alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Order3.java)

This example Java source code file (Order3.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

awt, curve, decreasing, geometry, increasing, order3, tfory1, tfory2, util, yfort, yfort1, yfort2, yfort3

The Order3.java Java example source code

/*
 * Copyright (c) 1998, 2006, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.awt.geom;

import java.awt.geom.Rectangle2D;
import java.awt.geom.PathIterator;
import java.awt.geom.QuadCurve2D;
import java.util.Vector;

final class Order3 extends Curve {
    private double x0;
    private double y0;
    private double cx0;
    private double cy0;
    private double cx1;
    private double cy1;
    private double x1;
    private double y1;

    private double xmin;
    private double xmax;

    private double xcoeff0;
    private double xcoeff1;
    private double xcoeff2;
    private double xcoeff3;

    private double ycoeff0;
    private double ycoeff1;
    private double ycoeff2;
    private double ycoeff3;

    public static void insert(Vector curves, double tmp[],
                              double x0, double y0,
                              double cx0, double cy0,
                              double cx1, double cy1,
                              double x1, double y1,
                              int direction)
    {
        int numparams = getHorizontalParams(y0, cy0, cy1, y1, tmp);
        if (numparams == 0) {
            // We are using addInstance here to avoid inserting horisontal
            // segments
            addInstance(curves, x0, y0, cx0, cy0, cx1, cy1, x1, y1, direction);
            return;
        }
        // Store coordinates for splitting at tmp[3..10]
        tmp[3] = x0;  tmp[4]  = y0;
        tmp[5] = cx0; tmp[6]  = cy0;
        tmp[7] = cx1; tmp[8]  = cy1;
        tmp[9] = x1;  tmp[10] = y1;
        double t = tmp[0];
        if (numparams > 1 && t > tmp[1]) {
            // Perform a "2 element sort"...
            tmp[0] = tmp[1];
            tmp[1] = t;
            t = tmp[0];
        }
        split(tmp, 3, t);
        if (numparams > 1) {
            // Recalculate tmp[1] relative to the range [tmp[0]...1]
            t = (tmp[1] - t) / (1 - t);
            split(tmp, 9, t);
        }
        int index = 3;
        if (direction == DECREASING) {
            index += numparams * 6;
        }
        while (numparams >= 0) {
            addInstance(curves,
                        tmp[index + 0], tmp[index + 1],
                        tmp[index + 2], tmp[index + 3],
                        tmp[index + 4], tmp[index + 5],
                        tmp[index + 6], tmp[index + 7],
                        direction);
            numparams--;
            if (direction == INCREASING) {
                index += 6;
            } else {
                index -= 6;
            }
        }
    }

    public static void addInstance(Vector curves,
                                   double x0, double y0,
                                   double cx0, double cy0,
                                   double cx1, double cy1,
                                   double x1, double y1,
                                   int direction) {
        if (y0 > y1) {
            curves.add(new Order3(x1, y1, cx1, cy1, cx0, cy0, x0, y0,
                                  -direction));
        } else if (y1 > y0) {
            curves.add(new Order3(x0, y0, cx0, cy0, cx1, cy1, x1, y1,
                                  direction));
        }
    }

