alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (mlib_ImageConvClearEdge_Fp.c)

This example Java source code file (mlib_ImageConvClearEdge_Fp.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

edges, mlib_double, mlib_failure, mlib_float, mlib_success

The mlib_ImageConvClearEdge_Fp.c Java example source code

/*
 * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


/*
 * FUNCTIONS
 *      mlib_c_ImageConvClearEdge  - Set edge of an image to a specific
 *                                        color. (for float-point image)
 *
 * SYNOPSIS
 *      mlib_status mlib_c_ImageConvClearEdge_Fp(mlib_image     *img,
 *                                               mlib_s32       dx_l,
 *                                               mlib_s32       dx_r,
 *                                               mlib_s32       dy_t,
 *                                               mlib_s32       dy_b,
 *                                               const mlib_d64 *color,
 *                                               mlib_s32       cmask)
 *
 * ARGUMENT
 *      img       Pointer to an image.
 *      dx_l      Number of columns on the left side of the
 *                image to be cleared.
 *      dx_r      Number of columns on the right side of the
 *                image to be cleared.
 *      dy_t      Number of rows on the top edge of the
 *                image to be cleared.
 *      dy_b      Number of rows on the top edge of the
 *                image to be cleared.
 *      color     Pointer to the color that the edges are set to.
 *      cmask     Channel mask to indicate the channels to be convolved.
 *                Each bit of which represents a channel in the image. The
 *                channels corresponded to 1 bits are those to be processed.
 *
 * RESTRICTION
 *      img can have 1, 2, 3 or 4 channels of MLIB_FLOAT or MLIB_DOUBLE
 *      data type.
 *
 * DESCRIPTION
 *      Set edge of an image to a specific color.
 *      The unselected channels are not overwritten.
 *      If src and dst have just one channel,
 *      cmask is ignored.
 */

#include "mlib_image.h"
#include "mlib_ImageConvEdge.h"

/***************************************************************/
#define EDGES(chan, type, mask)                                           \
{                                                                         \
  type *pimg = (type *) mlib_ImageGetData(img);                           \
  type color_i;                                                           \
  mlib_s32 img_stride = mlib_ImageGetStride(img) / sizeof(type);          \
  mlib_s32 i, j, l;                                                       \
  mlib_s32 testchan;                                                      \
                                                                          \
  testchan = 1;                                                           \
  for (l = chan - 1; l >= 0; l--) {                                       \
    if ((mask & testchan) == 0) {                                         \
      testchan <<= 1;                                                     \
      continue;                                                           \
    }                                                                     \
    testchan <<= 1;                                                       \
    color_i = (type) color[l];                                            \
    for (j = 0; j < dx_l; j++) {                                          \
      for (i = dy_t; i < (img_height - dy_b); i++) {                      \
        pimg[i * img_stride + l + j * chan] = color_i;                    \
      }                                                                   \
    }                                                                     \
    for (j = 0; j < dx_r; j++) {                                          \
      for (i = dy_t; i < (img_height - dy_b); i++) {                      \
        pimg[i * img_stride + l + (img_width - 1 - j) * chan] = color_i;  \
      }                                                                   \
    }                                                                     \
    for (i = 0; i < dy_t; i++) {                                          \
      for (j = 0; j < img_width; j++) {                                   \
        pimg[i * img_stride + l + j * chan] = color_i;                    \
      }                                                                   \
    }                                                                     \
    for (i = 0; i < dy_b; i++) {                                          \
      for (j = 0; j < img_width; j++) {                                   \
        pimg[(img_height - 1 - i) * img_stride + l + j * chan] = color_i; \
      }                                                                   \
    }                                                                     \
  }                                                                       \
}

/***************************************************************/
mlib_status mlib_ImageConvClearEdge_Fp(mlib_image     *img,
                                       mlib_s32       dx_l,
                                       mlib_s32       dx_r,
                                       mlib_s32       dy_t,
                                       mlib_s32       dy_b,
                                       const mlib_d64 *color,
                                       mlib_s32       cmask)
{
  mlib_s32 img_width  = mlib_ImageGetWidth(img);
  mlib_s32 img_height = mlib_ImageGetHeight(img);
  mlib_s32 channel    = mlib_ImageGetChannels(img);

  if (dx_l + dx_r > img_width) {
    dx_l = img_width;
    dx_r = 0;
  }

  if (dy_t + dy_b > img_height) {
    dy_t = img_height;
    dy_b = 0;
  }

  if (channel == 1) cmask = 1;

  switch (mlib_ImageGetType(img)) {
    case MLIB_FLOAT:
      EDGES(channel,mlib_f32, cmask);
      break;
    case MLIB_DOUBLE:
      EDGES(channel,mlib_d64, cmask);
      break;
    default:
      return MLIB_FAILURE;
  }

  return MLIB_SUCCESS;
}

/***************************************************************/

Other Java examples (source code examples)

Here is a short list of links related to this Java mlib_ImageConvClearEdge_Fp.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.