alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (SwingWorker.java)

This example Java source code file (SwingWorker.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

accumulativerunnable, awt, bean, do_submit_key, executionexception, executorservice, interruptedexception, javabean, max_worker_threads, object, override, propertychangesupport, runnable, security, statevalue, swing, swingworker, swingworkerpropertychangesupport, threadfactory, threads

The SwingWorker.java Java example source code

/*
 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package javax.swing;

import java.lang.ref.WeakReference;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import java.beans.PropertyChangeEvent;
import java.util.List;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

import java.awt.event.*;

import javax.swing.SwingUtilities;

import sun.awt.AppContext;
import sun.swing.AccumulativeRunnable;

/**
 * An abstract class to perform lengthy GUI-interaction tasks in a
 * background thread. Several background threads can be used to execute such
 * tasks. However, the exact strategy of choosing a thread for any particular
 * {@code SwingWorker} is unspecified and should not be relied on.
 * <p>
 * When writing a multi-threaded application using Swing, there are
 * two constraints to keep in mind:
 * (refer to
 * <a href="http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html">
 *   Concurrency in Swing
 * </a> for more details):
 * <ul>
 *   <li> Time-consuming tasks should not be run on the Event
 *        Dispatch Thread</i>. Otherwise the application becomes unresponsive.
 *   </li>
 *   <li> Swing components should be accessed  on the Event
 *        Dispatch Thread</i> only.
 *   </li>
 * </ul>
 *
 *
 * <p>
 * These constraints mean that a GUI application with time intensive
 * computing needs at least two threads:  1) a thread to perform the lengthy
 * task and 2) the <i>Event Dispatch Thread (EDT) for all GUI-related
 * activities.  This involves inter-thread communication which can be
 * tricky to implement.
 *
 * <p>
 * {@code SwingWorker} is designed for situations where you need to have a long
 * running task run in a background thread and provide updates to the UI
 * either when done, or while processing.
 * Subclasses of {@code SwingWorker} must implement
 * the {@link #doInBackground} method to perform the background computation.
 *
 *
 * <p>
 * <b>Workflow
 * <p>
 * There are three threads involved in the life cycle of a
 * {@code SwingWorker} :
 * <ul>
 * <li>
 * <p>
 * <i>Current thread: The {@link #execute} method is
 * called on this thread. It schedules {@code SwingWorker} for the execution on a
 * <i>worker
 * thread and returns immediately. One can wait for the {@code SwingWorker} to
 * complete using the {@link #get get} methods.
 * <li>
 * <p>
 * <i>Worker thread: The {@link #doInBackground}
 * method is called on this thread.
 * This is where all background activities should happen. To notify
 * {@code PropertyChangeListeners} about bound properties changes use the
 * {@link #firePropertyChange firePropertyChange} and
 * {@link #getPropertyChangeSupport} methods. By default there are two bound
 * properties available: {@code state} and {@code progress}.
 * <li>
 * <p>
 * <i>Event Dispatch Thread:  All Swing related activities occur
 * on this thread. {@code SwingWorker} invokes the
 * {@link #process process} and {@link #done} methods and notifies
 * any {@code PropertyChangeListeners} on this thread.
 * </ul>
 *
 * <p>
 * Often, the <i>Current thread is the Event Dispatch
 * Thread</i>.
 *
 *
 * <p>
 * Before the {@code doInBackground} method is invoked on a <i>worker thread,