    /*
     * Return the count of the number of horizontal sections of the
     * specified cubic Bezier curve.  Put the parameters for the
     * horizontal sections into the specified <code>ret array.
     * <p>
     * If we examine the parametric equation in t, we have:
     *   Py(t) = C0(1-t)^3 + 3CP0 t(1-t)^2 + 3CP1 t^2(1-t) + C1 t^3
     *         = C0 - 3C0t + 3C0t^2 - C0t^3 +
     *           3CP0t - 6CP0t^2 + 3CP0t^3 +
     *           3CP1t^2 - 3CP1t^3 +
     *           C1t^3
     *   Py(t) = (C1 - 3CP1 + 3CP0 - C0) t^3 +
     *           (3C0 - 6CP0 + 3CP1) t^2 +
     *           (3CP0 - 3C0) t +
     *           (C0)
     * If we take the derivative, we get:
     *   Py(t) = Dt^3 + At^2 + Bt + C
     *   dPy(t) = 3Dt^2 + 2At + B = 0
     *        0 = 3*(C1 - 3*CP1 + 3*CP0 - C0)t^2
     *          + 2*(3*CP1 - 6*CP0 + 3*C0)t
     *          + (3*CP0 - 3*C0)
     *        0 = 3*(C1 - 3*CP1 + 3*CP0 - C0)t^2
     *          + 3*2*(CP1 - 2*CP0 + C0)t
     *          + 3*(CP0 - C0)
     *        0 = (C1 - CP1 - CP1 - CP1 + CP0 + CP0 + CP0 - C0)t^2
     *          + 2*(CP1 - CP0 - CP0 + C0)t
     *          + (CP0 - C0)
     *        0 = (C1 - CP1 + CP0 - CP1 + CP0 - CP1 + CP0 - C0)t^2
     *          + 2*(CP1 - CP0 - CP0 + C0)t
     *          + (CP0 - C0)
     *        0 = ((C1 - CP1) - (CP1 - CP0) - (CP1 - CP0) + (CP0 - C0))t^2
     *          + 2*((CP1 - CP0) - (CP0 - C0))t
     *          + (CP0 - C0)
     * Note that this method will return 0 if the equation is a line,
     * which is either always horizontal or never horizontal.
     * Completely horizontal curves need to be eliminated by other
     * means outside of this method.
     */
    public static int getHorizontalParams(double c0, double cp0,
                                          double cp1, double c1,
                                          double ret[]) {
        if (c0 <= cp0 && cp0 <= cp1 && cp1 <= c1) {
            return 0;
        }
        c1 -= cp1;
        cp1 -= cp0;
        cp0 -= c0;
        ret[0] = cp0;
        ret[1] = (cp1 - cp0) * 2;
        ret[2] = (c1 - cp1 - cp1 + cp0);
        int numroots = QuadCurve2D.solveQuadratic(ret, ret);
        int j = 0;
        for (int i = 0; i < numroots; i++) {
            double t = ret[i];
            // No splits at t==0 and t==1
            if (t > 0 && t < 1) {
                if (j < i) {
                    ret[j] = t;
                }
                j++;
            }
        }
        return j;
    }

    /*
     * Split the cubic Bezier stored at coords[pos...pos+7] representing
     * the parametric range [0..1] into two subcurves representing the
     * parametric subranges [0..t] and [t..1].  Store the results back
     * into the array at coords[pos...pos+7] and coords[pos+6...pos+13].
     */
    public static void split(double coords[], int pos, double t) {
        double x0, y0, cx0, cy0, cx1, cy1, x1, y1;
        coords[pos+12] = x1 = coords[pos+6];
        coords[pos+13] = y1 = coords[pos+7];
        cx1 = coords[pos+4];
        cy1 = coords[pos+5];
        x1 = cx1 + (x1 - cx1) * t;
        y1 = cy1 + (y1 - cy1) * t;
        x0 = coords[pos+0];
        y0 = coords[pos+1];
        cx0 = coords[pos+2];
        cy0 = coords[pos+3];
        x0 = x0 + (cx0 - x0) * t;
        y0 = y0 + (cy0 - y0) * t;
        cx0 = cx0 + (cx1 - cx0) * t;
        cy0 = cy0 + (cy1 - cy0) * t;
        cx1 = cx0 + (x1 - cx0) * t;
        cy1 = cy0 + (y1 - cy0) * t;
        cx0 = x0 + (cx0 - x0) * t;
        cy0 = y0 + (cy0 - y0) * t;
        coords[pos+2] = x0;
        coords[pos+3] = y0;
        coords[pos+4] = cx0;
        coords[pos+5] = cy0;
        coords[pos+6] = cx0 + (cx1 - cx0) * t;
        coords[pos+7] = cy0 + (cy1 - cy0) * t;
        coords[pos+8] = cx1;
        coords[pos+9] = cy1;
        coords[pos+10] = x1;
        coords[pos+11] = y1;
    }

