|
Java example source code file (mlib_ImageConvCopyEdge_Bit.c)
The mlib_ImageConvCopyEdge_Bit.c Java example source code/* * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * FUNCTIONS * mlib_ImageConvCopyEdge_Bit - Copy src edges to dst edges * * * SYNOPSIS * mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst, * const mlib_image *src, * mlib_s32 dx_l, * mlib_32 dx_r, * mlib_s32 dy_t, * mlib_32 dy_b, * mlib_s32 cmask); * * ARGUMENT * dst Pointer to an dst image. * src Pointer to an src image. * dx_l Number of columns on the left side of the * image to be copyed. * dx_r Number of columns on the right side of the * image to be copyed. * dy_t Number of rows on the top edge of the * image to be copyed. * dy_b Number of rows on the top edge of the * image to be copyed. * cmask Channel mask to indicate the channels to be convolved. * Each bit of which represents a channel in the image. The * channels corresponded to 1 bits are those to be processed. * * RESTRICTION * The src and the dst must be the MLIB_BIT type, same width, same height and have same number * of channels (1). The unselected channels are not * overwritten. If both src and dst have just one channel, * cmask is ignored. * * DESCRIPTION * Copy src edges to dst edges. * * The unselected channels are not overwritten. * If src and dst have just one channel, * cmask is ignored. */ #include "mlib_image.h" #include "mlib_ImageConvEdge.h" /***************************************************************/ mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst, const mlib_image *src, mlib_s32 dx_l, mlib_s32 dx_r, mlib_s32 dy_t, mlib_s32 dy_b, mlib_s32 cmask) { mlib_u8 *pdst = mlib_ImageGetData(dst), *pd; mlib_u8 *psrc = mlib_ImageGetData(src), *ps; mlib_s32 img_height = mlib_ImageGetHeight(dst); mlib_s32 img_width = mlib_ImageGetWidth(dst); mlib_s32 img_strided = mlib_ImageGetStride(dst); mlib_s32 img_strides = mlib_ImageGetStride(src); mlib_s32 bitoffd = mlib_ImageGetBitOffset(dst); mlib_s32 bitoffs = mlib_ImageGetBitOffset(src); mlib_s32 bitoff_end, test, shift1, shift2; mlib_u32 s0, s1, tmp; mlib_u8 mask, mask_end; mlib_u8 tmp_start, tmp_end; mlib_s32 i, j, amount; if (bitoffd == bitoffs) { pd = pdst; ps = psrc; if (dx_l > 0) { if (bitoffd + dx_l <= 8) { mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7)); for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask); } } else { mask = (0xFF >> bitoffd); for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask); } amount = (bitoffd + dx_l + 7) >> 3; mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7)); for (j = 1; j < amount - 1; j++) { for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided + j] = ps[i*img_strides + j]; } } for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) | (ps[i*img_strides + amount - 1] & mask); } } } if (dx_r > 0) { pd = pdst + (img_width + bitoffd - dx_r) / 8; ps = psrc + (img_width + bitoffd - dx_r) / 8; bitoffd = (img_width + bitoffd - dx_r) & 7; if (bitoffd + dx_r <= 8) { mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7)); for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask); } } else { mask = (0xFF >> bitoffd); for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask); } amount = (bitoffd + dx_r + 7) >> 3; mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7)); for (j = 1; j < amount - 1; j++) { for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided + j] = ps[i*img_strides + j]; } } for (i = dy_t; i < (img_height - dy_b); i++) { pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) | (ps[i*img_strides + amount - 1] & mask); } } } bitoffd = mlib_ImageGetBitOffset(dst); bitoff_end = (bitoffd + img_width) & 7; amount = (bitoffd + img_width + 7) >> 3; mask = (0xFF >> bitoffd); mask_end = (0xFF << ((8 - bitoff_end) & 7)); pd = pdst; ps = psrc; for (i = 0; i < dy_t; i++) { tmp_start = pd[i*img_strided]; tmp_end = pd[i*img_strided+amount-1]; for (j = 0; j < amount; j++) { pd[i*img_strided + j] = ps[i*img_strides + j]; } pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask); pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) | (pd[i*img_strided+amount-1] & mask_end); } pd = pdst + (img_height-1)*img_strided; ps = psrc + (img_height-1)*img_strides; for (i = 0; i < dy_b; i++) { tmp_start = pd[-i*img_strided]; tmp_end = pd[-i*img_strided+amount-1]; for (j = 0; j < amount; j++) { pd[-i*img_strided + j] = ps[-i*img_strides + j]; } pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask); pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) | (pd[-i*img_strided+amount-1] & mask_end); } } else { pd = pdst; if (bitoffs > bitoffd) { ps = psrc; shift2 = (8 - (bitoffs - bitoffd)); test = 0; } else { test = 1; ps = psrc - 1; shift2 = bitoffd - bitoffs; } shift1 = 8 - shift2; if (dx_l > 0) { if (bitoffd + dx_l <= 8) { mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7)); for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides]; s1 = ps[i*img_strides+1]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask); } } else { mask = (0xFF >> bitoffd); for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides]; s1 = ps[i*img_strides+1]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask); } amount = (bitoffd + dx_l + 7) >> 3; mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7)); for (j = 1; j < amount - 1; j++) { for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides+j]; s1 = ps[i*img_strides+j+1]; pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2); s0 = s1; } } for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides+amount-1]; s1 = ps[i*img_strides+amount]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) | (tmp & mask); } } } if (dx_r > 0) { pd = pdst + (img_width + bitoffd - dx_r) / 8; ps = psrc + (img_width + bitoffd - dx_r) / 8; bitoffd = (img_width + bitoffd - dx_r) & 7; ps -= test; if (bitoffd + dx_r <= 8) { mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7)); for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides]; s1 = ps[i*img_strides+1]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask); } } else { mask = (0xFF >> bitoffd); for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides]; s1 = ps[i*img_strides+1]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask); } amount = (bitoffd + dx_r + 7) >> 3; mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7)); for (j = 1; j < amount - 1; j++) { for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides+j]; s1 = ps[i*img_strides+j+1]; pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2); } } for (i = dy_t; i < (img_height - dy_b); i++) { s0 = ps[i*img_strides+amount-1]; s1 = ps[i*img_strides+amount]; tmp = (s0 << shift1) | (s1 >> shift2); pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) | (tmp & mask); } } } bitoffd = mlib_ImageGetBitOffset(dst); bitoff_end = (bitoffd + img_width) & 7; amount = (bitoffd + img_width + 7) >> 3; mask = (0xFF >> bitoffd); mask_end = (0xFF << ((8 - bitoff_end) & 7)); pd = pdst; ps = psrc-test; for (i = 0; i < dy_t; i++) { tmp_start = pd[i*img_strided]; tmp_end = pd[i*img_strided+amount-1]; s0 = ps[i*img_strides]; for (j = 0; j < amount; j++) { s1 = ps[i*img_strides+j+1]; pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2); s0 = s1; } pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask); pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) | (pd[i*img_strided+amount-1] & mask_end); } pd = pdst + (img_height-1)*img_strided; ps = psrc + (img_height-1)*img_strides - test; for (i = 0; i < dy_b; i++) { tmp_start = pd[-i*img_strided]; tmp_end = pd[-i*img_strided+amount-1]; s0 = ps[-i*img_strides]; for (j = 0; j < amount; j++) { s1 = ps[-i*img_strides+j+1]; pd[-i*img_strided + j] = (s0 << shift1) | (s1 >> shift2); s0 = s1; } pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask); pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) | (pd[-i*img_strided+amount-1] & mask_end); } } return MLIB_SUCCESS; } /***************************************************************/ Other Java examples (source code examples)Here is a short list of links related to this Java mlib_ImageConvCopyEdge_Bit.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.