 * {@code SwingWorker} notifies any {@code PropertyChangeListeners} about the
 * {@code state} property change to {@code StateValue.STARTED}.  After the
 * {@code doInBackground} method is finished the {@code done} method is
 * executed.  Then {@code SwingWorker} notifies any {@code PropertyChangeListeners}
 * about the {@code state} property change to {@code StateValue.DONE}.
 *
 * <p>
 * {@code SwingWorker} is only designed to be executed once.  Executing a
 * {@code SwingWorker} more than once will not result in invoking the
 * {@code doInBackground} method twice.
 *
 * <p>
 * <b>Sample Usage
 * <p>
 * The following example illustrates the simplest use case.  Some
 * processing is done in the background and when done you update a Swing
 * component.
 *
 * <p>
 * Say we want to find the "Meaning of Life" and display the result in
 * a {@code JLabel}.
 *
 * <pre>
 *   final JLabel label;
 *   class MeaningOfLifeFinder extends SwingWorker<String, Object> {
 *       {@code @Override}
 *       public String doInBackground() {
 *           return findTheMeaningOfLife();
 *       }
 *
 *       {@code @Override}
 *       protected void done() {
 *           try {
 *               label.setText(get());
 *           } catch (Exception ignore) {
 *           }
 *       }
 *   }
 *
 *   (new MeaningOfLifeFinder()).execute();
 * </pre>
 *
 * <p>
 * The next example is useful in situations where you wish to process data
 * as it is ready on the <i>Event Dispatch Thread.
 *
 * <p>
 * Now we want to find the first N prime numbers and display the results in a
 * {@code JTextArea}.  While this is computing, we want to update our
 * progress in a {@code JProgressBar}.  Finally, we also want to print
 * the prime numbers to {@code System.out}.
 * <pre>
 * class PrimeNumbersTask extends
 *         SwingWorker<List<Integer>, Integer> {
 *     PrimeNumbersTask(JTextArea textArea, int numbersToFind) {
 *         //initialize
 *     }
 *
 *     {@code @Override}
 *     public List<Integer> doInBackground() {
 *         while (! enough && ! isCancelled()) {
 *                 number = nextPrimeNumber();
 *                 publish(number);
 *                 setProgress(100 * numbers.size() / numbersToFind);
 *             }
 *         }
 *         return numbers;
 *     }
 *
 *     {@code @Override}
 *     protected void process(List<Integer> chunks) {
 *         for (int number : chunks) {
 *             textArea.append(number + "\n");
 *         }
 *     }
 * }
 *
 * JTextArea textArea = new JTextArea();
 * final JProgressBar progressBar = new JProgressBar(0, 100);
 * PrimeNumbersTask task = new PrimeNumbersTask(textArea, N);
 * task.addPropertyChangeListener(
 *     new PropertyChangeListener() {
 *         public  void propertyChange(PropertyChangeEvent evt) {
 *             if ("progress".equals(evt.getPropertyName())) {
 *                 progressBar.setValue((Integer)evt.getNewValue());
 *             }
 *         }
 *     });
 *
 * task.execute();
 * System.out.println(task.get()); //prints all prime numbers we have got
 * </pre>
 *
 * <p>
 * Because {@code SwingWorker} implements {@code Runnable}, a
 * {@code SwingWorker} can be submitted to an
 * {@link java.util.concurrent.Executor} for execution.
 *
 * @author Igor Kushnirskiy
 *
 * @param <T> the result type returned by this {@code SwingWorker's}
 *        {@code doInBackground} and {@code get} methods
 * @param <V> the type used for carrying out intermediate results by this
 *        {@code SwingWorker's} {@code publish} and {@code process} methods
 *
 * @since 1.6
 */
public abstract class SwingWorker<T, V> implements RunnableFuture {
    /**
     * number of worker threads.
     */
    private static final int MAX_WORKER_THREADS = 10;