    public Order3(double x0, double y0,
                  double cx0, double cy0,
                  double cx1, double cy1,
                  double x1, double y1,
                  int direction)
    {
        super(direction);
        // REMIND: Better accuracy in the root finding methods would
        //  ensure that cys are in range.  As it stands, they are never
        //  more than "1 mantissa bit" out of range...
        if (cy0 < y0) cy0 = y0;
        if (cy1 > y1) cy1 = y1;
        this.x0 = x0;
        this.y0 = y0;
        this.cx0 = cx0;
        this.cy0 = cy0;
        this.cx1 = cx1;
        this.cy1 = cy1;
        this.x1 = x1;
        this.y1 = y1;
        xmin = Math.min(Math.min(x0, x1), Math.min(cx0, cx1));
        xmax = Math.max(Math.max(x0, x1), Math.max(cx0, cx1));
        xcoeff0 = x0;
        xcoeff1 = (cx0 - x0) * 3.0;
        xcoeff2 = (cx1 - cx0 - cx0 + x0) * 3.0;
        xcoeff3 = x1 - (cx1 - cx0) * 3.0 - x0;
        ycoeff0 = y0;
        ycoeff1 = (cy0 - y0) * 3.0;
        ycoeff2 = (cy1 - cy0 - cy0 + y0) * 3.0;
        ycoeff3 = y1 - (cy1 - cy0) * 3.0 - y0;
        YforT1 = YforT2 = YforT3 = y0;
    }

    public int getOrder() {
        return 3;
    }

    public double getXTop() {
        return x0;
    }

    public double getYTop() {
        return y0;
    }

    public double getXBot() {
        return x1;
    }

    public double getYBot() {
        return y1;
    }

    public double getXMin() {
        return xmin;
    }

    public double getXMax() {
        return xmax;
    }

    public double getX0() {
        return (direction == INCREASING) ? x0 : x1;
    }

    public double getY0() {
        return (direction == INCREASING) ? y0 : y1;
    }

    public double getCX0() {
        return (direction == INCREASING) ? cx0 : cx1;
    }

    public double getCY0() {
        return (direction == INCREASING) ? cy0 : cy1;
    }

    public double getCX1() {
        return (direction == DECREASING) ? cx0 : cx1;
    }

    public double getCY1() {
        return (direction == DECREASING) ? cy0 : cy1;
    }

    public double getX1() {
        return (direction == DECREASING) ? x0 : x1;
    }

    public double getY1() {
        return (direction == DECREASING) ? y0 : y1;
    }

    private double TforY1;
    private double YforT1;
    private double TforY2;
    private double YforT2;
    private double TforY3;
    private double YforT3;

    /*
     * Solve the cubic whose coefficients are in the a,b,c,d fields and
     * return the first root in the range [0, 1].
     * The cubic solved is represented by the equation:
     *     x^3 + (ycoeff2)x^2 + (ycoeff1)x + (ycoeff0) = y
     * @return the first valid root (in the range [0, 1])
     */
    public double TforY(double y) {
        if (y <= y0) return 0;
        if (y >= y1) return 1;
        if (y == YforT1) return TforY1;
        if (y == YforT2) return TforY2;
        if (y == YforT3) return TforY3;
        // From Numerical Recipes, 5.6, Quadratic and Cubic Equations
        if (ycoeff3 == 0.0) {
            // The cubic degenerated to quadratic (or line or ...).
            return Order2.TforY(y, ycoeff0, ycoeff1, ycoeff2);
        }
        double a = ycoeff2 / ycoeff3;
        double b = ycoeff1 / ycoeff3;
        double c = (ycoeff0 - y) / ycoeff3;
        int roots = 0;
        double Q = (a * a - 3.0 * b) / 9.0;
        double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0;
        double R2 = R * R;
        double Q3 = Q * Q * Q;
        double a_3 = a / 3.0;
        double t;
        if (R2 < Q3) {
            double theta = Math.acos(R / Math.sqrt(Q3));
            Q = -2.0 * Math.sqrt(Q);
            t = refine(a, b, c, y, Q * Math.cos(theta / 3.0) - a_3);
            if (t < 0) {
                t = refine(a, b, c, y,
                           Q * Math.cos((theta + Math.PI * 2.0)/ 3.0) - a_3);
            }
            if (t < 0) {
                t = refine(a, b, c, y,
                           Q * Math.cos((theta - Math.PI * 2.0)/ 3.0) - a_3);
            }
        } else {
            boolean neg = (R < 0.0);
            double S = Math.sqrt(R2 - Q3);
            if (neg) {
                R = -R;
            }
            double A = Math.pow(R + S, 1.0 / 3.0);
            if (!neg) {
                A = -A;
            }
            double B = (A == 0.0) ? 0.0 : (Q / A);
            t = refine(a, b, c, y, (A + B) - a_3);
        }
        if (t < 0) {
            //throw new InternalError("bad t");
            double t0 = 0;
            double t1 = 1;
            while (true) {
                t = (t0 + t1) / 2;
                if (t == t0 || t == t1) {
                    break;
                }
                double yt = YforT(t);
                if (yt < y) {
                    t0 = t;
                } else if (yt > y) {
                    t1 = t;
                } else {
                    break;
                }
            }
        }
        if (t >= 0) {
            TforY3 = TforY2;
            YforT3 = YforT2;
            TforY2 = TforY1;
            YforT2 = YforT1;
            TforY1 = t;
            YforT1 = y;
        }
        return t;
    }

