|
Java example source code file (SunGraphics2D.java)
The SunGraphics2D.java Java example source code
/*
* Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.java2d;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.RenderingHints.Key;
import java.awt.geom.Area;
import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;
import java.awt.AlphaComposite;
import java.awt.BasicStroke;
import java.awt.image.BufferedImage;
import java.awt.image.BufferedImageOp;
import java.awt.image.RenderedImage;
import java.awt.image.renderable.RenderableImage;
import java.awt.image.renderable.RenderContext;
import java.awt.image.AffineTransformOp;
import java.awt.image.Raster;
import java.awt.image.WritableRaster;
import java.awt.Image;
import java.awt.Composite;
import java.awt.Color;
import java.awt.image.ColorModel;
import java.awt.GraphicsConfiguration;
import java.awt.Paint;
import java.awt.GradientPaint;
import java.awt.LinearGradientPaint;
import java.awt.RadialGradientPaint;
import java.awt.TexturePaint;
import java.awt.geom.Rectangle2D;
import java.awt.geom.PathIterator;
import java.awt.geom.GeneralPath;
import java.awt.Shape;
import java.awt.Stroke;
import java.awt.FontMetrics;
import java.awt.Rectangle;
import java.text.AttributedCharacterIterator;
import java.awt.Font;
import java.awt.image.ImageObserver;
import java.awt.Transparency;
import java.awt.font.GlyphVector;
import java.awt.font.TextLayout;
import sun.awt.image.SurfaceManager;
import sun.font.FontDesignMetrics;
import sun.font.FontUtilities;
import sun.java2d.pipe.PixelDrawPipe;
import sun.java2d.pipe.PixelFillPipe;
import sun.java2d.pipe.ShapeDrawPipe;
import sun.java2d.pipe.ValidatePipe;
import sun.java2d.pipe.ShapeSpanIterator;
import sun.java2d.pipe.Region;
import sun.java2d.pipe.TextPipe;
import sun.java2d.pipe.DrawImagePipe;
import sun.java2d.pipe.LoopPipe;
import sun.java2d.loops.FontInfo;
import sun.java2d.loops.RenderLoops;
import sun.java2d.loops.CompositeType;
import sun.java2d.loops.SurfaceType;
import sun.java2d.loops.Blit;
import sun.java2d.loops.MaskFill;
import java.awt.font.FontRenderContext;
import sun.java2d.loops.XORComposite;
import sun.awt.ConstrainableGraphics;
import sun.awt.SunHints;
import java.util.Map;
import java.util.Iterator;
import sun.misc.PerformanceLogger;
import java.lang.annotation.Native;
/**
* This is a the master Graphics2D superclass for all of the Sun
* Graphics implementations. This class relies on subclasses to
* manage the various device information, but provides an overall
* general framework for performing all of the requests in the
* Graphics and Graphics2D APIs.
*
* @author Jim Graham
*/
public final class SunGraphics2D
extends Graphics2D
implements ConstrainableGraphics, Cloneable, DestSurfaceProvider
{
/*
* Attribute States
*/
/* Paint */
@Native
public static final int PAINT_CUSTOM = 6; /* Any other Paint object */
@Native
public static final int PAINT_TEXTURE = 5; /* Tiled Image */
@Native
public static final int PAINT_RAD_GRADIENT = 4; /* Color RadialGradient */
@Native
public static final int PAINT_LIN_GRADIENT = 3; /* Color LinearGradient */
@Native
public static final int PAINT_GRADIENT = 2; /* Color Gradient */
@Native
public static final int PAINT_ALPHACOLOR = 1; /* Non-opaque Color */
@Native
public static final int PAINT_OPAQUECOLOR = 0; /* Opaque Color */
/* Composite*/
@Native
public static final int COMP_CUSTOM = 3;/* Custom Composite */
@Native
public static final int COMP_XOR = 2;/* XOR Mode Composite */
@Native
public static final int COMP_ALPHA = 1;/* AlphaComposite */
@Native
public static final int COMP_ISCOPY = 0;/* simple stores into destination,
* i.e. Src, SrcOverNoEa, and other
* alpha modes which replace
* the destination.
*/
/* Stroke */
@Native
public static final int STROKE_CUSTOM = 3; /* custom Stroke */
@Native
public static final int STROKE_WIDE = 2; /* BasicStroke */
@Native
public static final int STROKE_THINDASHED = 1; /* BasicStroke */
@Native
public static final int STROKE_THIN = 0; /* BasicStroke */
/* Transform */
@Native
public static final int TRANSFORM_GENERIC = 4; /* any 3x2 */
@Native
public static final int TRANSFORM_TRANSLATESCALE = 3; /* scale XY */
@Native
public static final int TRANSFORM_ANY_TRANSLATE = 2; /* non-int translate */
@Native
public static final int TRANSFORM_INT_TRANSLATE = 1; /* int translate */
@Native
public static final int TRANSFORM_ISIDENT = 0; /* Identity */
/* Clipping */
@Native
public static final int CLIP_SHAPE = 2; /* arbitrary clip */
@Native
public static final int CLIP_RECTANGULAR = 1; /* rectangular clip */
@Native
public static final int CLIP_DEVICE = 0; /* no clipping set */
/* The following fields are used when the current Paint is a Color. */
public int eargb; // ARGB value with ExtraAlpha baked in
public int pixel; // pixel value for eargb
public SurfaceData surfaceData;
public PixelDrawPipe drawpipe;
public PixelFillPipe fillpipe;
public DrawImagePipe imagepipe;
public ShapeDrawPipe shapepipe;
public TextPipe textpipe;
public MaskFill alphafill;
public RenderLoops loops;
public CompositeType imageComp; /* Image Transparency checked on fly */
public int paintState;
public int compositeState;
public int strokeState;
public int transformState;
public int clipState;
public Color foregroundColor;
public Color backgroundColor;
public AffineTransform transform;
public int transX;
public int transY;
protected static final Stroke defaultStroke = new BasicStroke();
protected static final Composite defaultComposite = AlphaComposite.SrcOver;
private static final Font defaultFont =
new Font(Font.DIALOG, Font.PLAIN, 12);
public Paint paint;
public Stroke stroke;
public Composite composite;
protected Font font;
protected FontMetrics fontMetrics;
public int renderHint;
public int antialiasHint;
public int textAntialiasHint;
protected int fractionalMetricsHint;
/* A gamma adjustment to the colour used in lcd text blitting */
public int lcdTextContrast;
private static int lcdTextContrastDefaultValue = 140;
private int interpolationHint; // raw value of rendering Hint
public int strokeHint;
public int interpolationType; // algorithm choice based on
// interpolation and render Hints
public RenderingHints hints;
public Region constrainClip; // lightweight bounds in pixels
public int constrainX;
public int constrainY;
public Region clipRegion;
public Shape usrClip;
protected Region devClip; // Actual physical drawable in pixels
private final int devScale; // Actual physical scale factor
// cached state for text rendering
private boolean validFontInfo;
private FontInfo fontInfo;
private FontInfo glyphVectorFontInfo;
private FontRenderContext glyphVectorFRC;
private final static int slowTextTransformMask =
AffineTransform.TYPE_GENERAL_TRANSFORM
| AffineTransform.TYPE_MASK_ROTATION
| AffineTransform.TYPE_FLIP;
static {
if (PerformanceLogger.loggingEnabled()) {
PerformanceLogger.setTime("SunGraphics2D static initialization");
}
}
public SunGraphics2D(SurfaceData sd, Color fg, Color bg, Font f) {
surfaceData = sd;
foregroundColor = fg;
backgroundColor = bg;
transform = new AffineTransform();
stroke = defaultStroke;
composite = defaultComposite;
paint = foregroundColor;
imageComp = CompositeType.SrcOverNoEa;
renderHint = SunHints.INTVAL_RENDER_DEFAULT;
antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
lcdTextContrast = lcdTextContrastDefaultValue;
interpolationHint = -1;
strokeHint = SunHints.INTVAL_STROKE_DEFAULT;
interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
validateColor();
devScale = sd.getDefaultScale();
if (devScale != 1) {
transform.setToScale(devScale, devScale);
invalidateTransform();
}
font = f;
if (font == null) {
font = defaultFont;
}
setDevClip(sd.getBounds());
invalidatePipe();
}
protected Object clone() {
try {
SunGraphics2D g = (SunGraphics2D) super.clone();
g.transform = new AffineTransform(this.transform);
if (hints != null) {
g.hints = (RenderingHints) this.hints.clone();
}
/* FontInfos are re-used, so must be cloned too, if they
* are valid, and be nulled out if invalid.
* The implied trade-off is that there is more to be gained
* from re-using these objects than is lost by having to
* clone them when the SG2D is cloned.
*/
if (this.fontInfo != null) {
if (this.validFontInfo) {
g.fontInfo = (FontInfo)this.fontInfo.clone();
} else {
g.fontInfo = null;
}
}
if (this.glyphVectorFontInfo != null) {
g.glyphVectorFontInfo =
(FontInfo)this.glyphVectorFontInfo.clone();
g.glyphVectorFRC = this.glyphVectorFRC;
}
//g.invalidatePipe();
return g;
} catch (CloneNotSupportedException e) {
}
return null;
}
/**
* Create a new SunGraphics2D based on this one.
