|
Java example source code file (mlib_ImageConvMxN_Fp.c)
The mlib_ImageConvMxN_Fp.c Java example source code/* * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * FUNCTION * mlib_ImageConvMxN_Fp - image convolution with edge condition * * SYNOPSIS * mlib_status mlib_ImageConvMxN_Fp(mlib_image *dst, * const mlib_image *src, * const mlib_d64 *kernel, * mlib_s32 m, * mlib_s32 n, * mlib_s32 dm, * mlib_s32 dn, * mlib_s32 cmask, * mlib_edge edge) * * ARGUMENTS * dst Pointer to destination image. * src Pointer to source image. * m Kernel width (m must be not less than 1). * n Kernel height (n must be not less than 1). * dm, dn Position of key element in convolution kernel. * kernel Pointer to convolution kernel. * cmask Channel mask to indicate the channels to be convolved. * Each bit of which represents a channel in the image. The * channels corresponded to 1 bits are those to be processed. * edge Type of edge condition. * * DESCRIPTION * 2-D convolution, MxN kernel. * * The center of the source image is mapped to the center of the * destination image. * The unselected channels are not overwritten. If both src and dst have * just one channel, cmask is ignored. * * The edge condition can be one of the following: * MLIB_EDGE_DST_NO_WRITE (default) * MLIB_EDGE_DST_FILL_ZERO * MLIB_EDGE_DST_COPY_SRC * MLIB_EDGE_SRC_EXTEND * * RESTRICTION * The src and the dst must be the same type and have same number * of channels (1, 2, 3, or 4). * m >= 1, n >= 1, * 0 <= dm < m, 0 <= dn < n. */ #include "mlib_image.h" #include "mlib_ImageCheck.h" #include "mlib_SysMath.h" #include "mlib_ImageConv.h" /***************************************************************/ static void mlib_ImageConvMxNMulAdd_F32(mlib_f32 *dst, const mlib_f32 *src, const mlib_d64 *kernel, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch); static void mlib_ImageConvMxNF322F32_ext(mlib_f32 *dst, const mlib_f32 *src, mlib_s32 n, mlib_s32 nch, mlib_s32 dx_l, mlib_s32 dx_r); static void mlib_ImageConvMxNMulAdd_D64(mlib_d64 *dst, const mlib_d64 *src, const mlib_d64 *kernel, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch); static void mlib_ImageConvMxND642D64_ext(mlib_d64 *dst, const mlib_d64 *src, mlib_s32 n, mlib_s32 nch, mlib_s32 dx_l, mlib_s32 dx_r); /***************************************************************/ #if 0 static void mlib_ImageConvMxNMulAdd2_F32(mlib_f32 *hdst, mlib_f32 *vdst, const mlib_f32 *src, const mlib_d64 *hfilter, const mlib_d64 *vfilter, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch); static void mlib_ImageConvMxNMulAdd2_D64(mlib_d64 *hdst, mlib_d64 *vdst, const mlib_d64 *src, const mlib_d64 *hfilter, const mlib_d64 *vfilter, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch); #endif /* 0 */ /***************************************************************/ mlib_status mlib_ImageConvMxN_Fp(mlib_image *dst, const mlib_image *src, const mlib_d64 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dm, mlib_s32 dn, mlib_s32 cmask, mlib_edge edge) { mlib_type type; MLIB_IMAGE_CHECK(dst); type = mlib_ImageGetType(dst); if (type != MLIB_FLOAT && type != MLIB_DOUBLE) return MLIB_FAILURE; return mlib_ImageConvMxN_f(dst, src, kernel, m, n, dm, dn, 0, cmask, edge); } /***************************************************************/ void mlib_ImageConvMxNMulAdd_F32(mlib_f32 *dst, const mlib_f32 *src, const mlib_d64 *kernel, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch) { mlib_f32 *hdst1 = dst + dnch; mlib_s32 i, j; for (j = 0; j < m - 2; j += 3, src += 3 * nch, kernel += 3) { const mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) kernel[0]; mlib_f32 hval1 = (mlib_f32) kernel[1]; mlib_f32 hval2 = (mlib_f32) kernel[2]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; hdvl0 += val1 * hval1; hdvl0 += val2 * hval2; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } if (j < m - 1) { const mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) kernel[0]; mlib_f32 hval1 = (mlib_f32) kernel[1]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; hdvl0 += val1 * hval1; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } else if (j < m) { const mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) kernel[0]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } } /***************************************************************/ void mlib_ImageConvMxNF322F32_ext(mlib_f32 *dst, const mlib_f32 *src, mlib_s32 n, mlib_s32 