodes.collectInt(helper, s, true);
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    Spliterator.OfInt s =  unorderedSkipLimitSpliterator(
                            (Spliterator.OfInt) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                    // Collect using this pipeline, which is empty and therefore
                    // can be used with the pipeline wrapping spliterator
                    // Note that we cannot create a slice spliterator from
                    // the source spliterator if the pipeline is not SIZED
                    return Nodes.collectInt(this, s, true);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, generator, skip, limit).
                            invoke();
                }
            }

            @Override
            Sink<Integer> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedInt<Integer>(sink) {
                    long n = skip;
                    long m = limit >= 0 ? limit : Long.MAX_VALUE;

                    @Override
                    public void begin(long size) {
                        downstream.begin(calcSize(size, skip, m));
                    }

                    @Override
                    public void accept(int t) {
                        if (n == 0) {
                            if (m > 0) {
                                m--;
                                downstream.accept(t);
                            }
                        }
                        else {
                            n--;
                        }
                    }

                    @Override
                    public boolean cancellationRequested() {
                        return m == 0 || downstream.cancellationRequested();
                    }
                };
            }
        };
    }

    /**
     * Appends a "slice" operation to the provided LongStream.  The slice
     * operation may be may be skip-only, limit-only, or skip-and-limit.
     *
     * @param upstream A LongStream
     * @param skip The number of elements to skip.  Must be >= 0.
     * @param limit The maximum size of the resulting stream, or -1 if no limit
     *        is to be imposed
     */
    public static LongStream makeLong(AbstractPipeline<?, Long, ?> upstream,
                                      long skip, long limit) {
        if (skip < 0)
            throw new IllegalArgumentException("Skip must be non-negative: " + skip);

        return new LongPipeline.StatefulOp<Long>(upstream, StreamShape.LONG_VALUE,
                                                 flags(limit)) {
            Spliterator.OfLong unorderedSkipLimitSpliterator(
                    Spliterator.OfLong s, long skip, long limit, long sizeIfKnown) {
                if (skip <= sizeIfKnown) {
                    // Use just the limit if the number of elements
                    // to skip is <= the known pipeline size
                    limit = limit >= 0 ? Math.min(limit, sizeIfKnown - skip) : sizeIfKnown - skip;
                    skip = 0;
                }
                return new StreamSpliterators.UnorderedSliceSpliterator.OfLong(s, skip, limit);
            }

            @Override
            <P_IN> Spliterator opEvaluateParallelLazy(PipelineHelper helper,
                                                            Spliterator<P_IN> spliterator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    return new StreamSpliterators.SliceSpliterator.OfLong(
                            (Spliterator.OfLong) helper.wrapSpliterator(spliterator),
                            skip,
                            calcSliceFence(skip, limit));
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return unorderedSkipLimitSpliterator(
                            (Spliterator.OfLong) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, Long[]::new, skip, limit).
                            invoke().spliterator();
                }
            }

            @Override
            <P_IN> Node opEvaluateParallel(PipelineHelper helper,
                                                 Spliterator<P_IN> spliterator,
                                                 IntFunction<Long[]> generator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    // Because the pipeline is SIZED the slice spliterator
                    // can be created from the source, this requires matching
                    // to shape of the source, and is potentially more efficient
                    // than creating the slice spliterator from the pipeline
                    // wrapping spliterator
                    Spliterator<P_IN> s = sliceSpliterator(helper.getSourceShape(), spliterator, skip, limit);
                    return Nodes.collectLong(helper, s, true);
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    Spliterator.OfLong s =  unorderedSkipLimitSpliterator(
                            (Spliterator.OfLong) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                    // Collect using this pipeline, which is empty and therefore
                    // can be used with the pipeline wrapping spliterator
                    // Note that we cannot create a slice spliterator from
                    // the source spliterator if the pipeline is not SIZED
                    return Nodes.collectLong(this, s, true);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, generator, skip, limit).
                            invoke();
                }
            }

            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Long>(sink) {
                    long n = skip;
                    long m = limit >= 0 ? limit : Long.MAX_VALUE;

                    @Override
                    public void begin(long size) {
                        downstream.begin(calcSize(size, skip, m));
                    }

                    @Override
                    public void accept(long t) {
                        if (n == 0) {
                            if (m > 0) {
                                m--;
                                downstream.accept(t);
                            }
                        }
                        else {
                            n--;
                        }
                    }

                    @Override
                    public boolean cancellationRequested() {
                        return m == 0 || downstream.cancellationRequested();
                    }
                };
            }
        };
    }

