alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (DuctusRenderingEngine.java)

This example Java source code file (DuctusRenderingEngine.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

aatilegenerator, awt, filladapter, geometry, lower_bnd, minpenunitsaa, override, pathconsumer, pathdasher, pathexception, pathiterator, pathstroker, prexception, rasterizer, shape, upper_bnd

The DuctusRenderingEngine.java Java example source code

/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.dc;

import java.awt.Shape;
import java.awt.BasicStroke;
import java.awt.geom.Path2D;
import java.awt.geom.PathIterator;
import java.awt.geom.AffineTransform;

import sun.awt.geom.PathConsumer2D;
import sun.java2d.pipe.Region;
import sun.java2d.pipe.AATileGenerator;
import sun.java2d.pipe.RenderingEngine;

import sun.dc.pr.Rasterizer;
import sun.dc.pr.PathStroker;
import sun.dc.pr.PathDasher;
import sun.dc.pr.PRException;
import sun.dc.path.PathConsumer;
import sun.dc.path.PathException;
import sun.dc.path.FastPathProducer;

public class DuctusRenderingEngine extends RenderingEngine {
    static final float PenUnits = 0.01f;
    static final int MinPenUnits = 100;
    static final int MinPenUnitsAA = 20;
    static final float MinPenSizeAA = PenUnits * MinPenUnitsAA;

    static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
    static final float LOWER_BND = -UPPER_BND;

    private static final int RasterizerCaps[] = {
        Rasterizer.BUTT, Rasterizer.ROUND, Rasterizer.SQUARE
    };

    private static final int RasterizerCorners[] = {
        Rasterizer.MITER, Rasterizer.ROUND, Rasterizer.BEVEL
    };

    static float[] getTransformMatrix(AffineTransform transform) {
        float matrix[] = new float[4];
        double dmatrix[] = new double[6];
        transform.getMatrix(dmatrix);
        for (int i = 0; i < 4; i++) {
            matrix[i] = (float) dmatrix[i];
        }
        return matrix;
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public Shape createStrokedShape(Shape src,
                                    float width,
                                    int caps,
                                    int join,
                                    float miterlimit,
                                    float dashes[],
                                    float dashphase)
    {
        FillAdapter filler = new FillAdapter();
        PathStroker stroker = new PathStroker(filler);
        PathDasher dasher = null;

        try {
            PathConsumer consumer;

            stroker.setPenDiameter(width);
            stroker.setPenT4(null);
            stroker.setCaps(RasterizerCaps[caps]);
            stroker.setCorners(RasterizerCorners[join], miterlimit);
            if (dashes != null) {
                dasher = new PathDasher(stroker);
                dasher.setDash(dashes, dashphase);
                dasher.setDashT4(null);
                consumer = dasher;
            } else {
                consumer = stroker;
            }

            feedConsumer(consumer, src.getPathIterator(null));
        } finally {
            stroker.dispose();
            if (dasher != null) {
                dasher.dispose();
            }
        }

        return filler.getShape();
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public void strokeTo(Shape src,
                         AffineTransform transform,
                         BasicStroke bs,
                         boolean thin,
                         boolean normalize,
                         boolean antialias,
                         PathConsumer2D sr)
    {
        PathStroker stroker = new PathStroker(sr);
        PathConsumer consumer = stroker;

        float matrix[] = null;
        if (!thin) {
            stroker.setPenDiameter(bs.getLineWidth());
            if (transform != null) {
                matrix = getTransformMatrix(transform);
            }
            stroker.setPenT4(matrix);
            stroker.setPenFitting(PenUnits, MinPenUnits);
        }
        stroker.setCaps(RasterizerCaps[bs.getEndCap()]);
        stroker.setCorners(RasterizerCorners[bs.getLineJoin()],
                           bs.getMiterLimit());
        float[] dashes = bs.getDashArray();
        if (dashes != null) {
            PathDasher dasher = new PathDasher(stroker);
            dasher.setDash(dashes, bs.getDashPhase());
            if (transform != null && matrix == null) {
                matrix = getTransformMatrix(transform);
            }
            dasher.setDashT4(matrix);
            consumer = dasher;
        }

        try {
            PathIterator pi = src.getPathIterator(transform);

            feedConsumer(pi, consumer, normalize, 0.25f);
        } catch (PathException e) {
            throw new InternalError("Unable to Stroke shape ("+
                                    e.getMessage()+")", e);
        } finally {
            while (consumer != null && consumer != sr) {
                PathConsumer next = consumer.getConsumer();
                consumer.dispose();
                consumer = next;
            }
        }
    }