*/
public Graphics create() {
return (Graphics) clone();
}
public void setDevClip(int x, int y, int w, int h) {
Region c = constrainClip;
if (c == null) {
devClip = Region.getInstanceXYWH(x, y, w, h);
} else {
devClip = c.getIntersectionXYWH(x, y, w, h);
}
validateCompClip();
}
public void setDevClip(Rectangle r) {
setDevClip(r.x, r.y, r.width, r.height);
}
/**
* Constrain rendering for lightweight objects.
*/
public void constrain(int x, int y, int w, int h, Region region) {
if ((x | y) != 0) {
translate(x, y);
}
if (transformState > TRANSFORM_TRANSLATESCALE) {
clipRect(0, 0, w, h);
return;
}
// changes parameters according to the current scale and translate.
final double scaleX = transform.getScaleX();
final double scaleY = transform.getScaleY();
x = constrainX = (int) transform.getTranslateX();
y = constrainY = (int) transform.getTranslateY();
w = Region.dimAdd(x, Region.clipScale(w, scaleX));
h = Region.dimAdd(y, Region.clipScale(h, scaleY));
Region c = constrainClip;
if (c == null) {
c = Region.getInstanceXYXY(x, y, w, h);
} else {
c = c.getIntersectionXYXY(x, y, w, h);
}
if (region != null) {
region = region.getScaledRegion(scaleX, scaleY);
region = region.getTranslatedRegion(x, y);
c = c.getIntersection(region);
}
if (c == constrainClip) {
// Common case to ignore
return;
}
constrainClip = c;
if (!devClip.isInsideQuickCheck(c)) {
devClip = devClip.getIntersection(c);
validateCompClip();
}
}
/**
* Constrain rendering for lightweight objects.
*
* REMIND: This method will back off to the "workaround"
* of using translate and clipRect if the Graphics
* to be constrained has a complex transform. The
* drawback of the workaround is that the resulting
* clip and device origin cannot be "enforced".
*
* @exception IllegalStateException If the Graphics
* to be constrained has a complex transform.
*/
@Override
public void constrain(int x, int y, int w, int h) {
constrain(x, y, w, h, null);
}
protected static ValidatePipe invalidpipe = new ValidatePipe();
/*
* Invalidate the pipeline
*/
protected void invalidatePipe() {
drawpipe = invalidpipe;
fillpipe = invalidpipe;
shapepipe = invalidpipe;
textpipe = invalidpipe;
imagepipe = invalidpipe;
loops = null;
}
public void validatePipe() {
/* This workaround is for the situation when we update the Pipelines
* for invalid SurfaceData and run further code when the current
* pipeline doesn't support the type of new SurfaceData created during
* the current pipeline's work (in place of the invalid SurfaceData).
* Usually SurfaceData and Pipelines are repaired (through revalidateAll)
* and called again in the exception handlers */
if (!surfaceData.isValid()) {
throw new InvalidPipeException("attempt to validate Pipe with invalid SurfaceData");
}
surfaceData.validatePipe(this);
}
/*
* Intersect two Shapes by the simplest method, attempting to produce
* a simplified result.
* The boolean arguments keep1 and keep2 specify whether or not
* the first or second shapes can be modified during the operation
* or whether that shape must be "kept" unmodified.
*/
Shape intersectShapes(Shape s1, Shape s2, boolean keep1, boolean keep2) {
if (s1 instanceof Rectangle && s2 instanceof Rectangle) {
return ((Rectangle) s1).intersection((Rectangle) s2);
}
if (s1 instanceof Rectangle2D) {
return intersectRectShape((Rectangle2D) s1, s2, keep1, keep2);
} else if (s2 instanceof Rectangle2D) {
return intersectRectShape((Rectangle2D) s2, s1, keep2, keep1);
}
return intersectByArea(s1, s2, keep1, keep2);
}
/*
* Intersect a Rectangle with a Shape by the simplest method,
* attempting to produce a simplified result.
* The boolean arguments keep1 and keep2 specify whether or not
* the first or second shapes can be modified during the operation
* or whether that shape must be "kept" unmodified.
*/
Shape intersectRectShape(Rectangle2D r, Shape s,
boolean keep1, boolean keep2) {
if (s instanceof Rectangle2D) {
Rectangle2D r2 = (Rectangle2D) s;
Rectangle2D outrect;
if (!keep1) {
outrect = r;
} else if (!keep2) {
outrect = r2;
} else {
outrect = new Rectangle2D.Float();
}
double x1 = Math.max(r.getX(), r2.getX());
double x2 = Math.min(r.getX() + r.getWidth(),
r2.getX() + r2.getWidth());
double y1 = Math.max(r.getY(), r2.getY());
double y2 = Math.min(r.getY() + r.getHeight(),
r2.getY() + r2.getHeight());
if (((x2 - x1) < 0) || ((y2 - y1) < 0))
// Width or height is negative. No intersection.
outrect.setFrameFromDiagonal(0, 0, 0, 0);
else
outrect.setFrameFromDiagonal(x1, y1, x2, y2);
return outrect;
}
if (r.contains(s.getBounds2D())) {
if (keep2) {
s = cloneShape(s);
}
return s;
}
return intersectByArea(r, s, keep1, keep2);
}
protected static Shape cloneShape(Shape s) {
return new GeneralPath(s);
}
/*
* Intersect two Shapes using the Area class. Presumably other
* attempts at simpler intersection methods proved fruitless.
* The boolean arguments keep1 and keep2 specify whether or not
* the first or second shapes can be modified during the operation
* or whether that shape must be "kept" unmodified.
* @see #intersectShapes
* @see #intersectRectShape
*/
Shape intersectByArea(Shape s1, Shape s2, boolean keep1, boolean keep2) {
Area a1, a2;
// First see if we can find an overwriteable source shape
// to use as our destination area to avoid duplication.
if (!keep1 && (s1 instanceof Area)) {
a1 = (Area) s1;
} else if (!keep2 && (s2 instanceof Area)) {
a1 = (Area) s2;
s2 = s1;
} else {
a1 = new Area(s1);
}
if (s2 instanceof Area) {
a2 = (Area) s2;
} else {
a2 = new Area(s2);
}
a1.intersect(a2);
if (a1.isRectangular()) {
return a1.getBounds();
}
return a1;
}
/*
* Intersect usrClip bounds and device bounds to determine the composite
* rendering boundaries.
*/
public Region getCompClip() {
if (!surfaceData.isValid()) {
// revalidateAll() implicitly recalculcates the composite clip
revalidateAll();
}
return clipRegion;
}
public Font getFont() {
if (font == null) {
font = defaultFont;
}
return font;
}
private static final double[] IDENT_MATRIX = {1, 0, 0, 1};
private static final AffineTransform IDENT_ATX =
new AffineTransform();
private static final int MINALLOCATED = 8;
private static final int TEXTARRSIZE = 17;
private static double[][] textTxArr = new double[TEXTARRSIZE][];
private static AffineTransform[] textAtArr =
new AffineTransform[TEXTARRSIZE];
static {
for (int i=MINALLOCATED;i<TEXTARRSIZE;i++) {
textTxArr[i] = new double [] {i, 0, 0, i};
textAtArr[i] = new AffineTransform( textTxArr[i]);
}
}
// cached state for various draw[String,Char,Byte] optimizations
public FontInfo checkFontInfo(FontInfo info, Font font,
FontRenderContext frc) {
/* Do not create a FontInfo object as part of construction of an
* SG2D as its possible it may never be needed - ie if no text
* is drawn using this SG2D.
*/
if (info == null) {
info = new FontInfo();
}
float ptSize = font.getSize2D();
int txFontType;
AffineTransform devAt, textAt=null;
if (font.isTransformed()) {
textAt = font.getTransform();
textAt.scale(ptSize, ptSize);
txFontType = textAt.getType();
info.originX = (float)textAt.getTranslateX();
info.originY = (float)textAt.getTranslateY();
textAt.translate(-info.originX, -info.originY);
if (transformState >= TRANSFORM_TRANSLATESCALE) {
transform.getMatrix(info.devTx = new double[4]);
devAt = new AffineTransform(info.devTx);
textAt.preConcatenate(devAt);
} else {
info.devTx = IDENT_MATRIX;
devAt = IDENT_ATX;
}
textAt.getMatrix(info.glyphTx = new double[4]);
double shearx = textAt.getShearX();
double scaley = textAt.getScaleY();
if (shearx != 0) {
scaley = Math.sqrt(shearx * shearx + scaley * scaley);
}
info.pixelHeight = (int)(Math.abs(scaley)+0.5);
} else {
txFontType = AffineTransform.TYPE_IDENTITY;
info.originX = info.originY = 0;
if (transformState >= TRANSFORM_TRANSLATESCALE) {
transform.getMatrix(info.devTx = new double[4]);
devAt = new AffineTransform(info.devTx);
info.glyphTx = new double[4];
for (int i = 0; i < 4; i++) {
info.glyphTx[i] = info.devTx[i] * ptSize;
}
textAt = new AffineTransform(info.glyphTx);
double shearx = transform.getShearX();
double scaley = transform.getScaleY();
if (shearx != 0) {
scaley = Math.sqrt(shearx * shearx + scaley * scaley);
}
info.pixelHeight = (int)(Math.abs(scaley * ptSize)+0.5);
} else {
/* If the double represents a common integral, we
* may have pre-allocated objects.