nch, mlib_s32 dx_l, mlib_s32 dx_r) { mlib_s32 i; mlib_f32 val = src[0]; for (i = 0; i < dx_l; i++) dst[i] = val; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (; i < n - dx_r; i++) dst[i] = src[nch * (i - dx_l)]; val = dst[n - dx_r - 1]; for (; i < n; i++) dst[i] = val; } /***************************************************************/ mlib_status mlib_convMxNext_f32(mlib_image *dst, const mlib_image *src, const mlib_d64 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dx_l, mlib_s32 dx_r, mlib_s32 dy_t, mlib_s32 dy_b, mlib_s32 cmask) { mlib_d64 dspace[1024], *dsa = dspace; mlib_s32 wid_e = mlib_ImageGetWidth(src); mlib_f32 *fsa; mlib_f32 *da = mlib_ImageGetData(dst); mlib_f32 *sa = mlib_ImageGetData(src); mlib_s32 dlb = mlib_ImageGetStride(dst) >> 2; mlib_s32 slb = mlib_ImageGetStride(src) >> 2; mlib_s32 dw = mlib_ImageGetWidth(dst); mlib_s32 dh = mlib_ImageGetHeight(dst); mlib_s32 nch = mlib_ImageGetChannels(dst); mlib_s32 i, j, j1, k; if (3 * wid_e + m > 1024) { dsa = mlib_malloc((3 * wid_e + m) * sizeof(mlib_d64)); if (dsa == NULL) return MLIB_FAILURE; } fsa = (mlib_f32 *) dsa; for (j = 0; j < dh; j++, da += dlb) { for (k = 0; k < nch; k++) if (cmask & (1 << (nch - 1 - k))) { const mlib_f32 *sa1 = sa + k; mlib_f32 *da1 = da + k; const mlib_d64 *kernel1 = kernel; for (i = 0; i < dw; i++) da1[i * nch] = 0.f; for (j1 = 0; j1 < n; j1++, kernel1 += m) { mlib_ImageConvMxNF322F32_ext(fsa, sa1, dw + m - 1, nch, dx_l, dx_r); mlib_ImageConvMxNMulAdd_F32(da1, fsa, kernel1, dw, m, 1, nch); if ((j + j1 >= dy_t) && (j + j1 < dh + n - dy_b - 2)) sa1 += slb; } } if ((j >= dy_t) && (j < dh + n - dy_b - 2)) sa += slb; } if (dsa != dspace) mlib_free(dsa); return MLIB_SUCCESS; } /***************************************************************/ #if 0 void mlib_ImageConvMxNMulAdd2_F32(mlib_f32 *hdst, mlib_f32 *vdst, const mlib_f32 *src, const mlib_d64 *hfilter, const mlib_d64 *vfilter, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch) { mlib_f32 *hdst1 = hdst + dnch, *vdst1 = vdst + dnch; mlib_s32 i, j; for (j = 0; j < m - 2; j += 3, src += 3 * nch, hfilter += 3, vfilter += 3) { mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) hfilter[0]; mlib_f32 vval0 = (mlib_f32) vfilter[0]; mlib_f32 hval1 = (mlib_f32) hfilter[1]; mlib_f32 vval1 = (mlib_f32) vfilter[1]; mlib_f32 hval2 = (mlib_f32) hfilter[2]; mlib_f32 vval2 = (mlib_f32) vfilter[2]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = hdst[0]; mlib_f32 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 vdvl0 = val0 * vval0 + vdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; hdvl0 += val1 * hval1; vdvl0 += val1 * vval1; hdvl0 += val2 * hval2; vdvl0 += val2 * vval2; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } if (j < m - 1) { mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) hfilter[0]; mlib_f32 vval0 = (mlib_f32) vfilter[0]; mlib_f32 hval1 = (mlib_f32) hfilter[1]; mlib_f32 vval1 = (mlib_f32) vfilter[1]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = hdst[0]; mlib_f32 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 vdvl0 = val0 * vval0 + vdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; hdvl0 += val1 * hval1; vdvl0 += val1 * vval1; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } else if (j < m) { mlib_f32 *src2 = src + 2 * nch; mlib_f32 hval0 = (mlib_f32) hfilter[0]; mlib_f32 vval0 = (mlib_f32) vfilter[0]; mlib_f32 val0 = src[0]; mlib_f32 val1 = src[nch]; mlib_f32 hdvl = hdst[0]; mlib_f32 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_f32 hdvl0 = val0 * hval0 + hdvl; mlib_f32 vdvl0 = val0 * vval0 + vdvl; mlib_f32 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } } /***************************************************************/ void mlib_ImageConvMxNMulAdd2_D64(mlib_d64 *hdst, mlib_d64 *vdst, const mlib_d64 *src, const mlib_d64 *hfilter, const mlib_d64 *vfilter, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch) { mlib_d64 *hdst1 = hdst + dnch, *vdst1 = vdst + dnch; mlib_s32 i, j; for (j = 0; j < m - 2; j += 3, src += 3 * nch, hfilter += 3, vfilter += 3) { mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = hfilter[0]; mlib_d64 vval0 = vfilter[0]; mlib_d64 hval1 = hfilter[1]; mlib_d64 vval1 = vfilter[1]; mlib_d64 hval2 = hfilter[2]; mlib_d64 vval2 = vfilter[2]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = hdst[0]; mlib_d64 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 vdvl0 = val0 * vval0 + vdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; hdvl0 += val1 * hval1; vdvl0 += val1 * vval1; hdvl0 += val2 * hval2; vdvl0 += val2 * vval2; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } if (j < m - 1) { mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = hfilter[0]; mlib_d64 vval0 = vfilter[0]; mlib_d64 hval1 = hfilter[1]; mlib_d64 vval1 = vfilter[1]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = hdst[0]; mlib_d64 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 vdvl0 = val0 * vval0 + vdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; hdvl0 += val1 * hval1; vdvl0 += val1 * vval1; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } else if (j < m) { mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = hfilter[0]; mlib_d64 vval0 = vfilter[0]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = hdst[0]; mlib_d64 vdvl = vdst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 vdvl0 = val0 * vval0 + vdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; vdvl = vdst1[i * dnch]; val0 = val1; val1 = val2; hdst[i * dnch] = hdvl0; vdst[i * dnch] = vdvl0; } } } #endif /* 0 */ /***************************************************************/ void mlib_ImageConvMxNMulAdd_D64(mlib_d64 *dst, const mlib_d64 *src, const mlib_d64 *kernel, mlib_s32 n, mlib_s32 m, mlib_s32 nch, mlib_s32 dnch) { mlib_d64 *hdst1 = dst + dnch; mlib_s32 i, j; for (j = 0; j < m - 2; j += 3, src += 3 * nch, kernel += 3) { const mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = kernel[0]; mlib_d64 hval1 = kernel[1]; mlib_d64 hval2 = kernel[2]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; hdvl0 += val1 * hval1; hdvl0 += val2 * hval2; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } if (j < m - 1) { const mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = kernel[0]; mlib_d64 hval1 = kernel[1]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; hdvl0 += val1 * hval1; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } else if (j < m) { const mlib_d64 *src2 = src + 2 * nch; mlib_d64 hval0 = kernel[0]; mlib_d64 val0 = src[0]; mlib_d64 val1 = src[nch]; mlib_d64 hdvl = dst[0]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < n; i++) { mlib_d64 hdvl0 = val0 * hval0 + hdvl; mlib_d64 val2 = src2[i * nch]; hdvl = hdst1[i * dnch]; val0 = val1; val1 = val2; dst[i * dnch] = hdvl0; } } } /***************************************************************/ void mlib_ImageConvMxND642D64_ext(mlib_d64 *dst, const mlib_d64 *src, mlib_s32 n, mlib_s32 nch, mlib_s32 dx_l, mlib_s32 dx_r) { mlib_s32 i; mlib_d64 val = src[0]; for (i = 0; i < dx_l; i++) dst[i] = val; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (; i < n - dx_r; i++) dst[i] = src[nch * (i - dx_l)]; val = dst[n - dx_r - 1]; for (; i < n; i++) dst[i] = val; } /***************************************************************/ mlib_status mlib_convMxNext_d64(mlib_image *dst, const mlib_image *src, const mlib_d64 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dx_l, mlib_s32 dx_r, mlib_s32 dy_t, mlib_s32 dy_b, mlib_s32 cmask) { mlib_d64 dspace[1024], *dsa = dspace; mlib_s32 wid_e = mlib_ImageGetWidth(src); mlib_d64 *da = mlib_ImageGetData(dst); mlib_d64 *sa = mlib_ImageGetData(src); mlib_s32 dlb = mlib_ImageGetStride(dst) >> 3; mlib_s32 slb = mlib_ImageGetStride(src) >> 3; mlib_s32 dw = mlib_ImageGetWidth(dst); mlib_s32 dh = mlib_ImageGetHeight(dst); mlib_s32 nch = mlib_ImageGetChannels(dst); mlib_s32 i, j, j1, k; if (3 * wid_e + m > 1024) { dsa = mlib_malloc((3 * wid_e + m) * sizeof(mlib_d64)); if (dsa == NULL) return MLIB_FAILURE; } for (j = 0; j < dh; j++, da += dlb) { for (k = 0; k < nch; k++) if (cmask & (1 << (nch - 1 - k))) { mlib_d64 *sa1 = sa + k; mlib_d64 *da1 = da + k; const mlib_d64 *kernel1 = kernel; for (i = 0; i < dw; i++) da1[i * nch] = 0.; for (j1 = 0; j1 < n; j1++, kernel1 += m) { mlib_ImageConvMxND642D64_ext(dsa, sa1, dw + m - 1, nch, dx_l, dx_r); mlib_ImageConvMxNMulAdd_D64(da1, dsa, kernel1, dw, m, 1, nch); if ((j + j1 >= dy_t) && (j + j1 < dh + n - dy_b - 2)) sa1 += slb; } } if ((j >= dy_t) && (j < dh + n - dy_b - 2)) sa += slb; } if (dsa != dspace) mlib_free(dsa); return MLIB_SUCCESS; } /***************************************************************/ Other Java examples (source code examples)Here is a short list of links related to this Java mlib_ImageConvMxN_Fp.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.