    /*
     * Feed a path from a PathIterator to a Ductus PathConsumer.
     */
    public static void feedConsumer(PathIterator pi, PathConsumer consumer,
                                    boolean normalize, float norm)
        throws PathException
    {
        consumer.beginPath();
        boolean pathClosed = false;
        boolean skip = false;
        boolean subpathStarted = false;
        float mx = 0.0f;
        float my = 0.0f;
        float point[]  = new float[6];
        float rnd = (0.5f - norm);
        float ax = 0.0f;
        float ay = 0.0f;

        while (!pi.isDone()) {
            int type = pi.currentSegment(point);
            if (pathClosed == true) {
                pathClosed = false;
                if (type != PathIterator.SEG_MOVETO) {
                    // Force current point back to last moveto point
                    consumer.beginSubpath(mx, my);
                    subpathStarted = true;
                }
            }
            if (normalize) {
                int index;
                switch (type) {
                case PathIterator.SEG_CUBICTO:
                    index = 4;
                    break;
                case PathIterator.SEG_QUADTO:
                    index = 2;
                    break;
                case PathIterator.SEG_MOVETO:
                case PathIterator.SEG_LINETO:
                    index = 0;
                    break;
                case PathIterator.SEG_CLOSE:
                default:
                    index = -1;
                    break;
                }
                if (index >= 0) {
                    float ox = point[index];
                    float oy = point[index+1];
                    float newax = (float) Math.floor(ox + rnd) + norm;
                    float neway = (float) Math.floor(oy + rnd) + norm;
                    point[index] = newax;
                    point[index+1] = neway;
                    newax -= ox;
                    neway -= oy;
                    switch (type) {
                    case PathIterator.SEG_CUBICTO:
                        point[0] += ax;
                        point[1] += ay;
                        point[2] += newax;
                        point[3] += neway;
                        break;
                    case PathIterator.SEG_QUADTO:
                        point[0] += (newax + ax) / 2;
                        point[1] += (neway + ay) / 2;
                        break;
                    case PathIterator.SEG_MOVETO:
                    case PathIterator.SEG_LINETO:
                    case PathIterator.SEG_CLOSE:
                        break;
                    }
                    ax = newax;
                    ay = neway;
                }
            }
            switch (type) {
            case PathIterator.SEG_MOVETO:

                /* Checking SEG_MOVETO coordinates if they are out of the
                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
                 * and Infinity values. Skipping next path segment in case of
                 * invalid data.
                 */
                if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                    point[1] < UPPER_BND && point[1] > LOWER_BND)
                {
                    mx = point[0];
                    my = point[1];
                    consumer.beginSubpath(mx, my);
                    subpathStarted = true;
                    skip = false;
                } else {
                    skip = true;
                }
                break;
            case PathIterator.SEG_LINETO:
                /* Checking SEG_LINETO coordinates if they are out of the
                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
                 * and Infinity values. Ignoring current path segment in case
                 * of invalid data. If segment is skipped its endpoint
                 * (if valid) is used to begin new subpath.
                 */
                if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                    point[1] < UPPER_BND && point[1] > LOWER_BND)
                {
                    if (skip) {
                        consumer.beginSubpath(point[0], point[1]);
                        subpathStarted = true;
                        skip = false;
                    } else {
                        consumer.appendLine(point[0], point[1]);
                    }
                }
                break;
            case PathIterator.SEG_QUADTO:
                // Quadratic curves take two points