    /**
     * current progress.
     */
    private volatile int progress;

    /**
     * current state.
     */
    private volatile StateValue state;

    /**
     * everything is run inside this FutureTask. Also it is used as
     * a delegatee for the Future API.
     */
    private final FutureTask<T> future;

    /**
     * all propertyChangeSupport goes through this.
     */
    private final PropertyChangeSupport propertyChangeSupport;

    /**
     * handler for {@code process} mehtod.
     */
    private AccumulativeRunnable<V> doProcess;

    /**
     * handler for progress property change notifications.
     */
    private AccumulativeRunnable<Integer> doNotifyProgressChange;

    private final AccumulativeRunnable<Runnable> doSubmit = getDoSubmit();

    /**
     * Values for the {@code state} bound property.
     * @since 1.6
     */
    public enum StateValue {
        /**
         * Initial {@code SwingWorker} state.
         */
        PENDING,
        /**
         * {@code SwingWorker} is {@code STARTED}
         * before invoking {@code doInBackground}.
         */
        STARTED,

        /**
         * {@code SwingWorker} is {@code DONE}
         * after {@code doInBackground} method
         * is finished.
         */
        DONE
    }

    /**
     * Constructs this {@code SwingWorker}.
     */
    public SwingWorker() {
        Callable<T> callable =
                new Callable<T>() {
                    public T call() throws Exception {
                        setState(StateValue.STARTED);
                        return doInBackground();
                    }
                };

        future = new FutureTask<T>(callable) {
                       @Override
                       protected void done() {
                           doneEDT();
                           setState(StateValue.DONE);
                       }
                   };

       state = StateValue.PENDING;
       propertyChangeSupport = new SwingWorkerPropertyChangeSupport(this);
       doProcess = null;
       doNotifyProgressChange = null;
    }

    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * <p>
     * Note that this method is executed only once.
     *
     * <p>
     * Note: this method is executed in a background thread.
     *
     *
     * @return the computed result
     * @throws Exception if unable to compute a result
     *
     */
    protected abstract T doInBackground() throws Exception ;

    /**
     * Sets this {@code Future} to the result of computation unless
     * it has been cancelled.
     */
    public final void run() {
        future.run();
    }

    /**
     * Sends data chunks to the {@link #process} method. This method is to be
     * used from inside the {@code doInBackground} method to deliver
     * intermediate results
     * for processing on the <i>Event Dispatch Thread inside the
     * {@code process} method.
     *
     * <p>
     * Because the {@code process} method is invoked asynchronously on
     * the <i>Event Dispatch Thread
     * multiple invocations to the {@code publish} method
     * might occur before the {@code process} method is executed. For
     * performance purposes all these invocations are coalesced into one
     * invocation with concatenated arguments.
     *
     * <p>
     * For example:
     *
     * <pre>
     * publish("1");
     * publish("2", "3");
     * publish("4", "5", "6");
     * </pre>
     *
     * might result in:
     *
     * <pre>
     * process("1", "2", "3", "4", "5", "6")
     * </pre>
     *
     * <p>
     * <b>Sample Usage. This code snippet loads some tabular data and
     * updates {@code DefaultTableModel} with it. Note that it safe to mutate
     * the tableModel from inside the {@code process} method because it is
     * invoked on the <i>Event Dispatch Thread.
     *
     * <pre>
     * class TableSwingWorker extends
     *         SwingWorker<DefaultTableModel, Object[]> {
     *     private final DefaultTableModel tableModel;
     *
     *     public TableSwingWorker(DefaultTableModel tableModel) {
     *         this.tableModel = tableModel;
     *     }
     *
     *     {@code @Override}
     *     protected DefaultTableModel doInBackground() throws Exception {
     *         for (Object[] row = loadData();
     *                  ! isCancelled() && row != null;
     *                  row = loadData()) {
     *             publish((Object[]) row);
     *         }
     *         return tableModel;
     *     }
     *
     *     {@code @Override}
     *     protected void process(List<Object[]> chunks) {
     *         for (Object[] row : chunks) {
     *             tableModel.addRow(row);
     *         }
     *     }
     * }
     * </pre>
     *
     * @param chunks intermediate results to process
     *
     * @see #process
     *
     */
    @SafeVarargs
    @SuppressWarnings("varargs") // Passing chunks to add is safe
    protected final void publish(V... chunks) {
        synchronized (this) {
            if (doProcess == null) {
                doProcess = new AccumulativeRunnable<V>() {
                    @Override
                    public void run(List<V> args) {
                        process(args);
                    }
                    @Override
                    protected void submit() {
                        doSubmit.add(this);
                    }
                };
            }
        }
        doProcess.add(chunks);
    }

    /**
     * Receives data chunks from the {@code publish} method asynchronously on the
     * <i>Event Dispatch Thread.
     *
     * <p>
     * Please refer to the {@link #publish} method for more details.
     *
     * @param chunks intermediate results to process
     *
     * @see #publish
     *
     */
    protected void process(List<V> chunks) {
    }

    /**
     * Executed on the <i>Event Dispatch Thread after the {@code doInBackground}
     * method is finished. The default
     * implementation does nothing. Subclasses may override this method to
     * perform completion actions on the <i>Event Dispatch Thread. Note
     * that you can query status inside the implementation of this method to
     * determine the result of this task or whether this task has been cancelled.
     *
     * @see #doInBackground
     * @see #isCancelled()
     * @see #get
     */
    protected void done() {
    }

