|
Java example source code file (Matrix3D.java)
The Matrix3D.java Java example source code/* * Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of Oracle nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This source code is provided to illustrate the usage of a given feature * or technique and has been deliberately simplified. Additional steps * required for a production-quality application, such as security checks, * input validation and proper error handling, might not be present in * this sample code. */ /** A fairly conventional 3D matrix object that can transform sets of 3D points and perform a variety of manipulations on the transform */ class Matrix3D { float xx, xy, xz, xo; float yx, yy, yz, yo; float zx, zy, zz, zo; static final double pi = 3.14159265; /** Create a new unit matrix */ Matrix3D() { xx = 1.0f; yy = 1.0f; zz = 1.0f; } /** Scale by f in all dimensions */ void scale(float f) { xx *= f; xy *= f; xz *= f; xo *= f; yx *= f; yy *= f; yz *= f; yo *= f; zx *= f; zy *= f; zz *= f; zo *= f; } /** Scale along each axis independently */ void scale(float xf, float yf, float zf) { xx *= xf; xy *= xf; xz *= xf; xo *= xf; yx *= yf; yy *= yf; yz *= yf; yo *= yf; zx *= zf; zy *= zf; zz *= zf; zo *= zf; } /** Translate the origin */ void translate(float x, float y, float z) { xo += x; yo += y; zo += z; } /** rotate theta degrees about the y axis */ void yrot(double theta) { theta *= (pi / 180); double ct = Math.cos(theta); double st = Math.sin(theta); float Nxx = (float) (xx * ct + zx * st); float Nxy = (float) (xy * ct + zy * st); float Nxz = (float) (xz * ct + zz * st); float Nxo = (float) (xo * ct + zo * st); float Nzx = (float) (zx * ct - xx * st); float Nzy = (float) (zy * ct - xy * st); float Nzz = (float) (zz * ct - xz * st); float Nzo = (float) (zo * ct - xo * st); xo = Nxo; xx = Nxx; xy = Nxy; xz = Nxz; zo = Nzo; zx = Nzx; zy = Nzy; zz = Nzz; } /** rotate theta degrees about the x axis */ void xrot(double theta) { theta *= (pi / 180); double ct = Math.cos(theta); double st = Math.sin(theta); float Nyx = (float) (yx * ct + zx * st); float Nyy = (float) (yy * ct + zy * st); float Nyz = (float) (yz * ct + zz * st); float Nyo = (float) (yo * ct + zo * st); float Nzx = (float) (zx * ct - yx * st); float Nzy = (float) (zy * ct - yy * st); float Nzz = (float) (zz * ct - yz * st); float Nzo = (float) (zo * ct - yo * st); yo = Nyo; yx = Nyx; yy = Nyy; yz = Nyz; zo = Nzo; zx = Nzx; zy = Nzy; zz = Nzz; } /** rotate theta degrees about the z axis */ void zrot(double theta) { theta *= (pi / 180); double ct = Math.cos(theta); double st = Math.sin(theta); float Nyx = (float) (yx * ct + xx * st); float Nyy = (float) (yy * ct + xy * st); float Nyz = (float) (yz * ct + xz * st); float Nyo = (float) (yo * ct + xo * st); float Nxx = (float) (xx * ct - yx * st); float Nxy = (float) (xy * ct - yy * st); float Nxz = (float) (xz * ct - yz * st); float Nxo = (float) (xo * ct - yo * st); yo = Nyo; yx = Nyx; yy = Nyy; yz = Nyz; xo = Nxo; xx = Nxx; xy = Nxy; xz = Nxz; } /** Multiply this matrix by a second: M = M*R */ void mult(Matrix3D rhs) { float lxx = xx * rhs.xx + yx * rhs.xy + zx * rhs.xz; float lxy = xy * rhs.xx + yy * rhs.xy + zy * rhs.xz; float lxz = xz * rhs.xx + yz * rhs.xy + zz * rhs.xz; float lxo = xo * rhs.xx + yo * rhs.xy + zo * rhs.xz + rhs.xo; float lyx = xx * rhs.yx + yx * rhs.yy + zx * rhs.yz; float lyy = xy * rhs.yx + yy * rhs.yy + zy * rhs.yz; float lyz = xz * rhs.yx + yz * rhs.yy + zz * rhs.yz; float lyo = xo * rhs.yx + yo * rhs.yy + zo * rhs.yz + rhs.yo; float lzx = xx * rhs.zx + yx * rhs.zy + zx * rhs.zz; float lzy = xy * rhs.zx + yy * rhs.zy + zy * rhs.zz; float lzz = xz * rhs.zx + yz * rhs.zy + zz * rhs.zz; float lzo = xo * rhs.zx + yo * rhs.zy + zo * rhs.zz + rhs.zo; xx = lxx; xy = lxy; xz = lxz; xo = lxo; yx = lyx; yy = lyy; yz = lyz; yo = lyo; zx = lzx; zy = lzy; zz = lzz; zo = lzo; } /** Reinitialize to the unit matrix */ void unit() { xo = 0; xx = 1; xy = 0; xz = 0; yo = 0; yx = 0; yy = 1; yz = 0; zo = 0; zx = 0; zy = 0; zz = 1; } /** Transform nvert points from v into tv. v contains the input coordinates in floating point. Three successive entries in the array constitute a point. tv ends up holding the transformed points as integers; three successive entries per point */ void transform(float v[], int tv[], int nvert) { float lxx = xx, lxy = xy, lxz = xz, lxo = xo; float lyx = yx, lyy = yy, lyz = yz, lyo = yo; float lzx = zx, lzy = zy, lzz = zz, lzo = zo; for (int i = nvert * 3; (i -= 3) >= 0;) { float x = v[i]; float y = v[i + 1]; float z = v[i + 2]; tv[i] = (int) (x * lxx + y * lxy + z * lxz + lxo); tv[i + 1] = (int) (x * lyx + y * lyy + z * lyz + lyo); tv[i + 2] = (int) (x * lzx + y * lzy + z * lzz + lzo); } } @Override public String toString() { return ("[" + xo + "," + xx + "," + xy + "," + xz + ";" + yo + "," + yx + "," + yy + "," + yz + ";" + zo + "," + zx + "," + zy + "," + zz + "]"); } } Other Java examples (source code examples)Here is a short list of links related to this Java Matrix3D.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.