                /* Checking SEG_QUADTO coordinates if they are out of the
                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
                 * and Infinity values. Ignoring current path segment in case
                 * of invalid endpoints's data. Equivalent to the SEG_LINETO
                 * if endpoint coordinates are valid but there are invalid data
                 * among other coordinates
                 */
                if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
                    point[3] < UPPER_BND && point[3] > LOWER_BND)
                {
                    if (skip) {
                        consumer.beginSubpath(point[2], point[3]);
                        subpathStarted = true;
                        skip = false;
                    } else {
                        if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                            point[1] < UPPER_BND && point[1] > LOWER_BND)
                        {
                            consumer.appendQuadratic(point[0], point[1],
                                                     point[2], point[3]);
                        } else {
                            consumer.appendLine(point[2], point[3]);
                        }
                    }
                }
                break;
            case PathIterator.SEG_CUBICTO:
                // Cubic curves take three points

                /* Checking SEG_CUBICTO coordinates if they are out of the
                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
                 * and Infinity values. Ignoring current path segment in case
                 * of invalid endpoints's data. Equivalent to the SEG_LINETO
                 * if endpoint coordinates are valid but there are invalid data
                 * among other coordinates
                 */
                if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
                    point[5] < UPPER_BND && point[5] > LOWER_BND)
                {
                    if (skip) {
                        consumer.beginSubpath(point[4], point[5]);
                        subpathStarted = true;
                        skip = false;
                    } else {
                        if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                            point[1] < UPPER_BND && point[1] > LOWER_BND &&
                            point[2] < UPPER_BND && point[2] > LOWER_BND &&
                            point[3] < UPPER_BND && point[3] > LOWER_BND)
                        {
                            consumer.appendCubic(point[0], point[1],
                                                 point[2], point[3],
                                                 point[4], point[5]);
                        } else {
                            consumer.appendLine(point[4], point[5]);
                        }
                    }
                }
                break;
            case PathIterator.SEG_CLOSE:
                if (subpathStarted) {
                    consumer.closedSubpath();
                    subpathStarted = false;
                    pathClosed = true;
                }
                break;
            }
            pi.next();
        }

        consumer.endPath();
    }

    private static Rasterizer theRasterizer;

    public synchronized static Rasterizer getRasterizer() {
        Rasterizer r = theRasterizer;
        if (r == null) {
            r = new Rasterizer();
        } else {
            theRasterizer = null;
        }
        return r;
    }

    public synchronized static void dropRasterizer(Rasterizer r) {
        r.reset();
        theRasterizer = r;
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public float getMinimumAAPenSize() {
        return MinPenSizeAA;
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public AATileGenerator getAATileGenerator(Shape s,
                                              AffineTransform at,
                                              Region clip,
                                              BasicStroke bs,
                                              boolean thin,
                                              boolean normalize,
                                              int bbox[])
    {
        Rasterizer r = getRasterizer();
        PathIterator pi = s.getPathIterator(at);

        if (bs != null) {
            float matrix[] = null;
            r.setUsage(Rasterizer.STROKE);
            if (thin) {
                r.setPenDiameter(MinPenSizeAA);
            } else {
                r.setPenDiameter(bs.getLineWidth());
                if (at != null) {
                    matrix = getTransformMatrix(at);
                    r.setPenT4(matrix);
                }
                r.setPenFitting(PenUnits, MinPenUnitsAA);
            }
            r.setCaps(RasterizerCaps[bs.getEndCap()]);
            r.setCorners(RasterizerCorners[bs.getLineJoin()],
                         bs.getMiterLimit());
            float[] dashes = bs.getDashArray();
            if (dashes != null) {
                r.setDash(dashes, bs.getDashPhase());
                if (at != null && matrix == null) {
                    matrix = getTransformMatrix(at);
                }
                r.setDashT4(matrix);
            }
        } else {
            r.setUsage(pi.getWindingRule() == PathIterator.WIND_EVEN_ODD
                       ? Rasterizer.EOFILL
                       : Rasterizer.NZFILL);
        }