    /**
     * Sets the {@code progress} bound property.
     * The value should be from 0 to 100.
     *
     * <p>
     * Because {@code PropertyChangeListener}s are notified asynchronously on
     * the <i>Event Dispatch Thread multiple invocations to the
     * {@code setProgress} method might occur before any
     * {@code PropertyChangeListeners} are invoked. For performance purposes
     * all these invocations are coalesced into one invocation with the last
     * invocation argument only.
     *
     * <p>
     * For example, the following invokations:
     *
     * <pre>
     * setProgress(1);
     * setProgress(2);
     * setProgress(3);
     * </pre>
     *
     * might result in a single {@code PropertyChangeListener} notification with
     * the value {@code 3}.
     *
     * @param progress the progress value to set
     * @throws IllegalArgumentException is value not from 0 to 100
     */
    protected final void setProgress(int progress) {
        if (progress < 0 || progress > 100) {
            throw new IllegalArgumentException("the value should be from 0 to 100");
        }
        if (this.progress == progress) {
            return;
        }
        int oldProgress = this.progress;
        this.progress = progress;
        if (! getPropertyChangeSupport().hasListeners("progress")) {
            return;
        }
        synchronized (this) {
            if (doNotifyProgressChange == null) {
                doNotifyProgressChange =
                    new AccumulativeRunnable<Integer>() {
                        @Override
                        public void run(List<Integer> args) {
                            firePropertyChange("progress",
                               args.get(0),
                               args.get(args.size() - 1));
                        }
                        @Override
                        protected void submit() {
                            doSubmit.add(this);
                        }
                    };
            }
        }
        doNotifyProgressChange.add(oldProgress, progress);
    }

    /**
     * Returns the {@code progress} bound property.
     *
     * @return the progress bound property.
     */
    public final int getProgress() {
        return progress;
    }

    /**
     * Schedules this {@code SwingWorker} for execution on a <i>worker
     * thread. There are a number of <i>worker threads available. In the
     * event all <i>worker threads are busy handling other
     * {@code SwingWorkers} this {@code SwingWorker} is placed in a waiting
     * queue.
     *
     * <p>
     * Note:
     * {@code SwingWorker} is only designed to be executed once.  Executing a
     * {@code SwingWorker} more than once will not result in invoking the
     * {@code doInBackground} method twice.
     */
    public final void execute() {
        getWorkersExecutorService().execute(this);
    }

    // Future methods START
    /**
     * {@inheritDoc}
     */
    public final boolean cancel(boolean mayInterruptIfRunning) {
        return future.cancel(mayInterruptIfRunning);
    }

    /**
     * {@inheritDoc}
     */
    public final boolean isCancelled() {
        return future.isCancelled();
    }

    /**
     * {@inheritDoc}
     */
    public final boolean isDone() {
        return future.isDone();
    }

    /**
     * {@inheritDoc}
     * <p>
     * Note: calling {@code get} on the <i>Event Dispatch Thread blocks
     * <i>all events, including repaints, from being processed until this
     * {@code SwingWorker} is complete.
     *
     * <p>
     * When you want the {@code SwingWorker} to block on the <i>Event
     * Dispatch Thread</i> we recommend that you use a modal dialog.
     *
     * <p>
     * For example:
     *
     * <pre>
     * class SwingWorkerCompletionWaiter extends PropertyChangeListener {
     *     private JDialog dialog;
     *
     *     public SwingWorkerCompletionWaiter(JDialog dialog) {
     *         this.dialog = dialog;
     *     }
     *
     *     public void propertyChange(PropertyChangeEvent event) {
     *         if ("state".equals(event.getPropertyName())
     *                 && SwingWorker.StateValue.DONE == event.getNewValue()) {
     *             dialog.setVisible(false);
     *             dialog.dispose();
     *         }
     *     }
     * }
     * JDialog dialog = new JDialog(owner, true);
     * swingWorker.addPropertyChangeListener(
     *     new SwingWorkerCompletionWaiter(dialog));
     * swingWorker.execute();
     * //the dialog will be visible until the SwingWorker is done
     * dialog.setVisible(true);
     * </pre>
     */
    public final T get() throws InterruptedException, ExecutionException {
        return future.get();
    }