* A "sparse" array be seems to be as fast as a switch
* even for 3 or 4 pt sizes, and is more flexible.
* This should perform comparably in single-threaded
* rendering to the old code which synchronized on the
* class and scale better on MP systems.
*/
int pszInt = (int)ptSize;
if (ptSize == pszInt &&
pszInt >= MINALLOCATED && pszInt < TEXTARRSIZE) {
info.glyphTx = textTxArr[pszInt];
textAt = textAtArr[pszInt];
info.pixelHeight = pszInt;
} else {
info.pixelHeight = (int)(ptSize+0.5);
}
if (textAt == null) {
info.glyphTx = new double[] {ptSize, 0, 0, ptSize};
textAt = new AffineTransform(info.glyphTx);
}
info.devTx = IDENT_MATRIX;
devAt = IDENT_ATX;
}
}
info.font2D = FontUtilities.getFont2D(font);
int fmhint = fractionalMetricsHint;
if (fmhint == SunHints.INTVAL_FRACTIONALMETRICS_DEFAULT) {
fmhint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
}
info.lcdSubPixPos = false; // conditionally set true in LCD mode.
/* The text anti-aliasing hints that are set by the client need
* to be interpreted for the current state and stored in the
* FontInfo.aahint which is what will actually be used and
* will be one of OFF, ON, LCD_HRGB or LCD_VRGB.
* This is what pipe selection code should typically refer to, not
* textAntialiasHint. This means we are now evaluating the meaning
* of "default" here. Any pipe that really cares about that will
* also need to consult that variable.
* Otherwise these are being used only as args to getStrike,
* and are encapsulated in that object which is part of the
* FontInfo, so we do not need to store them directly as fields
* in the FontInfo object.
* That could change if FontInfo's were more selectively
* revalidated when graphics state changed. Presently this
* method re-evaluates all fields in the fontInfo.
* The strike doesn't need to know the RGB subpixel order. Just
* if its H or V orientation, so if an LCD option is specified we
* always pass in the RGB hint to the strike.
* frc is non-null only if this is a GlyphVector. For reasons
* which are probably a historical mistake the AA hint in a GV
* is honoured when we render, overriding the Graphics setting.
*/
int aahint;
if (frc == null) {
aahint = textAntialiasHint;
} else {
aahint = ((SunHints.Value)frc.getAntiAliasingHint()).getIndex();
}
if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT) {
if (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
} else {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
}
} else {
/* If we are in checkFontInfo because a rendering hint has been
* set then all pipes are revalidated. But we can also
* be here because setFont() has been called when the 'gasp'
* hint is set, as then the font size determines the text pipe.
* See comments in SunGraphics2d.setFont(Font).
*/
if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP) {
if (info.font2D.useAAForPtSize(info.pixelHeight)) {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
} else {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
}
} else if (aahint >= SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB) {
/* loops for default rendering modes are installed in the SG2D
* constructor. If there are none this will be null.
* Not all compositing modes update the render loops, so
* we also test that this is a mode we know should support
* this. One minor issue is that the loops aren't necessarily
* installed for a new rendering mode until after this
* method is called during pipeline validation. So it is
* theoretically possible that it was set to null for a
* compositing mode, the composite is then set back to Src,
* but the loop is still null when this is called and AA=ON
* is installed instead of an LCD mode.
* However this is done in the right order in SurfaceData.java
* so this is not likely to be a problem - but not
* guaranteed.
*/
if (
!surfaceData.canRenderLCDText(this)
// loops.drawGlyphListLCDLoop == null ||
// compositeState > COMP_ISCOPY ||
// paintState > PAINT_ALPHACOLOR
) {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
} else {
info.lcdRGBOrder = true;
/* Collapse these into just HRGB or VRGB.
* Pipe selection code needs only to test for these two.
* Since these both select the same pipe anyway its
* tempting to collapse into one value. But they are
* different strikes (glyph caches) so the distinction
* needs to be made for that purpose.
*/
if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HBGR) {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
info.lcdRGBOrder = false;
} else if
(aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VBGR) {
aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VRGB;
info.lcdRGBOrder = false;
}
/* Support subpixel positioning only for the case in
* which the horizontal resolution is increased
*/
info.lcdSubPixPos =
fmhint == SunHints.INTVAL_FRACTIONALMETRICS_ON &&
aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
}
}
}
info.aaHint = aahint;
info.fontStrike = info.font2D.getStrike(font, devAt, textAt,
aahint, fmhint);
return info;
}
public static boolean isRotated(double [] mtx) {
if ((mtx[0] == mtx[3]) &&
(mtx[1] == 0.0) &&
(mtx[2] == 0.0) &&
(mtx[0] > 0.0))
{
return false;
}
return true;
}
public void setFont(Font font) {
/* replacing the reference equality test font != this.font with
* !font.equals(this.font) did not yield any measurable difference
* in testing, but there may be yet to be identified cases where it
* is beneficial.
*/
if (font != null && font!=this.font/*!font.equals(this.font)*/) {
/* In the GASP AA case the textpipe depends on the glyph size
* as determined by graphics and font transforms as well as the
* font size, and information in the font. But we may invalidate
* the pipe only to find that it made no difference.
* Deferring pipe invalidation to checkFontInfo won't work because
* when called we may already be rendering to the wrong pipe.
* So, if the font is transformed, or the graphics has more than
* a simple scale, we'll take that as enough of a hint to
* revalidate everything. But if they aren't we will
* use the font's point size to query the gasp table and see if
* what it says matches what's currently being used, in which
* case there's no need to invalidate the textpipe.
* This should be sufficient for all typical uses cases.
*/
if (textAntialiasHint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP &&
textpipe != invalidpipe &&
(transformState > TRANSFORM_ANY_TRANSLATE ||
font.isTransformed() ||
fontInfo == null || // Precaution, if true shouldn't get here
(fontInfo.aaHint == SunHints.INTVAL_TEXT_ANTIALIAS_ON) !=
FontUtilities.getFont2D(font).
useAAForPtSize(font.getSize()))) {
textpipe = invalidpipe;
}
this.font = font;
this.fontMetrics = null;
this.validFontInfo = false;
}
}
public FontInfo getFontInfo() {
if (!validFontInfo) {
this.fontInfo = checkFontInfo(this.fontInfo, font, null);
validFontInfo = true;
}
return this.fontInfo;
}
/* Used by drawGlyphVector which specifies its own font. */
public FontInfo getGVFontInfo(Font font, FontRenderContext frc) {
if (glyphVectorFontInfo != null &&
glyphVectorFontInfo.font == font &&
glyphVectorFRC == frc) {
return glyphVectorFontInfo;
} else {
glyphVectorFRC = frc;
return glyphVectorFontInfo =
checkFontInfo(glyphVectorFontInfo, font, frc);
}
}
public FontMetrics getFontMetrics() {
if (this.fontMetrics != null) {
return this.fontMetrics;
}
/* NB the constructor and the setter disallow "font" being null */
return this.fontMetrics =
FontDesignMetrics.getMetrics(font, getFontRenderContext());
}
public FontMetrics getFontMetrics(Font font) {
if ((this.fontMetrics != null) && (font == this.font)) {
return this.fontMetrics;
}
FontMetrics fm =
FontDesignMetrics.getMetrics(font, getFontRenderContext());
if (this.font == font) {
this.fontMetrics = fm;
}
return fm;
}
/**
* Checks to see if a Path intersects the specified Rectangle in device
* space. The rendering attributes taken into account include the
* clip, transform, and stroke attributes.
* @param rect The area in device space to check for a hit.
* @param p The path to check for a hit.
* @param onStroke Flag to choose between testing the stroked or
* the filled path.
* @return True if there is a hit, false otherwise.
* @see #setStroke
* @see #fillPath
* @see #drawPath
* @see #transform
* @see #setTransform
* @see #clip
* @see #setClip
*/
public boolean hit(Rectangle rect, Shape s, boolean onStroke) {
if (onStroke) {
s = stroke.createStrokedShape(s);
}
s = transformShape(s);
if ((constrainX|constrainY) != 0) {
rect = new Rectangle(rect);
rect.translate(constrainX, constrainY);
}
return s.intersects(rect);
}
/**
* Return the ColorModel associated with this Graphics2D.
*/
public ColorModel getDeviceColorModel() {
return surfaceData.getColorModel();
}
/**
* Return the device configuration associated with this Graphics2D.
*/
public GraphicsConfiguration getDeviceConfiguration() {
return surfaceData.getDeviceConfiguration();
}
/**
* Return the SurfaceData object assigned to manage the destination
* drawable surface of this Graphics2D.