        r.beginPath();
        {
            boolean pathClosed = false;
            boolean skip = false;
            boolean subpathStarted = false;
            float mx = 0.0f;
            float my = 0.0f;
            float point[]  = new float[6];
            float ax = 0.0f;
            float ay = 0.0f;

            while (!pi.isDone()) {
                int type = pi.currentSegment(point);
                if (pathClosed == true) {
                    pathClosed = false;
                    if (type != PathIterator.SEG_MOVETO) {
                        // Force current point back to last moveto point
                        r.beginSubpath(mx, my);
                        subpathStarted = true;
                    }
                }
                if (normalize) {
                    int index;
                    switch (type) {
                    case PathIterator.SEG_CUBICTO:
                        index = 4;
                        break;
                    case PathIterator.SEG_QUADTO:
                        index = 2;
                        break;
                    case PathIterator.SEG_MOVETO:
                    case PathIterator.SEG_LINETO:
                        index = 0;
                        break;
                    case PathIterator.SEG_CLOSE:
                    default:
                        index = -1;
                        break;
                    }
                    if (index >= 0) {
                        float ox = point[index];
                        float oy = point[index+1];
                        float newax = (float) Math.floor(ox) + 0.5f;
                        float neway = (float) Math.floor(oy) + 0.5f;
                        point[index] = newax;
                        point[index+1] = neway;
                        newax -= ox;
                        neway -= oy;
                        switch (type) {
                        case PathIterator.SEG_CUBICTO:
                            point[0] += ax;
                            point[1] += ay;
                            point[2] += newax;
                            point[3] += neway;
                            break;
                        case PathIterator.SEG_QUADTO:
                            point[0] += (newax + ax) / 2;
                            point[1] += (neway + ay) / 2;
                            break;
                        case PathIterator.SEG_MOVETO:
                        case PathIterator.SEG_LINETO:
                        case PathIterator.SEG_CLOSE:
                            break;
                        }
                        ax = newax;
                        ay = neway;
                    }
                }
                switch (type) {
                case PathIterator.SEG_MOVETO:

                   /* Checking SEG_MOVETO coordinates if they are out of the
                    * [LOWER_BND, UPPER_BND] range. This check also handles NaN
                    * and Infinity values. Skipping next path segment in case
                    * of invalid data.
                    */

                    if (point[0] < UPPER_BND &&  point[0] > LOWER_BND &&
                        point[1] < UPPER_BND &&  point[1] > LOWER_BND)
                    {
                        mx = point[0];
                        my = point[1];
                        r.beginSubpath(mx, my);
                        subpathStarted = true;
                        skip = false;
                    } else {
                        skip = true;
                    }
                    break;

                case PathIterator.SEG_LINETO:
                    /* Checking SEG_LINETO coordinates if they are out of the
                     * [LOWER_BND, UPPER_BND] range. This check also handles
                     * NaN and Infinity values. Ignoring current path segment
                     * in case of invalid data. If segment is skipped its
                     * endpoint (if valid) is used to begin new subpath.
                     */
                    if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                        point[1] < UPPER_BND && point[1] > LOWER_BND)
                    {
                        if (skip) {
                            r.beginSubpath(point[0], point[1]);
                            subpathStarted = true;
                            skip = false;
                        } else {
                            r.appendLine(point[0], point[1]);
                        }
                    }
                    break;

                case PathIterator.SEG_QUADTO:
                    // Quadratic curves take two points

                    /* Checking SEG_QUADTO coordinates if they are out of the
                     * [LOWER_BND, UPPER_BND] range. This check also handles
                     * NaN and Infinity values. Ignoring current path segment
                     * in case of invalid endpoints's data. Equivalent to the
                     * SEG_LINETO if endpoint coordinates are valid but there
                     * are invalid data among other coordinates
                     */
                    if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
                        point[3] < UPPER_BND && point[3] > LOWER_BND)
                    {
                        if (skip) {
                            r.beginSubpath(point[2], point[3]);
                            subpathStarted = true;
                            skip = false;
                        } else {
                            if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                                point[1] < UPPER_BND && point[1] > LOWER_BND)
                            {
                                r.appendQuadratic(point[0], point[1],
                                                  point[2], point[3]);
                            } else {
                                r.appendLine(point[2], point[3]);
                            }
                        }
                    }
                    break;
                case PathIterator.SEG_CUBICTO:
                    // Cubic curves take three points