    /**
     * Appends a "slice" operation to the provided DoubleStream.  The slice
     * operation may be may be skip-only, limit-only, or skip-and-limit.
     *
     * @param upstream A DoubleStream
     * @param skip The number of elements to skip.  Must be >= 0.
     * @param limit The maximum size of the resulting stream, or -1 if no limit
     *        is to be imposed
     */
    public static DoubleStream makeDouble(AbstractPipeline<?, Double, ?> upstream,
                                          long skip, long limit) {
        if (skip < 0)
            throw new IllegalArgumentException("Skip must be non-negative: " + skip);

        return new DoublePipeline.StatefulOp<Double>(upstream, StreamShape.DOUBLE_VALUE,
                                                     flags(limit)) {
            Spliterator.OfDouble unorderedSkipLimitSpliterator(
                    Spliterator.OfDouble s, long skip, long limit, long sizeIfKnown) {
                if (skip <= sizeIfKnown) {
                    // Use just the limit if the number of elements
                    // to skip is <= the known pipeline size
                    limit = limit >= 0 ? Math.min(limit, sizeIfKnown - skip) : sizeIfKnown - skip;
                    skip = 0;
                }
                return new StreamSpliterators.UnorderedSliceSpliterator.OfDouble(s, skip, limit);
            }

            @Override
            <P_IN> Spliterator opEvaluateParallelLazy(PipelineHelper helper,
                                                              Spliterator<P_IN> spliterator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    return new StreamSpliterators.SliceSpliterator.OfDouble(
                            (Spliterator.OfDouble) helper.wrapSpliterator(spliterator),
                            skip,
                            calcSliceFence(skip, limit));
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    return unorderedSkipLimitSpliterator(
                            (Spliterator.OfDouble) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, Double[]::new, skip, limit).
                            invoke().spliterator();
                }
            }

            @Override
            <P_IN> Node opEvaluateParallel(PipelineHelper helper,
                                                   Spliterator<P_IN> spliterator,
                                                   IntFunction<Double[]> generator) {
                long size = helper.exactOutputSizeIfKnown(spliterator);
                if (size > 0 && spliterator.hasCharacteristics(Spliterator.SUBSIZED)) {
                    // Because the pipeline is SIZED the slice spliterator
                    // can be created from the source, this requires matching
                    // to shape of the source, and is potentially more efficient
                    // than creating the slice spliterator from the pipeline
                    // wrapping spliterator
                    Spliterator<P_IN> s = sliceSpliterator(helper.getSourceShape(), spliterator, skip, limit);
                    return Nodes.collectDouble(helper, s, true);
                } else if (!StreamOpFlag.ORDERED.isKnown(helper.getStreamAndOpFlags())) {
                    Spliterator.OfDouble s =  unorderedSkipLimitSpliterator(
                            (Spliterator.OfDouble) helper.wrapSpliterator(spliterator),
                            skip, limit, size);
                    // Collect using this pipeline, which is empty and therefore
                    // can be used with the pipeline wrapping spliterator
                    // Note that we cannot create a slice spliterator from
                    // the source spliterator if the pipeline is not SIZED
                    return Nodes.collectDouble(this, s, true);
                }
                else {
                    return new SliceTask<>(this, helper, spliterator, generator, skip, limit).
                            invoke();
                }
            }

            @Override
            Sink<Double> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedDouble<Double>(sink) {
                    long n = skip;
                    long m = limit >= 0 ? limit : Long.MAX_VALUE;

                    @Override
                    public void begin(long size) {
                        downstream.begin(calcSize(size, skip, m));
                    }

                    @Override
                    public void accept(double t) {
                        if (n == 0) {
                            if (m > 0) {
                                m--;
                                downstream.accept(t);
                            }
                        }
                        else {
                            n--;
                        }
                    }

                    @Override
                    public boolean cancellationRequested() {
                        return m == 0 || downstream.cancellationRequested();
                    }
                };
            }
        };
    }

    private static int flags(long limit) {
        return StreamOpFlag.NOT_SIZED | ((limit != -1) ? StreamOpFlag.IS_SHORT_CIRCUIT : 0);
    }

    /**
     * {@code ForkJoinTask} implementing slice computation.
     *
     * @param <P_IN> Input element type to the stream pipeline
     * @param <P_OUT> Output element type from the stream pipeline
     */
    @SuppressWarnings("serial")
    private static final class SliceTask<P_IN, P_OUT>
            extends AbstractShortCircuitTask<P_IN, P_OUT, Node> {
        private final AbstractPipeline<P_OUT, P_OUT, ?> op;
        private final IntFunction<P_OUT[]> generator;
        private final long targetOffset, targetSize;
        private long thisNodeSize;

        private volatile boolean completed;