*/
public final SurfaceData getSurfaceData() {
return surfaceData;
}
/**
* Sets the Composite in the current graphics state. Composite is used
* in all drawing methods such as drawImage, drawString, drawPath,
* and fillPath. It specifies how new pixels are to be combined with
* the existing pixels on the graphics device in the rendering process.
* @param comp The Composite object to be used for drawing.
* @see java.awt.Graphics#setXORMode
* @see java.awt.Graphics#setPaintMode
* @see AlphaComposite
*/
public void setComposite(Composite comp) {
if (composite == comp) {
return;
}
int newCompState;
CompositeType newCompType;
if (comp instanceof AlphaComposite) {
AlphaComposite alphacomp = (AlphaComposite) comp;
newCompType = CompositeType.forAlphaComposite(alphacomp);
if (newCompType == CompositeType.SrcOverNoEa) {
if (paintState == PAINT_OPAQUECOLOR ||
(paintState > PAINT_ALPHACOLOR &&
paint.getTransparency() == Transparency.OPAQUE))
{
newCompState = COMP_ISCOPY;
} else {
newCompState = COMP_ALPHA;
}
} else if (newCompType == CompositeType.SrcNoEa ||
newCompType == CompositeType.Src ||
newCompType == CompositeType.Clear)
{
newCompState = COMP_ISCOPY;
} else if (surfaceData.getTransparency() == Transparency.OPAQUE &&
newCompType == CompositeType.SrcIn)
{
newCompState = COMP_ISCOPY;
} else {
newCompState = COMP_ALPHA;
}
} else if (comp instanceof XORComposite) {
newCompState = COMP_XOR;
newCompType = CompositeType.Xor;
} else if (comp == null) {
throw new IllegalArgumentException("null Composite");
} else {
surfaceData.checkCustomComposite();
newCompState = COMP_CUSTOM;
newCompType = CompositeType.General;
}
if (compositeState != newCompState ||
imageComp != newCompType)
{
compositeState = newCompState;
imageComp = newCompType;
invalidatePipe();
validFontInfo = false;
}
composite = comp;
if (paintState <= PAINT_ALPHACOLOR) {
validateColor();
}
}
/**
* Sets the Paint in the current graphics state.
* @param paint The Paint object to be used to generate color in
* the rendering process.
* @see java.awt.Graphics#setColor
* @see GradientPaint
* @see TexturePaint
*/
public void setPaint(Paint paint) {
if (paint instanceof Color) {
setColor((Color) paint);
return;
}
if (paint == null || this.paint == paint) {
return;
}
this.paint = paint;
if (imageComp == CompositeType.SrcOverNoEa) {
// special case where compState depends on opacity of paint
if (paint.getTransparency() == Transparency.OPAQUE) {
if (compositeState != COMP_ISCOPY) {
compositeState = COMP_ISCOPY;
}
} else {
if (compositeState == COMP_ISCOPY) {
compositeState = COMP_ALPHA;
}
}
}
Class<? extends Paint> paintClass = paint.getClass();
if (paintClass == GradientPaint.class) {
paintState = PAINT_GRADIENT;
} else if (paintClass == LinearGradientPaint.class) {
paintState = PAINT_LIN_GRADIENT;
} else if (paintClass == RadialGradientPaint.class) {
paintState = PAINT_RAD_GRADIENT;
} else if (paintClass == TexturePaint.class) {
paintState = PAINT_TEXTURE;
} else {
paintState = PAINT_CUSTOM;
}
validFontInfo = false;
invalidatePipe();
}
static final int NON_UNIFORM_SCALE_MASK =
(AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE);
public static final double MinPenSizeAA =
sun.java2d.pipe.RenderingEngine.getInstance().getMinimumAAPenSize();
public static final double MinPenSizeAASquared =
(MinPenSizeAA * MinPenSizeAA);
// Since inaccuracies in the trig package can cause us to
// calculated a rotated pen width of just slightly greater
// than 1.0, we add a fudge factor to our comparison value
// here so that we do not misclassify single width lines as
// wide lines under certain rotations.
public static final double MinPenSizeSquared = 1.000000001;
private void validateBasicStroke(BasicStroke bs) {
boolean aa = (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON);
if (transformState < TRANSFORM_TRANSLATESCALE) {
if (aa) {
if (bs.getLineWidth() <= MinPenSizeAA) {
if (bs.getDashArray() == null) {
strokeState = STROKE_THIN;
} else {
strokeState = STROKE_THINDASHED;
}
} else {
strokeState = STROKE_WIDE;
}
} else {
if (bs == defaultStroke) {
strokeState = STROKE_THIN;
} else if (bs.getLineWidth() <= 1.0f) {
if (bs.getDashArray() == null) {
strokeState = STROKE_THIN;
} else {
strokeState = STROKE_THINDASHED;
}
} else {
strokeState = STROKE_WIDE;
}
}
} else {
double widthsquared;
if ((transform.getType() & NON_UNIFORM_SCALE_MASK) == 0) {
/* sqrt omitted, compare to squared limits below. */
widthsquared = Math.abs(transform.getDeterminant());
} else {
/* First calculate the "maximum scale" of this transform. */
double A = transform.getScaleX(); // m00
double C = transform.getShearX(); // m01
double B = transform.getShearY(); // m10
double D = transform.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2*(A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
/* sqrt omitted, compare to squared limits below. */
widthsquared = ((EA + EC + hypot)/2.0);
}
if (bs != defaultStroke) {
widthsquared *= bs.getLineWidth() * bs.getLineWidth();
}
if (widthsquared <=
(aa ? MinPenSizeAASquared : MinPenSizeSquared))
{
if (bs.getDashArray() == null) {
strokeState = STROKE_THIN;
} else {
strokeState = STROKE_THINDASHED;
}
} else {
strokeState = STROKE_WIDE;
}
}
}
/*
* Sets the Stroke in the current graphics state.
* @param s The Stroke object to be used to stroke a Path in
* the rendering process.
* @see BasicStroke
*/
public void setStroke(Stroke s) {
if (s == null) {
throw new IllegalArgumentException("null Stroke");
}
int saveStrokeState = strokeState;
stroke = s;
if (s instanceof BasicStroke) {
validateBasicStroke((BasicStroke) s);
} else {
strokeState = STROKE_CUSTOM;
}
if (strokeState != saveStrokeState) {
invalidatePipe();
}
}
/**
* Sets the preferences for the rendering algorithms.
* Hint categories include controls for rendering quality and
* overall time/quality trade-off in the rendering process.
* @param hintKey The key of hint to be set. The strings are
* defined in the RenderingHints class.
* @param hintValue The value indicating preferences for the specified
* hint category. These strings are defined in the RenderingHints
* class.
* @see RenderingHints
*/
public void setRenderingHint(Key hintKey, Object hintValue) {
// If we recognize the key, we must recognize the value
// otherwise throw an IllegalArgumentException
// and do not change the Hints object
// If we do not recognize the key, just pass it through
// to the Hints object untouched
if (!hintKey.isCompatibleValue(hintValue)) {
throw new IllegalArgumentException
(hintValue+" is not compatible with "+hintKey);
}
if (hintKey instanceof SunHints.Key) {
boolean stateChanged;
boolean textStateChanged = false;
boolean recognized = true;
SunHints.Key sunKey = (SunHints.Key) hintKey;
int newHint;
if (sunKey == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST) {
newHint = ((Integer)hintValue).intValue();
} else {
newHint = ((SunHints.Value) hintValue).getIndex();
}
switch (sunKey.getIndex()) {
case SunHints.INTKEY_RENDERING:
stateChanged = (renderHint != newHint);
if (stateChanged) {
renderHint = newHint;
if (interpolationHint == -1) {
interpolationType =
(newHint == SunHints.INTVAL_RENDER_QUALITY
? AffineTransformOp.TYPE_BILINEAR
: AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
}
}
break;
case SunHints.INTKEY_ANTIALIASING:
stateChanged = (antialiasHint != newHint);
antialiasHint = newHint;
if (stateChanged) {
textStateChanged =
(textAntialiasHint ==
SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT);
if (strokeState != STROKE_CUSTOM) {
validateBasicStroke((BasicStroke) stroke);
}
}
break;
case SunHints.INTKEY_TEXT_ANTIALIASING:
stateChanged = (textAntialiasHint != newHint);
textStateChanged = stateChanged;
textAntialiasHint = newHint;
break;
case SunHints.INTKEY_FRACTIONALMETRICS:
stateChanged = (fractionalMetricsHint != newHint);
textStateChanged = stateChanged;
fractionalMetricsHint = newHint;
break;
case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
stateChanged = false;
/* Already have validated it is an int 100 <= newHint <= 250 */
lcdTextContrast = newHint;
break;
case SunHints.INTKEY_INTERPOLATION:
interpolationHint = newHint;
switch (newHint) {
case SunHints.INTVAL_INTERPOLATION_BICUBIC:
newHint = AffineTransformOp.TYPE_BICUBIC;
break;
case SunHints.INTVAL_INTERPOLATION_BILINEAR:
newHint = AffineTransformOp.TYPE_BILINEAR;
break;
default:
case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
newHint = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
break;
}
stateChanged = (interpolationType != newHint);
interpolationType = newHint;
break;
case SunHints.INTKEY_STROKE_CONTROL:
stateChanged = (strokeHint != newHint);
strokeHint = newHint;
break;
default:
recognized = false;
stateChanged = false;
break;
}
if (recognized) {
if (stateChanged) {
invalidatePipe();
if (textStateChanged) {
fontMetrics = null;
this.cachedFRC = null;
validFontInfo = false;
this.glyphVectorFontInfo = null;
}
}
if (hints != null) {
hints.put(hintKey, hintValue);
}
return;
}
}
// Nothing we recognize so none of "our state" has changed
if (hints == null) {
hints = makeHints(null);
}
hints.put(hintKey, hintValue);
}
/**
* Returns the preferences for the rendering algorithms.
