alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (jccoefct.c)

This example Java source code file (jccoefct.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

dctsize, errexit, false, far, full_coef_buffer_supported, jblockrow, jdimension, jerr_bad_buffer_mode, jsampimage, mcu_col_num, mcuindex, methoddef, null, sizeof

The jccoefct.c Java example source code

/*
 * reserved comment block
 * DO NOT REMOVE OR ALTER!
 */
/*
 * jccoefct.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the coefficient buffer controller for compression.
 * This controller is the top level of the JPEG compressor proper.
 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* We use a full-image coefficient buffer when doing Huffman optimization,
 * and also for writing multiple-scan JPEG files.  In all cases, the DCT
 * step is run during the first pass, and subsequent passes need only read
 * the buffered coefficients.
 */
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif


/* Private buffer controller object */

typedef struct {
  struct jpeg_c_coef_controller pub; /* public fields */

  JDIMENSION iMCU_row_num;      /* iMCU row # within image */
  JDIMENSION mcu_ctr;           /* counts MCUs processed in current row */
  int MCU_vert_offset;          /* counts MCU rows within iMCU row */
  int MCU_rows_per_iMCU_row;    /* number of such rows needed */

  /* For single-pass compression, it's sufficient to buffer just one MCU
   * (although this may prove a bit slow in practice).  We allocate a
   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
   * it's not really very big; this is to keep the module interfaces unchanged
   * when a large coefficient buffer is necessary.)
   * In multi-pass modes, this array points to the current MCU's blocks
   * within the virtual arrays.
   */
  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];

  /* In multi-pass modes, we need a virtual block array for each component. */
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
} my_coef_controller;

typedef my_coef_controller * my_coef_ptr;


/* Forward declarations */
METHODDEF(boolean) compress_data
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif


LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* In an interleaved scan, an MCU row is the same as an iMCU row.
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
   * But at the bottom of the image, process only what's left.
   */
  if (cinfo->comps_in_scan > 1) {
    coef->MCU_rows_per_iMCU_row = 1;
  } else {
    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    else
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  }

  coef->mcu_ctr = 0;
  coef->MCU_vert_offset = 0;
}


/*
 * Initialize for a processing pass.
 */

METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  coef->iMCU_row_num = 0;
  start_iMCU_row(cinfo);

  switch (pass_mode) {
  case JBUF_PASS_THRU:
    if (coef->whole_image[0] != NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_data;
    break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
  case JBUF_SAVE_AND_PASS:
    if (coef->whole_image[0] == NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_first_pass;
    break;
  case JBUF_CRANK_DEST:
    if (coef->whole_image[0] == NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_output;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    break;
  }
}


/*
 * Process some data in the single-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the image.
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
 *
 * NB: input_buf contains a plane for each component in image,
 * which we index according to the component's SOF position.
 */

METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  int blkn, bi, ci, yindex, yoffset, blockcnt;
  JDIMENSION ypos, xpos;
  jpeg_component_info *compptr;

  /* Loop to write as much as one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
         MCU_col_num++) {
      /* Determine where data comes from in input_buf and do the DCT thing.
       * Each call on forward_DCT processes a horizontal row of DCT blocks
       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
       * sequentially.  Dummy blocks at the right or bottom edge are filled in
       * specially.  The data in them does not matter for image reconstruction,
       * so we fill them with values that will encode to the smallest amount of
       * data, viz: all zeroes in the AC entries, DC entries equal to previous
       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
       */
      blkn = 0;
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
        compptr = cinfo->cur_comp_info[ci];
        blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
                                                : compptr->last_col_width;
        xpos = MCU_col_num * compptr->MCU_sample_width;
        ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
          if (coef->iMCU_row_num < last_iMCU_row ||
              yoffset+yindex < compptr->last_row_height) {
            (*cinfo->fdct->forward_DCT) (cinfo, compptr,
                                         input_buf[compptr->component_index],
                                         coef->MCU_buffer[blkn],
                                         ypos, xpos, (JDIMENSION) blockcnt);
            if (blockcnt < compptr->MCU_width) {
              /* Create some dummy blocks at the right edge of the image. */
              jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
                        (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
              for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
                coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
              }
            }
          } else {
            /* Create a row of dummy blocks at the bottom of the image. */
            jzero_far((void FAR *) coef->MCU_buffer[blkn],
                      compptr->MCU_width * SIZEOF(JBLOCK));
            for (bi = 0; bi < compptr->MCU_width; bi++) {
              coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
            }
          }
          blkn += compptr->MCU_width;
          ypos += DCTSIZE;
        }
      }
      /* Try to write the MCU.  In event of a suspension failure, we will
       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
       */
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
        /* Suspension forced; update state counters and exit */
        coef->MCU_vert_offset = yoffset;
        coef->mcu_ctr = MCU_col_num;
        return FALSE;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->mcu_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  coef->iMCU_row_num++;
  start_iMCU_row(cinfo);
  return TRUE;
}


#ifdef FULL_COEF_BUFFER_SUPPORTED

/*
 * Process some data in the first pass of a multi-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the image.
 * This amount of data is read from the source buffer, DCT'd and quantized,
 * and saved into the virtual arrays.  We also generate suitable dummy blocks
 * as needed at the right and lower edges.  (The dummy blocks are constructed
 * in the virtual arrays, which have been padded appropriately.)  This makes
 * it possible for subsequent passes not to worry about real vs. dummy blocks.
 *
 * We must also emit the data to the entropy encoder.  This is conveniently
 * done by calling compress_output() after we've loaded the current strip
 * of the virtual arrays.
 *
 * NB: input_buf contains a plane for each component in image.  All
 * components are DCT'd and loaded into the virtual arrays in this pass.
 * However, it may be that only a subset of the components are emitted to
 * the entropy encoder during this first pass; be careful about looking
 * at the scan-dependent variables (MCU dimensions, etc).
 */

METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION blocks_across, MCUs_across, MCUindex;
  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
  JCOEF lastDC;
  jpeg_component_info *compptr;
  JBLOCKARRAY buffer;
  JBLOCKROW thisblockrow, lastblockrow;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Align the virtual buffer for this component. */
    buffer = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[ci],
       coef->iMCU_row_num * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, TRUE);
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (coef->iMCU_row_num < last_iMCU_row)
      block_rows = compptr->v_samp_factor;
    else {
      /* NB: can't use last_row_height here, since may not be set! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
    }
    blocks_across = compptr->width_in_blocks;
    h_samp_factor = compptr->h_samp_factor;
    /* Count number of dummy blocks to be added at the right margin. */
    ndummy = (int) (blocks_across % h_samp_factor);
    if (ndummy > 0)
      ndummy = h_samp_factor - ndummy;
    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
     * on forward_DCT processes a complete horizontal row of DCT blocks.
     */
    for (block_row = 0; block_row < block_rows; block_row++) {
      thisblockrow = buffer[block_row];
      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
                                   input_buf[ci], thisblockrow,
                                   (JDIMENSION) (block_row * DCTSIZE),
                                   (JDIMENSION) 0, blocks_across);
      if (ndummy > 0) {
        /* Create dummy blocks at the right edge of the image. */
        thisblockrow += blocks_across; /* => first dummy block */
        jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
        lastDC = thisblockrow[-1][0];
        for (bi = 0; bi < ndummy; bi++) {
          thisblockrow[bi][0] = lastDC;
        }
      }
    }
    /* If at end of image, create dummy block rows as needed.
     * The tricky part here is that within each MCU, we want the DC values
     * of the dummy blocks to match the last real block's DC value.
     * This squeezes a few more bytes out of the resulting file...
     */
    if (coef->iMCU_row_num == last_iMCU_row) {
      blocks_across += ndummy;  /* include lower right corner */
      MCUs_across = blocks_across / h_samp_factor;
      for (block_row = block_rows; block_row < compptr->v_samp_factor;
           block_row++) {
        thisblockrow = buffer[block_row];
        lastblockrow = buffer[block_row-1];
        jzero_far((void FAR *) thisblockrow,
                  (size_t) (blocks_across * SIZEOF(JBLOCK)));
        for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
          lastDC = lastblockrow[h_samp_factor-1][0];
          for (bi = 0; bi < h_samp_factor; bi++) {
            thisblockrow[bi][0] = lastDC;
          }
          thisblockrow += h_samp_factor; /* advance to next MCU in row */
          lastblockrow += h_samp_factor;
        }
      }
    }
  }
  /* NB: compress_output will increment iMCU_row_num if successful.
   * A suspension return will result in redoing all the work above next time.
   */

  /* Emit data to the entropy encoder, sharing code with subsequent passes */
  return compress_output(cinfo, input_buf);
}


/*
 * Process some data in subsequent passes of a multi-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the scan.
 * The data is obtained from the virtual arrays and fed to the entropy coder.
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
 *
 * NB: input_buf is ignored; it is likely to be a NULL pointer.
 */

METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
  int blkn, ci, xindex, yindex, yoffset;
  JDIMENSION start_col;
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  JBLOCKROW buffer_ptr;
  jpeg_component_info *compptr;

  /* Align the virtual buffers for the components used in this scan.
   * NB: during first pass, this is safe only because the buffers will
   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
   */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    buffer[ci] = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       coef->iMCU_row_num * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, FALSE);
  }

  /* Loop to process one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
         MCU_col_num++) {
      /* Construct list of pointers to DCT blocks belonging to this MCU */
      blkn = 0;                 /* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
        compptr = cinfo->cur_comp_info[ci];
        start_col = MCU_col_num * compptr->MCU_width;
        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
          buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
          for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
            coef->MCU_buffer[blkn++] = buffer_ptr++;
          }
        }
      }
      /* Try to write the MCU. */
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
        /* Suspension forced; update state counters and exit */
        coef->MCU_vert_offset = yoffset;
        coef->mcu_ctr = MCU_col_num;
        return FALSE;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->mcu_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  coef->iMCU_row_num++;
  start_iMCU_row(cinfo);
  return TRUE;
}

#endif /* FULL_COEF_BUFFER_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
  my_coef_ptr coef;

  coef = (my_coef_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                SIZEOF(my_coef_controller));
  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
  coef->pub.start_pass = start_pass_coef;

  /* Create the coefficient buffer. */
  if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
    /* Allocate a full-image virtual array for each component, */
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
    int ci;
    jpeg_component_info *compptr;

    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
         ci++, compptr++) {
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
        ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
         (JDIMENSION) jround_up((long) compptr->width_in_blocks,
                                (long) compptr->h_samp_factor),
         (JDIMENSION) jround_up((long) compptr->height_in_blocks,
                                (long) compptr->v_samp_factor),
         (JDIMENSION) compptr->v_samp_factor);
    }
#else
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
  } else {
    /* We only need a single-MCU buffer. */
    JBLOCKROW buffer;
    int i;

    buffer = (JBLOCKROW)
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
      coef->MCU_buffer[i] = buffer + i;
    }
    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java jccoefct.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.