    /**
     * {@inheritDoc}
     * <p>
     * Please refer to {@link #get} for more details.
     */
    public final T get(long timeout, TimeUnit unit) throws InterruptedException,
            ExecutionException, TimeoutException {
        return future.get(timeout, unit);
    }

    // Future methods END

    // PropertyChangeSupports methods START
    /**
     * Adds a {@code PropertyChangeListener} to the listener list. The listener
     * is registered for all properties. The same listener object may be added
     * more than once, and will be called as many times as it is added. If
     * {@code listener} is {@code null}, no exception is thrown and no action is taken.
     *
     * <p>
     * Note: This is merely a convenience wrapper. All work is delegated to
     * {@code PropertyChangeSupport} from {@link #getPropertyChangeSupport}.
     *
     * @param listener the {@code PropertyChangeListener} to be added
     */
    public final void addPropertyChangeListener(PropertyChangeListener listener) {
        getPropertyChangeSupport().addPropertyChangeListener(listener);
    }

    /**
     * Removes a {@code PropertyChangeListener} from the listener list. This
     * removes a {@code PropertyChangeListener} that was registered for all
     * properties. If {@code listener} was added more than once to the same
     * event source, it will be notified one less time after being removed. If
     * {@code listener} is {@code null}, or was never added, no exception is
     * thrown and no action is taken.
     *
     * <p>
     * Note: This is merely a convenience wrapper. All work is delegated to
     * {@code PropertyChangeSupport} from {@link #getPropertyChangeSupport}.
     *
     * @param listener the {@code PropertyChangeListener} to be removed
     */
    public final void removePropertyChangeListener(PropertyChangeListener listener) {
        getPropertyChangeSupport().removePropertyChangeListener(listener);
    }

    /**
     * Reports a bound property update to any registered listeners. No event is
     * fired if {@code old} and {@code new} are equal and non-null.
     *
     * <p>
     * This {@code SwingWorker} will be the source for
     * any generated events.
     *
     * <p>
     * When called off the <i>Event Dispatch Thread
     * {@code PropertyChangeListeners} are notified asynchronously on
     * the <i>Event Dispatch Thread.
     * <p>
     * Note: This is merely a convenience wrapper. All work is delegated to
     * {@code PropertyChangeSupport} from {@link #getPropertyChangeSupport}.
     *
     *
     * @param propertyName the programmatic name of the property that was
     *        changed
     * @param oldValue the old value of the property
     * @param newValue the new value of the property
     */
    public final void firePropertyChange(String propertyName, Object oldValue,
            Object newValue) {
        getPropertyChangeSupport().firePropertyChange(propertyName,
            oldValue, newValue);
    }

    /**
     * Returns the {@code PropertyChangeSupport} for this {@code SwingWorker}.
     * This method is used when flexible access to bound properties support is
     * needed.
     * <p>
     * This {@code SwingWorker} will be the source for
     * any generated events.
     *
     * <p>
     * Note: The returned {@code PropertyChangeSupport} notifies any
     * {@code PropertyChangeListener}s asynchronously on the <i>Event Dispatch
     * Thread</i> in the event that {@code firePropertyChange} or
     * {@code fireIndexedPropertyChange} are called off the <i>Event Dispatch
     * Thread</i>.
     *
     * @return {@code PropertyChangeSupport} for this {@code SwingWorker}
     */
    public final PropertyChangeSupport getPropertyChangeSupport() {
        return propertyChangeSupport;
    }

    // PropertyChangeSupports methods END

    /**
     * Returns the {@code SwingWorker} state bound property.
     *
     * @return the current state
     */
    public final StateValue getState() {
        /*
         * DONE is a speacial case
         * to keep getState and isDone is sync
         */
        if (isDone()) {
            return StateValue.DONE;
        } else {
            return state;
        }
    }

    /**
     * Sets this {@code SwingWorker} state bound property.
     * @param state the state to set
     */
    private void setState(StateValue state) {
        StateValue old = this.state;
        this.state = state;
        firePropertyChange("state", old, state);
    }