                    /* Checking SEG_CUBICTO coordinates if they are out of the
                     * [LOWER_BND, UPPER_BND] range. This check also handles
                     * NaN and Infinity values. Ignoring  current path segment
                     * in case of invalid endpoints's data. Equivalent to the
                     * SEG_LINETO if endpoint coordinates are valid but there
                     * are invalid data among other coordinates
                     */

                    if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
                        point[5] < UPPER_BND && point[5] > LOWER_BND)
                    {
                        if (skip) {
                            r.beginSubpath(point[4], point[5]);
                            subpathStarted = true;
                            skip = false;
                        } else {
                            if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
                                point[1] < UPPER_BND && point[1] > LOWER_BND &&
                                point[2] < UPPER_BND && point[2] > LOWER_BND &&
                                point[3] < UPPER_BND && point[3] > LOWER_BND)
                            {
                                r.appendCubic(point[0], point[1],
                                              point[2], point[3],
                                              point[4], point[5]);
                            } else {
                                r.appendLine(point[4], point[5]);
                            }
                        }
                    }
                    break;
                case PathIterator.SEG_CLOSE:
                    if (subpathStarted) {
                        r.closedSubpath();
                        subpathStarted = false;
                        pathClosed = true;
                    }
                    break;
                }
                pi.next();
            }
        }

        try {
            r.endPath();
            r.getAlphaBox(bbox);
            clip.clipBoxToBounds(bbox);
            if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
                dropRasterizer(r);
                return null;
            }
            r.setOutputArea(bbox[0], bbox[1],
                            bbox[2] - bbox[0],
                            bbox[3] - bbox[1]);
        } catch (PRException e) {
            /*
             * This exeption is thrown from the native part of the Ductus
             * (only in case of a debug build) to indicate that some
             * segments of the path have very large coordinates.
             * See 4485298 for more info.
             */
            System.err.println("DuctusRenderingEngine.getAATileGenerator: "+e);
        }

        return r;
    }

    /**
     * {@inheritDoc}
     */
    @Override
    public AATileGenerator getAATileGenerator(double x, double y,
                                              double dx1, double dy1,
                                              double dx2, double dy2,
                                              double lw1, double lw2,
                                              Region clip,
                                              int bbox[])
    {
        // REMIND: Deal with large coordinates!
        double ldx1, ldy1, ldx2, ldy2;
        boolean innerpgram = (lw1 > 0 && lw2 > 0);

        if (innerpgram) {
            ldx1 = dx1 * lw1;
            ldy1 = dy1 * lw1;
            ldx2 = dx2 * lw2;
            ldy2 = dy2 * lw2;
            x -= (ldx1 + ldx2) / 2.0;
            y -= (ldy1 + ldy2) / 2.0;
            dx1 += ldx1;
            dy1 += ldy1;
            dx2 += ldx2;
            dy2 += ldy2;
            if (lw1 > 1 && lw2 > 1) {
                // Inner parallelogram was entirely consumed by stroke...
                innerpgram = false;
            }
        } else {
            ldx1 = ldy1 = ldx2 = ldy2 = 0;
        }