* @param hintCategory The category of hint to be set. The strings
* are defined in the RenderingHints class.
* @return The preferences for rendering algorithms. The strings
* are defined in the RenderingHints class.
* @see RenderingHints
*/
public Object getRenderingHint(Key hintKey) {
if (hints != null) {
return hints.get(hintKey);
}
if (!(hintKey instanceof SunHints.Key)) {
return null;
}
int keyindex = ((SunHints.Key)hintKey).getIndex();
switch (keyindex) {
case SunHints.INTKEY_RENDERING:
return SunHints.Value.get(SunHints.INTKEY_RENDERING,
renderHint);
case SunHints.INTKEY_ANTIALIASING:
return SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
antialiasHint);
case SunHints.INTKEY_TEXT_ANTIALIASING:
return SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
textAntialiasHint);
case SunHints.INTKEY_FRACTIONALMETRICS:
return SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
fractionalMetricsHint);
case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
return new Integer(lcdTextContrast);
case SunHints.INTKEY_INTERPOLATION:
switch (interpolationHint) {
case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
return SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
case SunHints.INTVAL_INTERPOLATION_BILINEAR:
return SunHints.VALUE_INTERPOLATION_BILINEAR;
case SunHints.INTVAL_INTERPOLATION_BICUBIC:
return SunHints.VALUE_INTERPOLATION_BICUBIC;
}
return null;
case SunHints.INTKEY_STROKE_CONTROL:
return SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
strokeHint);
}
return null;
}
/**
* Sets the preferences for the rendering algorithms.
* Hint categories include controls for rendering quality and
* overall time/quality trade-off in the rendering process.
* @param hints The rendering hints to be set
* @see RenderingHints
*/
public void setRenderingHints(Map<?,?> hints) {
this.hints = null;
renderHint = SunHints.INTVAL_RENDER_DEFAULT;
antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
lcdTextContrast = lcdTextContrastDefaultValue;
interpolationHint = -1;
interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
boolean customHintPresent = false;
Iterator<?> iter = hints.keySet().iterator();
while (iter.hasNext()) {
Object key = iter.next();
if (key == SunHints.KEY_RENDERING ||
key == SunHints.KEY_ANTIALIASING ||
key == SunHints.KEY_TEXT_ANTIALIASING ||
key == SunHints.KEY_FRACTIONALMETRICS ||
key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
key == SunHints.KEY_STROKE_CONTROL ||
key == SunHints.KEY_INTERPOLATION)
{
setRenderingHint((Key) key, hints.get(key));
} else {
customHintPresent = true;
}
}
if (customHintPresent) {
this.hints = makeHints(hints);
}
invalidatePipe();
}
/**
* Adds a number of preferences for the rendering algorithms.
* Hint categories include controls for rendering quality and
* overall time/quality trade-off in the rendering process.
* @param hints The rendering hints to be set
* @see RenderingHints
*/
public void addRenderingHints(Map<?,?> hints) {
boolean customHintPresent = false;
Iterator<?> iter = hints.keySet().iterator();
while (iter.hasNext()) {
Object key = iter.next();
if (key == SunHints.KEY_RENDERING ||
key == SunHints.KEY_ANTIALIASING ||
key == SunHints.KEY_TEXT_ANTIALIASING ||
key == SunHints.KEY_FRACTIONALMETRICS ||
key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
key == SunHints.KEY_STROKE_CONTROL ||
key == SunHints.KEY_INTERPOLATION)
{
setRenderingHint((Key) key, hints.get(key));
} else {
customHintPresent = true;
}
}
if (customHintPresent) {
if (this.hints == null) {
this.hints = makeHints(hints);
} else {
this.hints.putAll(hints);
}
}
}
/**
* Gets the preferences for the rendering algorithms.
* Hint categories include controls for rendering quality and
* overall time/quality trade-off in the rendering process.
* @see RenderingHints
*/
public RenderingHints getRenderingHints() {
if (hints == null) {
return makeHints(null);
} else {
return (RenderingHints) hints.clone();
}
}
RenderingHints makeHints(Map hints) {
RenderingHints model = new RenderingHints(hints);
model.put(SunHints.KEY_RENDERING,
SunHints.Value.get(SunHints.INTKEY_RENDERING,
renderHint));
model.put(SunHints.KEY_ANTIALIASING,
SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
antialiasHint));
model.put(SunHints.KEY_TEXT_ANTIALIASING,
SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
textAntialiasHint));
model.put(SunHints.KEY_FRACTIONALMETRICS,
SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
fractionalMetricsHint));
model.put(SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST,
Integer.valueOf(lcdTextContrast));
Object value;
switch (interpolationHint) {
case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
value = SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
break;
case SunHints.INTVAL_INTERPOLATION_BILINEAR:
value = SunHints.VALUE_INTERPOLATION_BILINEAR;
break;
case SunHints.INTVAL_INTERPOLATION_BICUBIC:
value = SunHints.VALUE_INTERPOLATION_BICUBIC;
break;
default:
value = null;
break;
}
if (value != null) {
model.put(SunHints.KEY_INTERPOLATION, value);
}
model.put(SunHints.KEY_STROKE_CONTROL,
SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
strokeHint));
return model;
}
/**
* Concatenates the current transform of this Graphics2D with a
* translation transformation.
* This is equivalent to calling transform(T), where T is an
* AffineTransform represented by the following matrix:
* <pre>
* [ 1 0 tx ]
* [ 0 1 ty ]
* [ 0 0 1 ]
* </pre>
*/
public void translate(double tx, double ty) {
transform.translate(tx, ty);
invalidateTransform();
}
/**
* Concatenates the current transform of this Graphics2D with a
* rotation transformation.
* This is equivalent to calling transform(R), where R is an
* AffineTransform represented by the following matrix:
* <pre>
* [ cos(theta) -sin(theta) 0 ]
* [ sin(theta) cos(theta) 0 ]
* [ 0 0 1 ]
* </pre>
* Rotating with a positive angle theta rotates points on the positive
* x axis toward the positive y axis.
* @param theta The angle of rotation in radians.
*/
public void rotate(double theta) {
transform.rotate(theta);
invalidateTransform();
}
/**
* Concatenates the current transform of this Graphics2D with a
* translated rotation transformation.
* This is equivalent to the following sequence of calls:
* <pre>
* translate(x, y);
* rotate(theta);
* translate(-x, -y);
* </pre>
* Rotating with a positive angle theta rotates points on the positive
* x axis toward the positive y axis.
* @param theta The angle of rotation in radians.
* @param x The x coordinate of the origin of the rotation
* @param y The x coordinate of the origin of the rotation
*/
public void rotate(double theta, double x, double y) {
transform.rotate(theta, x, y);
invalidateTransform();
}
/**
* Concatenates the current transform of this Graphics2D with a
* scaling transformation.
* This is equivalent to calling transform(S), where S is an
* AffineTransform represented by the following matrix:
* <pre>
* [ sx 0 0 ]
* [ 0 sy 0 ]
* [ 0 0 1 ]
* </pre>
*/
public void scale(double sx, double sy) {
transform.scale(sx, sy);
invalidateTransform();
}
/**
* Concatenates the current transform of this Graphics2D with a
* shearing transformation.
* This is equivalent to calling transform(SH), where SH is an
* AffineTransform represented by the following matrix:
* <pre>
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
* </pre>
* @param shx The factor by which coordinates are shifted towards the
* positive X axis direction according to their Y coordinate
* @param shy The factor by which coordinates are shifted towards the
* positive Y axis direction according to their X coordinate
*/
public void shear(double shx, double shy) {
transform.shear(shx, shy);
invalidateTransform();
}
/**
* Composes a Transform object with the transform in this
* Graphics2D according to the rule last-specified-first-applied.
* If the currrent transform is Cx, the result of composition
* with Tx is a new transform Cx'. Cx' becomes the current
* transform for this Graphics2D.
* Transforming a point p by the updated transform Cx' is
* equivalent to first transforming p by Tx and then transforming
* the result by the original transform Cx. In other words,
* Cx'(p) = Cx(Tx(p)).
* A copy of the Tx is made, if necessary, so further
* modifications to Tx do not affect rendering.
* @param Tx The Transform object to be composed with the current
* transform.