    /**
     * Invokes {@code done} on the EDT.
     */
    private void doneEDT() {
        Runnable doDone =
            new Runnable() {
                public void run() {
                    done();
                }
            };
        if (SwingUtilities.isEventDispatchThread()) {
            doDone.run();
        } else {
            doSubmit.add(doDone);
        }
    }


    /**
     * returns workersExecutorService.
     *
     * returns the service stored in the appContext or creates it if
     * necessary.
     *
     * @return ExecutorService for the {@code SwingWorkers}
     */
    private static synchronized ExecutorService getWorkersExecutorService() {
        final AppContext appContext = AppContext.getAppContext();
        ExecutorService executorService =
            (ExecutorService) appContext.get(SwingWorker.class);
        if (executorService == null) {
            //this creates daemon threads.
            ThreadFactory threadFactory =
                new ThreadFactory() {
                    final ThreadFactory defaultFactory =
                        Executors.defaultThreadFactory();
                    public Thread newThread(final Runnable r) {
                        Thread thread =
                            defaultFactory.newThread(r);
                        thread.setName("SwingWorker-"
                            + thread.getName());
                        thread.setDaemon(true);
                        return thread;
                    }
                };

            executorService =
                new ThreadPoolExecutor(MAX_WORKER_THREADS, MAX_WORKER_THREADS,
                                       10L, TimeUnit.MINUTES,
                                       new LinkedBlockingQueue<Runnable>(),
                                       threadFactory);
            appContext.put(SwingWorker.class, executorService);

            // Don't use ShutdownHook here as it's not enough. We should track
            // AppContext disposal instead of JVM shutdown, see 6799345 for details
            final ExecutorService es = executorService;
            appContext.addPropertyChangeListener(AppContext.DISPOSED_PROPERTY_NAME,
                new PropertyChangeListener() {
                    @Override
                    public void propertyChange(PropertyChangeEvent pce) {
                        boolean disposed = (Boolean)pce.getNewValue();
                        if (disposed) {
                            final WeakReference<ExecutorService> executorServiceRef =
                                new WeakReference<ExecutorService>(es);
                            final ExecutorService executorService =
                                executorServiceRef.get();
                            if (executorService != null) {
                                AccessController.doPrivileged(
                                    new PrivilegedAction<Void>() {
                                        public Void run() {
                                            executorService.shutdown();
                                            return null;
                                        }
                                    }
                                );
                            }
                        }
                    }
                }
            );
        }
        return executorService;
    }

    private static final Object DO_SUBMIT_KEY = new StringBuilder("doSubmit");
    private static AccumulativeRunnable<Runnable> getDoSubmit() {
        synchronized (DO_SUBMIT_KEY) {
            final AppContext appContext = AppContext.getAppContext();
            Object doSubmit = appContext.get(DO_SUBMIT_KEY);
            if (doSubmit == null) {
                doSubmit = new DoSubmitAccumulativeRunnable();
                appContext.put(DO_SUBMIT_KEY, doSubmit);
            }
            return (AccumulativeRunnable<Runnable>) doSubmit;
        }
    }
    private static class DoSubmitAccumulativeRunnable
          extends AccumulativeRunnable<Runnable> implements ActionListener {
        private final static int DELAY = 1000 / 30;
        @Override
        protected void run(List<Runnable> args) {
            for (Runnable runnable : args) {
                runnable.run();
            }
        }
        @Override
        protected void submit() {
            Timer timer = new Timer(DELAY, this);
            timer.setRepeats(false);
            timer.start();
        }
        public void actionPerformed(ActionEvent event) {
            run();
        }
    }

    private class SwingWorkerPropertyChangeSupport
            extends PropertyChangeSupport {
        SwingWorkerPropertyChangeSupport(Object source) {
            super(source);
        }
        @Override
        public void firePropertyChange(final PropertyChangeEvent evt) {
            if (SwingUtilities.isEventDispatchThread()) {
                super.firePropertyChange(evt);
            } else {
                doSubmit.add(
                    new Runnable() {
                        public void run() {
                            SwingWorkerPropertyChangeSupport.this
                                .firePropertyChange(evt);
                        }
                    });
            }
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java SwingWorker.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.