    public double refine(double a, double b, double c,
                         double target, double t)
    {
        if (t < -0.1 || t > 1.1) {
            return -1;
        }
        double y = YforT(t);
        double t0, t1;
        if (y < target) {
            t0 = t;
            t1 = 1;
        } else {
            t0 = 0;
            t1 = t;
        }
        double origt = t;
        double origy = y;
        boolean useslope = true;
        while (y != target) {
            if (!useslope) {
                double t2 = (t0 + t1) / 2;
                if (t2 == t0 || t2 == t1) {
                    break;
                }
                t = t2;
            } else {
                double slope = dYforT(t, 1);
                if (slope == 0) {
                    useslope = false;
                    continue;
                }
                double t2 = t + ((target - y) / slope);
                if (t2 == t || t2 <= t0 || t2 >= t1) {
                    useslope = false;
                    continue;
                }
                t = t2;
            }
            y = YforT(t);
            if (y < target) {
                t0 = t;
            } else if (y > target) {
                t1 = t;
            } else {
                break;
            }
        }
        boolean verbose = false;
        if (false && t >= 0 && t <= 1) {
            y = YforT(t);
            long tdiff = diffbits(t, origt);
            long ydiff = diffbits(y, origy);
            long yerr = diffbits(y, target);
            if (yerr > 0 || (verbose && tdiff > 0)) {
                System.out.println("target was y = "+target);
                System.out.println("original was y = "+origy+", t = "+origt);
                System.out.println("final was y = "+y+", t = "+t);
                System.out.println("t diff is "+tdiff);
                System.out.println("y diff is "+ydiff);
                System.out.println("y error is "+yerr);
                double tlow = prev(t);
                double ylow = YforT(tlow);
                double thi = next(t);
                double yhi = YforT(thi);
                if (Math.abs(target - ylow) < Math.abs(target - y) ||
                    Math.abs(target - yhi) < Math.abs(target - y))
                {
                    System.out.println("adjacent y's = ["+ylow+", "+yhi+"]");
                }
            }
        }
        return (t > 1) ? -1 : t;
    }

    public double XforY(double y) {
        if (y <= y0) {
            return x0;
        }
        if (y >= y1) {
            return x1;
        }
        return XforT(TforY(y));
    }

    public double XforT(double t) {
        return (((xcoeff3 * t) + xcoeff2) * t + xcoeff1) * t + xcoeff0;
    }

    public double YforT(double t) {
        return (((ycoeff3 * t) + ycoeff2) * t + ycoeff1) * t + ycoeff0;
    }

    public double dXforT(double t, int deriv) {
        switch (deriv) {
        case 0:
            return (((xcoeff3 * t) + xcoeff2) * t + xcoeff1) * t + xcoeff0;
        case 1:
            return ((3 * xcoeff3 * t) + 2 * xcoeff2) * t + xcoeff1;
        case 2:
            return (6 * xcoeff3 * t) + 2 * xcoeff2;
        case 3:
            return 6 * xcoeff3;
        default:
            return 0;
        }
    }