        SliceTask(AbstractPipeline<P_OUT, P_OUT, ?> op,
                  PipelineHelper<P_OUT> helper,
                  Spliterator<P_IN> spliterator,
                  IntFunction<P_OUT[]> generator,
                  long offset, long size) {
            super(helper, spliterator);
            this.op = op;
            this.generator = generator;
            this.targetOffset = offset;
            this.targetSize = size;
        }

        SliceTask(SliceTask<P_IN, P_OUT> parent, Spliterator spliterator) {
            super(parent, spliterator);
            this.op = parent.op;
            this.generator = parent.generator;
            this.targetOffset = parent.targetOffset;
            this.targetSize = parent.targetSize;
        }

        @Override
        protected SliceTask<P_IN, P_OUT> makeChild(Spliterator spliterator) {
            return new SliceTask<>(this, spliterator);
        }

        @Override
        protected final Node<P_OUT> getEmptyResult() {
            return Nodes.emptyNode(op.getOutputShape());
        }

        @Override
        protected final Node<P_OUT> doLeaf() {
            if (isRoot()) {
                long sizeIfKnown = StreamOpFlag.SIZED.isPreserved(op.sourceOrOpFlags)
                                   ? op.exactOutputSizeIfKnown(spliterator)
                                   : -1;
                final Node.Builder<P_OUT> nb = op.makeNodeBuilder(sizeIfKnown, generator);
                Sink<P_OUT> opSink = op.opWrapSink(helper.getStreamAndOpFlags(), nb);
                helper.copyIntoWithCancel(helper.wrapSink(opSink), spliterator);
                // There is no need to truncate since the op performs the
                // skipping and limiting of elements
                return nb.build();
            }
            else {
                Node<P_OUT> node = helper.wrapAndCopyInto(helper.makeNodeBuilder(-1, generator),
                                                          spliterator).build();
                thisNodeSize = node.count();
                completed = true;
                spliterator = null;
                return node;
            }
        }

        @Override
        public final void onCompletion(CountedCompleter<?> caller) {
            if (!isLeaf()) {
                Node<P_OUT> result;
                thisNodeSize = leftChild.thisNodeSize + rightChild.thisNodeSize;
                if (canceled) {
                    thisNodeSize = 0;
                    result = getEmptyResult();
                }
                else if (thisNodeSize == 0)
                    result = getEmptyResult();
                else if (leftChild.thisNodeSize == 0)
                    result = rightChild.getLocalResult();
                else {
                    result = Nodes.conc(op.getOutputShape(),
                                        leftChild.getLocalResult(), rightChild.getLocalResult());
                }
                setLocalResult(isRoot() ? doTruncate(result) : result);
                completed = true;
            }
            if (targetSize >= 0
                && !isRoot()
                && isLeftCompleted(targetOffset + targetSize))
                    cancelLaterNodes();

            super.onCompletion(caller);
        }

        @Override
        protected void cancel() {
            super.cancel();
            if (completed)
                setLocalResult(getEmptyResult());
        }

        private Node<P_OUT> doTruncate(Node input) {
            long to = targetSize >= 0 ? Math.min(input.count(), targetOffset + targetSize) : thisNodeSize;
            return input.truncate(targetOffset, to, generator);
        }

        /**
         * Determine if the number of completed elements in this node and nodes
         * to the left of this node is greater than or equal to the target size.
         *
         * @param target the target size
         * @return true if the number of elements is greater than or equal to
         *         the target size, otherwise false.
         */
        private boolean isLeftCompleted(long target) {
            long size = completed ? thisNodeSize : completedSize(target);
            if (size >= target)
                return true;
            for (SliceTask<P_IN, P_OUT> parent = getParent(), node = this;
                 parent != null;
                 node = parent, parent = parent.getParent()) {
                if (node == parent.rightChild) {
                    SliceTask<P_IN, P_OUT> left = parent.leftChild;
                    if (left != null) {
                        size += left.completedSize(target);
                        if (size >= target)
                            return true;
                    }
                }
            }
            return size >= target;
        }

        /**
         * Compute the number of completed elements in this node.
         * <p>
         * Computation terminates if all nodes have been processed or the
         * number of completed elements is greater than or equal to the target
         * size.
         *
         * @param target the target size
         * @return return the number of completed elements
         */
        private long completedSize(long target) {
            if (completed)
                return thisNodeSize;
            else {
                SliceTask<P_IN, P_OUT> left = leftChild;
                SliceTask<P_IN, P_OUT> right = rightChild;
                if (left == null || right == null) {
                    // must be completed
                    return thisNodeSize;
                }
                else {
                    long leftSize = left.completedSize(target);
                    return (leftSize >= target) ? leftSize : leftSize + right.completedSize(target);
                }
            }
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java SliceOps.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.