* @see #setTransform
* @see AffineTransform
*/
public void transform(AffineTransform xform) {
this.transform.concatenate(xform);
invalidateTransform();
}
/**
* Translate
*/
public void translate(int x, int y) {
transform.translate(x, y);
if (transformState <= TRANSFORM_INT_TRANSLATE) {
transX += x;
transY += y;
transformState = (((transX | transY) == 0) ?
TRANSFORM_ISIDENT : TRANSFORM_INT_TRANSLATE);
} else {
invalidateTransform();
}
}
/**
* Sets the Transform in the current graphics state.
* @param Tx The Transform object to be used in the rendering process.
* @see #transform
* @see TransformChain
* @see AffineTransform
*/
@Override
public void setTransform(AffineTransform Tx) {
if ((constrainX | constrainY) == 0 && devScale == 1) {
transform.setTransform(Tx);
} else {
transform.setTransform(devScale, 0, 0, devScale, constrainX,
constrainY);
transform.concatenate(Tx);
}
invalidateTransform();
}
protected void invalidateTransform() {
int type = transform.getType();
int origTransformState = transformState;
if (type == AffineTransform.TYPE_IDENTITY) {
transformState = TRANSFORM_ISIDENT;
transX = transY = 0;
} else if (type == AffineTransform.TYPE_TRANSLATION) {
double dtx = transform.getTranslateX();
double dty = transform.getTranslateY();
transX = (int) Math.floor(dtx + 0.5);
transY = (int) Math.floor(dty + 0.5);
if (dtx == transX && dty == transY) {
transformState = TRANSFORM_INT_TRANSLATE;
} else {
transformState = TRANSFORM_ANY_TRANSLATE;
}
} else if ((type & (AffineTransform.TYPE_FLIP |
AffineTransform.TYPE_MASK_ROTATION |
AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0)
{
transformState = TRANSFORM_TRANSLATESCALE;
transX = transY = 0;
} else {
transformState = TRANSFORM_GENERIC;
transX = transY = 0;
}
if (transformState >= TRANSFORM_TRANSLATESCALE ||
origTransformState >= TRANSFORM_TRANSLATESCALE)
{
/* Its only in this case that the previous or current transform
* was more than a translate that font info is invalidated
*/
cachedFRC = null;
this.validFontInfo = false;
this.fontMetrics = null;
this.glyphVectorFontInfo = null;
if (transformState != origTransformState) {
invalidatePipe();
}
}
if (strokeState != STROKE_CUSTOM) {
validateBasicStroke((BasicStroke) stroke);
}
}
/**
* Returns the current Transform in the Graphics2D state.
* @see #transform
* @see #setTransform
*/
@Override
public AffineTransform getTransform() {
if ((constrainX | constrainY) == 0 && devScale == 1) {
return new AffineTransform(transform);
}
final double invScale = 1.0 / devScale;
AffineTransform tx = new AffineTransform(invScale, 0, 0, invScale,
-constrainX * invScale,
-constrainY * invScale);
tx.concatenate(transform);
return tx;
}
/**
* Returns the current Transform ignoring the "constrain"
* rectangle.
*/
public AffineTransform cloneTransform() {
return new AffineTransform(transform);
}
/**
* Returns the current Paint in the Graphics2D state.
* @see #setPaint
* @see java.awt.Graphics#setColor
*/
public Paint getPaint() {
return paint;
}
/**
* Returns the current Composite in the Graphics2D state.
* @see #setComposite
*/
public Composite getComposite() {
return composite;
}
public Color getColor() {
return foregroundColor;
}
/*
* Validate the eargb and pixel fields against the current color.
*
* The eargb field must take into account the extraAlpha
* value of an AlphaComposite. It may also take into account
* the Fsrc Porter-Duff blending function if such a function is
* a constant (see handling of Clear mode below). For instance,
* by factoring in the (Fsrc == 0) state of the Clear mode we can
* use a SrcNoEa loop just as easily as a general Alpha loop
* since the math will be the same in both cases.
*
* The pixel field will always be the best pixel data choice for
* the final result of all calculations applied to the eargb field.
*
* Note that this method is only necessary under the following
* conditions:
* (paintState <= PAINT_ALPHA_COLOR &&
* compositeState <= COMP_CUSTOM)
* though nothing bad will happen if it is run in other states.
*/
final void validateColor() {
int eargb;
if (imageComp == CompositeType.Clear) {
eargb = 0;
} else {
eargb = foregroundColor.getRGB();
if (compositeState <= COMP_ALPHA &&
imageComp != CompositeType.SrcNoEa &&
imageComp != CompositeType.SrcOverNoEa)
{
AlphaComposite alphacomp = (AlphaComposite) composite;
int a = Math.round(alphacomp.getAlpha() * (eargb >>> 24));
eargb = (eargb & 0x00ffffff) | (a << 24);
}
}
this.eargb = eargb;
this.pixel = surfaceData.pixelFor(eargb);
}
public void setColor(Color color) {
if (color == null || color == paint) {
return;
}
this.paint = foregroundColor = color;
validateColor();
if ((eargb >> 24) == -1) {
if (paintState == PAINT_OPAQUECOLOR) {
return;
}
paintState = PAINT_OPAQUECOLOR;
if (imageComp == CompositeType.SrcOverNoEa) {
// special case where compState depends on opacity of paint
compositeState = COMP_ISCOPY;
}
} else {
if (paintState == PAINT_ALPHACOLOR) {
return;
}
paintState = PAINT_ALPHACOLOR;
if (imageComp == CompositeType.SrcOverNoEa) {
// special case where compState depends on opacity of paint
compositeState = COMP_ALPHA;
}
}
validFontInfo = false;
invalidatePipe();
}
/**
* Sets the background color in this context used for clearing a region.
* When Graphics2D is constructed for a component, the backgroung color is
* inherited from the component. Setting the background color in the
* Graphics2D context only affects the subsequent clearRect() calls and
* not the background color of the component. To change the background
* of the component, use appropriate methods of the component.
* @param color The background color that should be used in
* subsequent calls to clearRect().
* @see getBackground
* @see Graphics.clearRect()
*/
public void setBackground(Color color) {
backgroundColor = color;
}
/**
* Returns the background color used for clearing a region.
* @see setBackground
*/
public Color getBackground() {
return backgroundColor;
}
/**
* Returns the current Stroke in the Graphics2D state.
* @see setStroke
*/
public Stroke getStroke() {
return stroke;
}
public Rectangle getClipBounds() {
if (clipState == CLIP_DEVICE) {
return null;
}
return getClipBounds(new Rectangle());
}
public Rectangle getClipBounds(Rectangle r) {
if (clipState != CLIP_DEVICE) {
if (transformState <= TRANSFORM_INT_TRANSLATE) {
if (usrClip instanceof Rectangle) {
r.setBounds((Rectangle) usrClip);
} else {
r.setFrame(usrClip.getBounds2D());
}
r.translate(-transX, -transY);
} else {
r.setFrame(getClip().getBounds2D());
}
} else if (r == null) {
throw new NullPointerException("null rectangle parameter");
}
return r;
}
public boolean hitClip(int x, int y, int width, int height) {
if (width <= 0 || height <= 0) {
return false;
}
if (transformState > TRANSFORM_INT_TRANSLATE) {
// Note: Technically the most accurate test would be to
// raster scan the parallelogram of the transformed rectangle
// and do a span for span hit test against the clip, but for
// speed we approximate the test with a bounding box of the
// transformed rectangle. The cost of rasterizing the
// transformed rectangle is probably high enough that it is
// not worth doing so to save the caller from having to call
// a rendering method where we will end up discovering the
// same answer in about the same amount of time anyway.
// This logic breaks down if this hit test is being performed
// on the bounds of a group of shapes in which case it might
// be beneficial to be a little more accurate to avoid lots
// of subsequent rendering calls. In either case, this relaxed
// test should not be significantly less accurate than the
// optimal test for most transforms and so the conservative
// answer should not cause too much extra work.
double d[] = {
x, y,
x+width, y,
x, y+height,
x+width, y+height
};
transform.transform(d, 0, d, 0, 4);
x = (int) Math.floor(Math.min(Math.min(d[0], d[2]),
Math.min(d[4], d[6])));
y = (int) Math.floor(Math.min(Math.min(d[1], d[3]),
Math.min(d[5], d[7])));
width = (int) Math.ceil(Math.max(Math.max(d[0], d[2]),
Math.max(d[4], d[6])));
height = (int) Math.ceil(Math.max(Math.max(d[1], d[3]),
Math.max(d[5], d[7])));
} else {
x += transX;
y += transY;
width += x;
height += y;
}
try {
if (!getCompClip().intersectsQuickCheckXYXY(x, y, width, height)) {
return false;
}
} catch (InvalidPipeException e) {
return false;
}
// REMIND: We could go one step further here and examine the
// non-rectangular clip shape more closely if there is one.