    public double dYforT(double t, int deriv) {
        switch (deriv) {
        case 0:
            return (((ycoeff3 * t) + ycoeff2) * t + ycoeff1) * t + ycoeff0;
        case 1:
            return ((3 * ycoeff3 * t) + 2 * ycoeff2) * t + ycoeff1;
        case 2:
            return (6 * ycoeff3 * t) + 2 * ycoeff2;
        case 3:
            return 6 * ycoeff3;
        default:
            return 0;
        }
    }

    public double nextVertical(double t0, double t1) {
        double eqn[] = {xcoeff1, 2 * xcoeff2, 3 * xcoeff3};
        int numroots = QuadCurve2D.solveQuadratic(eqn, eqn);
        for (int i = 0; i < numroots; i++) {
            if (eqn[i] > t0 && eqn[i] < t1) {
                t1 = eqn[i];
            }
        }
        return t1;
    }

    public void enlarge(Rectangle2D r) {
        r.add(x0, y0);
        double eqn[] = {xcoeff1, 2 * xcoeff2, 3 * xcoeff3};
        int numroots = QuadCurve2D.solveQuadratic(eqn, eqn);
        for (int i = 0; i < numroots; i++) {
            double t = eqn[i];
            if (t > 0 && t < 1) {
                r.add(XforT(t), YforT(t));
            }
        }
        r.add(x1, y1);
    }

    public Curve getSubCurve(double ystart, double yend, int dir) {
        if (ystart <= y0 && yend >= y1) {
            return getWithDirection(dir);
        }
        double eqn[] = new double[14];
        double t0, t1;
        t0 = TforY(ystart);
        t1 = TforY(yend);
        eqn[0] = x0;
        eqn[1] = y0;
        eqn[2] = cx0;
        eqn[3] = cy0;
        eqn[4] = cx1;
        eqn[5] = cy1;
        eqn[6] = x1;
        eqn[7] = y1;
        if (t0 > t1) {
            /* This happens in only rare cases where ystart is
             * very near yend and solving for the yend root ends
             * up stepping slightly lower in t than solving for
             * the ystart root.
             * Ideally we might want to skip this tiny little
             * segment and just fudge the surrounding coordinates
             * to bridge the gap left behind, but there is no way
             * to do that from here.  Higher levels could
             * potentially eliminate these tiny "fixup" segments,
             * but not without a lot of extra work on the code that
             * coalesces chains of curves into subpaths.  The
             * simplest solution for now is to just reorder the t
             * values and chop out a miniscule curve piece.
             */
            double t = t0;
            t0 = t1;
            t1 = t;
        }
        if (t1 < 1) {
            split(eqn, 0, t1);
        }
        int i;
        if (t0 <= 0) {
            i = 0;
        } else {
            split(eqn, 0, t0 / t1);
            i = 6;
        }
        return new Order3(eqn[i+0], ystart,
                          eqn[i+2], eqn[i+3],
                          eqn[i+4], eqn[i+5],
                          eqn[i+6], yend,
                          dir);
    }

    public Curve getReversedCurve() {
        return new Order3(x0, y0, cx0, cy0, cx1, cy1, x1, y1, -direction);
    }

    public int getSegment(double coords[]) {
        if (direction == INCREASING) {
            coords[0] = cx0;
            coords[1] = cy0;
            coords[2] = cx1;
            coords[3] = cy1;
            coords[4] = x1;
            coords[5] = y1;
        } else {
            coords[0] = cx1;
            coords[1] = cy1;
            coords[2] = cx0;
            coords[3] = cy0;
            coords[4] = x0;
            coords[5] = y0;
        }
        return PathIterator.SEG_CUBICTO;
    }

    public String controlPointString() {
        return (("("+round(getCX0())+", "+round(getCY0())+"), ")+
                ("("+round(getCX1())+", "+round(getCY1())+"), "));
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Order3.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.