        Rasterizer r = getRasterizer();

        r.setUsage(Rasterizer.EOFILL);

        r.beginPath();
        r.beginSubpath((float) x, (float) y);
        r.appendLine((float) (x+dx1), (float) (y+dy1));
        r.appendLine((float) (x+dx1+dx2), (float) (y+dy1+dy2));
        r.appendLine((float) (x+dx2), (float) (y+dy2));
        r.closedSubpath();
        if (innerpgram) {
            x += ldx1 + ldx2;
            y += ldy1 + ldy2;
            dx1 -= 2.0 * ldx1;
            dy1 -= 2.0 * ldy1;
            dx2 -= 2.0 * ldx2;
            dy2 -= 2.0 * ldy2;
            r.beginSubpath((float) x, (float) y);
            r.appendLine((float) (x+dx1), (float) (y+dy1));
            r.appendLine((float) (x+dx1+dx2), (float) (y+dy1+dy2));
            r.appendLine((float) (x+dx2), (float) (y+dy2));
            r.closedSubpath();
        }

        try {
            r.endPath();
            r.getAlphaBox(bbox);
            clip.clipBoxToBounds(bbox);
            if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
                dropRasterizer(r);
                return null;
            }
            r.setOutputArea(bbox[0], bbox[1],
                            bbox[2] - bbox[0],
                            bbox[3] - bbox[1]);
        } catch (PRException e) {
            /*
             * This exeption is thrown from the native part of the Ductus
             * (only in case of a debug build) to indicate that some
             * segments of the path have very large coordinates.
             * See 4485298 for more info.
             */
            System.err.println("DuctusRenderingEngine.getAATileGenerator: "+e);
        }

        return r;
    }

    private void feedConsumer(PathConsumer consumer, PathIterator pi) {
        try {
            consumer.beginPath();
            boolean pathClosed = false;
            float mx = 0.0f;
            float my = 0.0f;
            float point[]  = new float[6];

            while (!pi.isDone()) {
                int type = pi.currentSegment(point);
                if (pathClosed == true) {
                    pathClosed = false;
                    if (type != PathIterator.SEG_MOVETO) {
                        // Force current point back to last moveto point
                        consumer.beginSubpath(mx, my);
                    }
                }
                switch (type) {
                case PathIterator.SEG_MOVETO:
                    mx = point[0];
                    my = point[1];
                    consumer.beginSubpath(point[0], point[1]);
                    break;
                case PathIterator.SEG_LINETO:
                    consumer.appendLine(point[0], point[1]);
                    break;
                case PathIterator.SEG_QUADTO:
                    consumer.appendQuadratic(point[0], point[1],
                                             point[2], point[3]);
                    break;
                case PathIterator.SEG_CUBICTO:
                    consumer.appendCubic(point[0], point[1],
                                         point[2], point[3],
                                         point[4], point[5]);
                    break;
                case PathIterator.SEG_CLOSE:
                    consumer.closedSubpath();
                    pathClosed = true;
                    break;
                }
                pi.next();
            }

            consumer.endPath();
        } catch (PathException e) {
            throw new InternalError("Unable to Stroke shape ("+
                                    e.getMessage()+")", e);
        }
    }

    private class FillAdapter implements PathConsumer {
        boolean closed;
        Path2D.Float path;

        public FillAdapter() {
            // Ductus only supplies float coordinates so
            // Path2D.Double is not necessary here.
            path = new Path2D.Float(Path2D.WIND_NON_ZERO);
        }

        public Shape getShape() {
            return path;
        }

        public void dispose() {
        }

        public PathConsumer getConsumer() {
            return null;
        }

        public void beginPath() {}

        public void beginSubpath(float x0, float y0) {
            if (closed) {
                path.closePath();
                closed = false;
            }
            path.moveTo(x0, y0);
        }

        public void appendLine(float x1, float y1) {
            path.lineTo(x1, y1);
        }

        public void appendQuadratic(float xm, float ym, float x1, float y1) {
            path.quadTo(xm, ym, x1, y1);
        }

        public void appendCubic(float xm, float ym,
                                float xn, float yn,
                                float x1, float y1) {
            path.curveTo(xm, ym, xn, yn, x1, y1);
        }

        public void closedSubpath() {
            closed = true;
        }

        public void endPath() {
            if (closed) {
                path.closePath();
                closed = false;
            }
        }

        public void useProxy(FastPathProducer proxy)
            throws PathException
        {
            proxy.sendTo(this);
        }

        public long getCPathConsumer() {
            return 0;
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java DuctusRenderingEngine.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.