// Since the clip has already been rasterized, the performance
// penalty of doing the scan is probably still within the bounds
// of a good tradeoff between speed and quality of the answer.
return true;
}
protected void validateCompClip() {
int origClipState = clipState;
if (usrClip == null) {
clipState = CLIP_DEVICE;
clipRegion = devClip;
} else if (usrClip instanceof Rectangle2D) {
clipState = CLIP_RECTANGULAR;
if (usrClip instanceof Rectangle) {
clipRegion = devClip.getIntersection((Rectangle)usrClip);
} else {
clipRegion = devClip.getIntersection(usrClip.getBounds());
}
} else {
PathIterator cpi = usrClip.getPathIterator(null);
int box[] = new int[4];
ShapeSpanIterator sr = LoopPipe.getFillSSI(this);
try {
sr.setOutputArea(devClip);
sr.appendPath(cpi);
sr.getPathBox(box);
Region r = Region.getInstance(box);
r.appendSpans(sr);
clipRegion = r;
clipState =
r.isRectangular() ? CLIP_RECTANGULAR : CLIP_SHAPE;
} finally {
sr.dispose();
}
}
if (origClipState != clipState &&
(clipState == CLIP_SHAPE || origClipState == CLIP_SHAPE))
{
validFontInfo = false;
invalidatePipe();
}
}
static final int NON_RECTILINEAR_TRANSFORM_MASK =
(AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_ROTATION);
protected Shape transformShape(Shape s) {
if (s == null) {
return null;
}
if (transformState > TRANSFORM_INT_TRANSLATE) {
return transformShape(transform, s);
} else {
return transformShape(transX, transY, s);
}
}
public Shape untransformShape(Shape s) {
if (s == null) {
return null;
}
if (transformState > TRANSFORM_INT_TRANSLATE) {
try {
return transformShape(transform.createInverse(), s);
} catch (NoninvertibleTransformException e) {
return null;
}
} else {
return transformShape(-transX, -transY, s);
}
}
protected static Shape transformShape(int tx, int ty, Shape s) {
if (s == null) {
return null;
}
if (s instanceof Rectangle) {
Rectangle r = s.getBounds();
r.translate(tx, ty);
return r;
}
if (s instanceof Rectangle2D) {
Rectangle2D rect = (Rectangle2D) s;
return new Rectangle2D.Double(rect.getX() + tx,
rect.getY() + ty,
rect.getWidth(),
rect.getHeight());
}
if (tx == 0 && ty == 0) {
return cloneShape(s);
}
AffineTransform mat = AffineTransform.getTranslateInstance(tx, ty);
return mat.createTransformedShape(s);
}
protected static Shape transformShape(AffineTransform tx, Shape clip) {
if (clip == null) {
return null;
}
if (clip instanceof Rectangle2D &&
(tx.getType() & NON_RECTILINEAR_TRANSFORM_MASK) == 0)
{
Rectangle2D rect = (Rectangle2D) clip;
double matrix[] = new double[4];
matrix[0] = rect.getX();
matrix[1] = rect.getY();
matrix[2] = matrix[0] + rect.getWidth();
matrix[3] = matrix[1] + rect.getHeight();
tx.transform(matrix, 0, matrix, 0, 2);
fixRectangleOrientation(matrix, rect);
return new Rectangle2D.Double(matrix[0], matrix[1],
matrix[2] - matrix[0],
matrix[3] - matrix[1]);
}
if (tx.isIdentity()) {
return cloneShape(clip);
}
return tx.createTransformedShape(clip);
}
/**
* Sets orientation of the rectangle according to the clip.
*/
private static void fixRectangleOrientation(double[] m, Rectangle2D clip) {
if (clip.getWidth() > 0 != (m[2] - m[0] > 0)) {
double t = m[0];
m[0] = m[2];
m[2] = t;
}
if (clip.getHeight() > 0 != (m[3] - m[1] > 0)) {
double t = m[1];
m[1] = m[3];
m[3] = t;
}
}
public void clipRect(int x, int y, int w, int h) {
clip(new Rectangle(x, y, w, h));
}
public void setClip(int x, int y, int w, int h) {
setClip(new Rectangle(x, y, w, h));
}
public Shape getClip() {
return untransformShape(usrClip);
}
public void setClip(Shape sh) {
usrClip = transformShape(sh);
validateCompClip();
}
/**
* Intersects the current clip with the specified Path and sets the
* current clip to the resulting intersection. The clip is transformed
* with the current transform in the Graphics2D state before being
* intersected with the current clip. This method is used to make the
* current clip smaller. To make the clip larger, use any setClip method.
* @param p The Path to be intersected with the current clip.
*/
public void clip(Shape s) {
s = transformShape(s);
if (usrClip != null) {
s = intersectShapes(usrClip, s, true, true);
}
usrClip = s;
validateCompClip();
}
public void setPaintMode() {
setComposite(AlphaComposite.SrcOver);
}
public void setXORMode(Color c) {
if (c == null) {
throw new IllegalArgumentException("null XORColor");
}
setComposite(new XORComposite(c, surfaceData));
}
Blit lastCAblit;
Composite lastCAcomp;
public void copyArea(int x, int y, int w, int h, int dx, int dy) {
try {
doCopyArea(x, y, w, h, dx, dy);
} catch (InvalidPipeException e) {
try {
revalidateAll();
doCopyArea(x, y, w, h, dx, dy);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
private void doCopyArea(int x, int y, int w, int h, int dx, int dy) {
if (w <= 0 || h <= 0) {
return;
}
SurfaceData theData = surfaceData;
if (theData.copyArea(this, x, y, w, h, dx, dy)) {
return;
}
if (transformState >= TRANSFORM_TRANSLATESCALE) {
throw new InternalError("transformed copyArea not implemented yet");
}
// REMIND: This method does not deal with missing data from the
// source object (i.e. it does not send exposure events...)
Region clip = getCompClip();
Composite comp = composite;
if (lastCAcomp != comp) {
SurfaceType dsttype = theData.getSurfaceType();
CompositeType comptype = imageComp;
if (CompositeType.SrcOverNoEa.equals(comptype) &&
theData.getTransparency() == Transparency.OPAQUE)
{
comptype = CompositeType.SrcNoEa;
}
lastCAblit = Blit.locate(dsttype, comptype, dsttype);
lastCAcomp = comp;
}
x += transX;
y += transY;
Blit ob = lastCAblit;
if (dy == 0 && dx > 0 && dx < w) {
while (w > 0) {
int partW = Math.min(w, dx);
w -= partW;
int sx = x + w;
ob.Blit(theData, theData, comp, clip,
sx, y, sx+dx, y+dy, partW, h);
}
return;
}
if (dy > 0 && dy < h && dx > -w && dx < w) {
while (h > 0) {
int partH = Math.min(h, dy);
h -= partH;
int sy = y + h;
ob.Blit(theData, theData, comp, clip,
x, sy, x+dx, sy+dy, w, partH);
}
return;
}
ob.Blit(theData, theData, comp, clip, x, y, x+dx, y+dy, w, h);
}
/*
public void XcopyArea(int x, int y, int w, int h, int dx, int dy) {
Rectangle rect = new Rectangle(x, y, w, h);
rect = transformBounds(rect, transform);
Point2D point = new Point2D.Float(dx, dy);
Point2D root = new Point2D.Float(0, 0);
point = transform.transform(point, point);
root = transform.transform(root, root);
int fdx = (int)(point.getX()-root.getX());
int fdy = (int)(point.getY()-root.getY());
Rectangle r = getCompBounds().intersection(rect.getBounds());
if (r.isEmpty()) {
return;
}
// Begin Rasterizer for Clip Shape
boolean skipClip = true;
byte[] clipAlpha = null;
if (clipState == CLIP_SHAPE) {
int box[] = new int[4];
clipRegion.getBounds(box);
Rectangle devR = new Rectangle(box[0], box[1],
box[2] - box[0],
box[3] - box[1]);
if (!devR.isEmpty()) {
OutputManager mgr = getOutputManager();
RegionIterator ri = clipRegion.getIterator();
while (ri.nextYRange(box)) {
int spany = box[1];
int spanh = box[3] - spany;
while (ri.nextXBand(box)) {
int spanx = box[0];
int spanw = box[2] - spanx;
mgr.copyArea(this, null,
spanw, 0,
spanx, spany,
spanw, spanh,
fdx, fdy,
null);
}
}
}
return;
}
// End Rasterizer for Clip Shape
getOutputManager().copyArea(this, null,
r.width, 0,
r.x, r.y, r.width,
r.height, fdx, fdy,
null);
}
*/
public void drawLine(int x1, int y1, int x2, int y2) {
try {
drawpipe.drawLine(this, x1, y1, x2, y2);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawLine(this, x1, y1, x2, y2);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
try {
drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void fillRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
try {
fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
} catch (InvalidPipeException e) {
try {
revalidateAll();
fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawOval(int x, int y, int w, int h) {
try {
drawpipe.drawOval(this, x, y, w, h);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawOval(this, x, y, w, h);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void fillOval(int x, int y, int w, int h) {
try {
fillpipe.fillOval(this, x, y, w, h);
} catch (InvalidPipeException e) {
try {
revalidateAll();
fillpipe.fillOval(this, x, y, w, h);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawArc(int x, int y, int w, int h,
int startAngl, int arcAngl) {
try {
drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void fillArc(int x, int y, int w, int h,
int startAngl, int arcAngl) {
try {
fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
} catch (InvalidPipeException e) {
try {
revalidateAll();
fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawPolyline(int xPoints[], int yPoints[], int nPoints) {
try {
drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawPolygon(int xPoints[], int yPoints[], int nPoints) {
try {
drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void fillPolygon(int xPoints[], int yPoints[], int nPoints) {
try {
fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e) {
try {
revalidateAll();
fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void drawRect (int x, int y, int w, int h) {
try {
drawpipe.drawRect(this, x, y, w, h);
} catch (InvalidPipeException e) {
try {
revalidateAll();
drawpipe.drawRect(this, x, y, w, h);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
public void fillRect (int x, int y, int w, int h) {
try {
fillpipe.fillRect(this, x, y, w, h);
} catch (InvalidPipeException e) {
try {
revalidateAll();
fillpipe.fillRect(this, x, y, w, h);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
private void revalidateAll() {
try {
// REMIND: This locking needs to be done around the
// caller of this method so that the pipe stays valid
// long enough to call the new primitive.
// REMIND: No locking yet in screen SurfaceData objects!
// surfaceData.lock();
surfaceData = surfaceData.getReplacement();
if (surfaceData == null) {
surfaceData = NullSurfaceData.theInstance;
}
// this will recalculate the composite clip
setDevClip(surfaceData.getBounds());
if (paintState <= PAINT_ALPHACOLOR) {
validateColor();
}
if (composite instanceof XORComposite) {
Color c = ((XORComposite) composite).getXorColor();
setComposite(new XORComposite(c, surfaceData));
}
validatePipe();
} finally {
// REMIND: No locking yet in screen SurfaceData objects!
// surfaceData.unlock();
}
}
public void clearRect(int x, int y, int w, int h) {
// REMIND: has some "interesting" consequences if threads are
// not synchronized
Composite c = composite;
Paint p = paint;
setComposite(AlphaComposite.Src);
setColor(getBackground());
fillRect(x, y, w, h);
setPaint(p);
setComposite(c);
}
/**
* Strokes the outline of a Path using the settings of the current
* graphics state. The rendering attributes applied include the
* clip, transform, paint or color, composite and stroke attributes.
* @param p The path to be drawn.
* @see #setStroke
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #clip
* @see #setClip
* @see #setComposite
*/
public void draw(Shape s) {
try {
shapepipe.draw(this, s);
} catch (InvalidPipeException e) {
try {
revalidateAll();
shapepipe.draw(this, s);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
/**
* Fills the interior of a Path using the settings of the current
* graphics state. The rendering attributes applied include the
* clip, transform, paint or color, and composite.
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void fill(Shape s) {
try {
shapepipe.fill(this, s);
} catch (InvalidPipeException e) {
try {
revalidateAll();
shapepipe.fill(this, s);
} catch (InvalidPipeException e2) {
// Still catching the exception; we are not yet ready to
// validate the surfaceData correctly. Fail for now and
// try again next time around.
}
} finally {
surfaceData.markDirty();
}
}
/**
* Returns true if the given AffineTransform is an integer
* translation.
*/
private static boolean isIntegerTranslation(AffineTransform xform) {
if (xform.isIdentity()) {
return true;
}
if (xform.getType() == AffineTransform.TYPE_TRANSLATION) {
double tx = xform.getTranslateX();
double ty = xform.getTranslateY();
return (tx == (int)tx && ty == (int)ty);
}
return false;
}
/**
* Returns the index of the tile corresponding to the supplied position
* given the tile grid offset and size along the same axis.
*/
private static int getTileIndex(int p, int tileGridOffset, int tileSize) {
p -= tileGridOffset;
if (p < 0) {
p += 1 - tileSize; // force round to -infinity (ceiling)
}
return p/tileSize;
}
/**
* Returns a rectangle in image coordinates that may be required
* in order to draw the given image into the given clipping region
* through a pair of AffineTransforms. In addition, horizontal and
* vertical padding factors for antialising and interpolation may
* be used.
*/
private static Rectangle getImageRegion(RenderedImage img,
Region compClip,
AffineTransform transform,
AffineTransform xform,
int padX, int padY) {
Rectangle imageRect =
new Rectangle(img.getMinX(), img.getMinY(),
img.getWidth(), img.getHeight());
Rectangle result = null;
try {
double p[] = new double[8];
p[0] = p[2] = compClip.getLoX();
p[4] = p[6] = compClip.getHiX();
p[1] = p[5] = compClip.getLoY();
p[3] = p[7] = compClip.getHiY();
// Inverse transform the output bounding rect
transform.inverseTransform(p, 0, p, 0, 4);
xform.inverseTransform(p, 0, p, 0, 4);
// Determine a bounding box for the inverse transformed region
double x0,x1,y0,y1;
x0 = x1 = p[0];
y0 = y1 = p[1];
for (int i = 2; i < 8; ) {
double pt = p[i++];
if (pt < x0) {
x0 = pt;
} else if (pt > x1) {
x1 = pt;
}
pt = p[i++];
if (pt < y0) {
y0 = pt;
} else if (pt > y1) {
y1 = pt;
}
}
// This is padding for anti-aliasing and such. It may
// be more than is needed.
int x = (int)x0 - padX;
int w = (int)(x1 - x0 + 2*padX);
int y = (int)y0 - padY;
int h = (int)(y1 - y0 + 2*padY);
Rectangle clipRect = new Rectangle(x,y,w,h);
result = clipRect.intersection(imageRect);
} catch (NoninvertibleTransformException nte) {
// Worst case bounds are the bounds of the image.
result = imageRect;
}
return result;
}
/**
* Draws an image, applying a transform from image space into user space
* before drawing.
* The transformation from user space into device space is done with
* the current transform in the Graphics2D.
* The given transformation is applied to the image before the
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn. Does nothing if img is null.
* @param xform The transformation from image space into user space.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void drawRenderedImage(RenderedImage img,
AffineTransform xform) {
if (img == null) {
return;
}
// BufferedImage case: use a simple drawImage call
if (img instanceof BufferedImage) {
BufferedImage bufImg = (BufferedImage)img;
drawImage(bufImg,xform,null);
return;
}
// transformState tracks the state of transform and
// transX, transY contain the integer casts of the
// translation factors
boolean isIntegerTranslate =
(transformState <= TRANSFORM_INT_TRANSLATE) &&
isIntegerTranslation(xform);
// Include padding for interpolation/antialiasing if necessary
int pad = isIntegerTranslate ? 0 : 3;
Region clip;
try {
clip = getCompClip();
} catch (InvalidPipeException e) {
return;
}
// Determine the region of the image that may contribute to
// the clipped drawing area
Rectangle region = getImageRegion(img,
clip,
transform,
xform,
pad, pad);
if (region.width <= 0 || region.height <= 0) {
return;
}
// Attempt to optimize integer translation of tiled images.
// Although theoretically we are O.K. if the concatenation of
// the user transform and the device transform is an integer
// translation, we'll play it safe and only optimize the case
// where both are integer translations.
if (isIntegerTranslate) {
// Use optimized code
// Note that drawTranslatedRenderedImage calls copyImage
// which takes the user space to device space transform into
// account, but we need to provide the image space to user space
// translations.
drawTranslatedRenderedImage(img, region,
(int) xform.getTranslateX(),
(int) xform.getTranslateY());
return;
}
// General case: cobble the necessary region into a single Raster
Raster raster = img.getData(region);
// Make a new Raster with the same contents as raster
// but starting at (0, 0). This raster is thus in the same
// coordinate system as the SampleModel of the original raster.
WritableRaster wRaster =
Raster.createWritableRaster(raster.getSampleModel(),
raster.getDataBuffer(),
null);
// If the original raster was in a different coordinate
// system than its SampleModel, we need to perform an
// additional translation in order to get the (minX, minY)
// pixel of raster to be pixel (0, 0) of wRaster. We also
// have to have the correct width and height.
int minX = raster.getMinX();
int minY = raster.getMinY();
int width = raster.getWidth();
int height = raster.getHeight();
int px = minX - raster.getSampleModelTranslateX();
int py = minY - raster.getSampleModelTranslateY();
if (px != 0 || py != 0 || width != wRaster.getWidth() ||
height != wRaster.getHeight()) {
wRaster =
wRaster.createWritableChild(px,
py,
width,
height,
0, 0,
null);
}
// Now we have a BufferedImage starting at (0, 0)
// with the same contents that started at (minX, minY)
// in raster. So we must draw the BufferedImage with a
// translation of (minX, minY).
AffineTransform transXform = (AffineTransform)xform.clone();
transXform.translate(minX, minY);
ColorModel cm = img.getColorModel();
BufferedImage bufImg = new BufferedImage(cm,
wRaster,
cm.isAlphaPremultiplied(),
null);
drawImage(bufImg, transXform, null);
}
/**
* Intersects <code>destRect with
Other Java examples (source code examples)Here is a short list of links related to this Java SunGraphics2D.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.